Generic placeholder image

Anti-Cancer Agents in Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 1871-5206
ISSN (Online): 1875-5992

Review Article

An Insight into Anticancer Bioactives from Punica granatum (Pomegranate)

Author(s): Kanika Sharma, Payal Kesharwani, Shiv Kumar Prajapati, Ankit Jain*, Dolly Jain, Nishi Mody and Swapnil Sharma

Volume 22, Issue 4, 2022

Published on: 26 July, 2021

Page: [694 - 702] Pages: 9

DOI: 10.2174/1871520621666210726143553

Price: $65

Abstract

Cancer is one of the major reasons for mortality across the globe. Many side-effects are associated with the formulations available in the market, affecting the quality of life of the patients. This has caused the researchers to find an alternative source of medications, such as herbal medicine, showing a promising effect in anticancer treatment; one such source is Pomegranate, which belongs to the family Punicaceae. Punica granatum contains many polyphenols that have antioxidant, antidiabetic, and therapeutic effects in the treatment and management of metabolic and cardiovascular diseases, as well as a favourable effect on anticancer therapy. Polyphenols like punicalin, punicalagin, and ellagic acid are a few of the many compounds responsible for the anticancer activity of pomegranate. Many preparations of pomegranate, such as Pomegranate Juice (PJ), Pomegranate Seed Oil (PSO), Pomegranate peel extract (PoPx), etc. are used in various clinical studies. These polyphenols show anticancer activity by either arresting the cell cycle in the G2/M phase, inducing apoptosis or damaging the DNA of tumor cells. This review explicitly discusses the role and mechanism of bioactives obtained from the pomegranate in the treatment and management of cancer. The chemical structure, properties, and role of pomegranate in the treatment of breast, lung, thyroid, colon, and prostate cancer have been focused on in detail. This review also discusses various targeted drug delivery approaches for tumour treatment as well as patented preparation of pomegranate compounds along with the ongoing clinical trials.

Keywords: Cancer, pomegranate, polyphenols, natural bioactive, Punica granatum, punicalin, punicalagin, ellagic acid.

Graphical Abstract
[1]
Jain, A.; Jain, S.K. Advances in tumor targeted liposomes. Curr. Mol. Med., 2018, 18(1), 44-57.
[http://dx.doi.org/10.2174/1566524018666180416101522] [PMID: 29663884]
[2]
Jain, A.; Jain, S.K. Application potential of engineered liposomes in tumor targeting. In: Multifunctional systems for combined delivery, biosensing and diagnostics; Grumezescu, A., Ed.; Elsevier - health sciences division. , 2017, pp. 171-192.
[http://dx.doi.org/10.1016/B978-0-323-52725-5.00009-5]
[3]
Usha, T.; Middha, S.K.; Sidhalinghamurthy, K.R. Pomegranate Peel and Its Anticancer Activity: A Mechanism-Based Review. In: Plant-derived Bioactives; Springer: Berlin, 2020, pp. 223-250.
[http://dx.doi.org/10.1007/978-981-15-2361-8_10]
[4]
Habiba, U.; Miah, M.; Khatun, R.; Sultana, A.; Billah, M.; Tahsin, S.; Omar, F.B.; Mohanto, S.; Karmakar, S.; Mahmud, S. Study of lectin, antioxidant, cytotoxicity and anticancer properties of Punica granatum fruit juice against EAC cells in Swiss Albino mice. Int. J. Biosci., 2019, 14(2), 482-489.
[5]
Sudha, T.; Mousa, D.S.; El-Far, A.H.; Mousa, S.A. Pomegranate (Punica granatum) fruit extract suppresses cancer progression and tumor angiogenesis of pancreatic and colon cancer in chick chorioallantoic membrane model. Nutr. Cancer, 2021, 73(8), 1350-1356.
[6]
Saraf, S.; Jain, A.; Tiwari, A.; Verma, A.; Panda, P.K.; Jain, S.K. Advances in liposomal drug delivery to cancer: an overview. J. Drug Deliv. Sci. Technol., 2020, 56, 101549
[http://dx.doi.org/10.1016/j.jddst.2020.101549]
[7]
Donaldson, M.S. Nutrition and cancer: a review of the evidence for an anti-cancer diet. Nutr. J., 2004, 3(1), 19.
[http://dx.doi.org/10.1186/1475-2891-3-19] [PMID: 15496224]
[8]
Syed, N.; Chamcheu, J-C.; Adhami, M.; Mukhtar, H. Pomegranate extracts and cancer prevention: molecular and cellular activities. Anticancer. Agents Med. Chem., 2013, 13(8), 1149-1161.
[9]
Shirzad, H.; Taji, F.; Rafieian-Kopaei, M. Correlation between antioxidant activity of garlic extracts and WEHI-164 fibrosarcoma tumor growth in BALB/c mice. J. Med. Food, 2011, 14(9), 969-974.
[http://dx.doi.org/10.1089/jmf.2011.1594] [PMID: 21812650]
[10]
Baradaran Rahimi, V.; Ghadiri, M.; Ramezani, M.; Askari, V.R. Antiinflammatory and anti-cancer activities of pomegranate and its constituent, ellagic acid: evidence from cellular, animal, and clinical studies. Phytother. Res., 2020, 34(4), 685-720.
[http://dx.doi.org/10.1002/ptr.6565] [PMID: 31908068]
[11]
Jain, A.; Tiwari, A.; Verma, A.; Jain, S.K. Vitamins for cancer prevention and treatment: an insight. Curr. Mol. Med., 2017, 17(5), 321-340.
[PMID: 29210648]
[12]
Prajapati, S.K.; Mishra, G.; Malaiya, A.; Jain, A.; Mody, N.; Raichur, A.M. Antimicrobial application potential of phytoconstituents from turmeric and garlic. In: Bioactive Natural Products for Pharmaceutical Applications; Springer: Cham, 2020, pp. 409-435.
[13]
Kulkarni, A.P.; Aradhya, S.M. Chemical changes and antioxidant activity in pomegranate arils during fruit development. Food Chem., 2005, 93(2), 319-324.
[http://dx.doi.org/10.1016/j.foodchem.2004.09.029]
[14]
Panth, N.; Manandhar, B.; Paudel, K.R. Anticancer activity of Punica granatum (Pomegranate): a review. Phytother. Res., 2017, 31(4), 568-578.
[http://dx.doi.org/10.1002/ptr.5784] [PMID: 28185340]
[15]
Middha, S.K.; Usha, T.; Basistha, B.C.; Goyal, A.K. Amelioration of antioxidant potential, toxicity, and antihyperglycemic activity of Hippophae salicifolia d. don leaf extracts in alloxan-induced diabetic rats. 3 Biotech. , 2019, 9(8) 308
[16]
Moattar, F. Comparison between Calendit-E cream and expressed breast milk in nipple pain treatment in breastfeeding women. Modern Care J.,, 2012, 9(3)
[17]
Kaur, C.; Pal, R.; Kar, A.; Gadi, C.; Sen, S.; Kumar, P.; Chandra, R.; Jaiswal, S.; Khan, I. Characterization of antioxidants and hypoglycemic potential of pomegranate grown in India: a preliminary investigation. J. Food Biochem., 2014, 38(4), 397-406.
[http://dx.doi.org/10.1111/jfbc.12066]
[18]
Nasser, M.; Damaj, Z.; Hijazi, A.; Merah, O.; Al-Khatib, B.; Hijazi, N.; Trabolsi, C.; Damaj, R.; Nasser, M. Pomegranate juice extract decreases cisplatin toxicity on peripheral blood mononuclear cells. Medicines (Basel), 2020, 7(10), 66.
[http://dx.doi.org/10.3390/medicines7100066] [PMID: 33076394]
[19]
Gil, M.I.; Tomás-Barberán, F.A.; Hess-Pierce, B.; Holcroft, D.M.; Kader, A.A. Antioxidant activity of pomegranate juice and its relationship with phenolic composition and processing. J. Agric. Food Chem., 2000, 48(10), 4581-4589.
[http://dx.doi.org/10.1021/jf000404a] [PMID: 11052704]
[20]
Noda, Y.; Kaneyuki, T.; Mori, A.; Packer, L. Antioxidant activities of pomegranate fruit extract and its anthocyanidins: delphinidin, cyanidin, and pelargonidin. J. Agric. Food Chem., 2002, 50(1), 166-171.
[http://dx.doi.org/10.1021/jf0108765] [PMID: 11754562]
[21]
Lansky, E.P.; Harrison, G.; Froom, P.; Jiang, W.G. Pomegranate (Punica granatum) pure chemicals show possible synergistic inhibition of human PC-3 prostate cancer cell invasion across Matrigel. Invest. New Drugs, 2005, 23(2), 121-122.
[http://dx.doi.org/10.1007/s10637-005-5856-7] [PMID: 15744587]
[22]
Shishodia, S.; Adams, L.; Bhatt, I.D.; Aggarwal, B.B. Anticancer Potential of Pomegranate; CRC Press: Boca Raton, FL, USA, 2006.
[23]
Mena, P.; Calani, L.; Dall’Asta, C.; Galaverna, G.; García-Viguera, C.; Bruni, R.; Crozier, A.; Del Rio, D. Rapid and comprehensive evaluation of (poly)phenolic compounds in pomegranate (Punica granatum L.) juice by UHPLC-MSn. Molecules, 2012, 17(12), 14821-14840.
[http://dx.doi.org/10.3390/molecules171214821] [PMID: 23519255]
[24]
Sharma, P.; McClees, S.F.; Afaq, F. Pomegranate for prevention and treatment of cancer: an Update. Molecules, 2017, 22(1), 177.
[http://dx.doi.org/10.3390/molecules22010177] [PMID: 28125044]
[25]
Viuda-Martos, M.; Fernández-López, J.; Pérez-Álvarez, J.A. Pomegranate and its many functional components as related to human health: a review. Compr. Rev. Food Sci. Food Saf., 2010, 9(6), 635-654.
[http://dx.doi.org/10.1111/j.1541-4337.2010.00131.x] [PMID: 33467822]
[26]
Afaq, F.; Saleem, M.; Krueger, C.G.; Reed, J.D.; Mukhtar, H. Anthocyanin- and hydrolyzable tannin-rich pomegranate fruit extract modulates MAPK and NF-kappaB pathways and inhibits skin tumorigenesis in CD-1 mice. Int. J. Cancer, 2005, 113(3), 423-433.
[http://dx.doi.org/10.1002/ijc.20587] [PMID: 15455341]
[27]
Elfalleh, W.; Hannachi, H.; Tlili, N.; Yahia, Y.; Nasri, N.; Ferchichi, A. Total phenolic contents and antioxidant activities of pomegranate peel, seed, leaf and flower. J. Med. Plants Res., 2012, 6(32), 4724-4730.
[http://dx.doi.org/10.5897/JMPR11.995]
[28]
Tzulker, R.; Glazer, I.; Bar-Ilan, I.; Holland, D.; Aviram, M.; Amir, R. Antioxidant activity, polyphenol content, and related compounds in different fruit juices and homogenates prepared from 29 different pomegranate accessions. J. Agric. Food Chem., 2007, 55(23), 9559-9570.
[http://dx.doi.org/10.1021/jf071413n] [PMID: 17914875]
[29]
Seeram, N.P.; Aronson, W.J.; Zhang, Y.; Henning, S.M.; Moro, A.; Lee, R.P.; Sartippour, M.; Harris, D.M.; Rettig, M.; Suchard, M.A.; Pantuck, A.J.; Belldegrun, A.; Heber, D. Pomegranate ellagitannin-derived metabolites inhibit prostate cancer growth and localize to the mouse prostate gland. J. Agric. Food Chem., 2007, 55(19), 7732-7737.
[http://dx.doi.org/10.1021/jf071303g] [PMID: 17722872]
[30]
Seeram, N.P.; Adams, L.S.; Henning, S.M.; Niu, Y.; Zhang, Y.; Nair, M.G.; Heber, D. in vitro antiproliferative, apoptotic and antioxidant activities of punicalagin, ellagic acid and a total pomegranate tannin extract are enhanced in combination with other polyphenols as found in pomegranate juice. J. Nutr. Biochem., 2005, 16(6), 360-367.
[http://dx.doi.org/10.1016/j.jnutbio.2005.01.006] [PMID: 15936648]
[31]
Larrosa, M.; Tomás-Barberán, F.A.; Espín, J.C. The dietary hydrolysable tannin punicalagin releases ellagic acid that induces apoptosis in human colon adenocarcinoma Caco-2 cells by using the mitochondrial pathway. J. Nutr. Biochem., 2006, 17(9), 611-625.
[http://dx.doi.org/10.1016/j.jnutbio.2005.09.004] [PMID: 16426830]
[32]
Aruna, P.; Venkataramanamma, D.; Singh, A.K.; Singh, R.P. Health benefits of punicic acid: a review. Compr. Rev. Food Sci. Food Saf., 2016, 15(1), 16-27.
[http://dx.doi.org/10.1111/1541-4337.12171] [PMID: 33371578]
[33]
Bonesi, M.; Tundis, R.; Sicari, V.; Loizzo, M.R. The juice of pomegranate (Punica granatum L.): recent studies on its bioactivities. In: Quality Control in the Beverage Industry; Elsevier: Amsterdam, 2019, pp. 459-489.
[http://dx.doi.org/10.1016/B978-0-12-816681-9.00013-8]
[34]
Achiwa, Y.; Hasegawa, K.; Komiya, T.; Udagawa, Y. Ursolic acid induces Bax-dependent apoptosis through the caspase-3 pathway in endometrial cancer SNG-II cells. Oncol. Rep., 2005, 13(1), 51-57.
[http://dx.doi.org/10.3892/or.13.1.51] [PMID: 15583801]
[35]
Harmand, P.O.; Duval, R.; Delage, C.; Simon, A. Ursolic acid induces apoptosis through mitochondrial intrinsic pathway and caspase-3 activation in M4Beu melanoma cells. Int. J. Cancer, 2005, 114(1), 1-11.
[http://dx.doi.org/10.1002/ijc.20588] [PMID: 15523687]
[36]
Suzuki, R.; Noguchi, R.; Ota, T.; Abe, M.; Miyashita, K.; Kawada, T. Cytotoxic effect of conjugated trienoic fatty acids on mouse tumor and human monocytic leukemia cells. Lipids, 2001, 36(5), 477-482.
[http://dx.doi.org/10.1007/s11745-001-0746-0] [PMID: 11432460]
[37]
Madlener, S.; Illmer, C.; Horvath, Z.; Saiko, P.; Losert, A.; Herbacek, I.; Grusch, M.; Elford, H.L.; Krupitza, G.; Bernhaus, A.; Fritzer-Szekeres, M.; Szekeres, T. Gallic acid inhibits ribonucleotide reductase and cyclooxygenases in human HL-60 promyelocytic leukemia cells. Cancer Lett., 2007, 245(1-2), 156-162.
[http://dx.doi.org/10.1016/j.canlet.2006.01.001] [PMID: 16488533]
[38]
Masamune, A.; Satoh, M.; Kikuta, K.; Suzuki, N.; Satoh, K.; Shimosegawa, T. Ellagic acid blocks activation of pancreatic stellate cells. Biochem. Pharmacol., 2005, 70(6), 869-878.
[http://dx.doi.org/10.1016/j.bcp.2005.06.008] [PMID: 16023081]
[39]
Hwang, H.J.; Park, H.J.; Chung, H.J.; Min, H.Y.; Park, E.J.; Hong, J.Y.; Lee, S.K. Inhibitory effects of caffeic acid phenethyl ester on cancer cell metastasis mediated by the down-regulation of matrix metalloproteinase expression in human HT1080 fibrosarcoma cells. J. Nutr. Biochem., 2006, 17(5), 356-362.
[http://dx.doi.org/10.1016/j.jnutbio.2005.08.009] [PMID: 16214327]
[40]
Doss, M.X.; Potta, S.P.; Hescheler, J.; Sachinidis, A. Trapping of growth factors by catechins: a possible therapeutical target for prevention of proliferative diseases. J. Nutr. Biochem., 2005, 16(5), 259-266.
[http://dx.doi.org/10.1016/j.jnutbio.2004.11.003] [PMID: 15866224]
[41]
Qian, F.; Wei, D.; Zhang, Q.; Yang, S. Modulation of P-glycoprotein function and reversal of multidrug resistance by (-)-epigallocatechin gallate in human cancer cells. Biomed. Pharmacother., 2005, 59(3), 64-69.
[http://dx.doi.org/10.1016/j.biopha.2005.01.002] [PMID: 15795098]
[42]
Hou, D.X.; Ose, T.; Lin, S.; Harazoro, K.; Imamura, I.; Kubo, M.; Uto, T.; Terahara, N.; Yoshimoto, M.; Fujii, M. Anthocyanidins induce apoptosis in human promyelocytic leukemia cells: structure-activity relationship and mechanisms involved. Int. J. Oncol., 2003, 23(3), 705-712.
[http://dx.doi.org/10.3892/ijo.23.3.705] [PMID: 12888907]
[43]
Yang, J-H.; Hsia, T-C.; Kuo, H-M.; Chao, P-D.L.; Chou, C-C.; Wei, Y-H.; Chung, J-G. Inhibition of lung cancer cell growth by quercetin glucuronides via G2/M arrest and induction of apoptosis. Drug Metab. Dispos., 2006, 34(2), 296-304.
[http://dx.doi.org/10.1124/dmd.105.005280] [PMID: 16280456]
[44]
Horinaka, M.; Yoshida, T.; Shiraishi, T.; Nakata, S.; Wakada, M.; Nakanishi, R.; Nishino, H.; Matsui, H.; Sakai, T. Luteolin induces apoptosis via death receptor 5 upregulation in human malignant tumor cells. Oncogene, 2005, 24(48), 7180-7189.
[http://dx.doi.org/10.1038/sj.onc.1208874] [PMID: 16007131]
[45]
Ackland, M.L.; van de Waarsenburg, S.; Jones, R. Synergistic antiproliferative action of the flavonols quercetin and kaempferol in cultured human cancer cell lines. In Vivo, 2005, 19(1), 69-76.
[PMID: 15796157]
[46]
Zheng, P.W.; Chiang, L.C.; Lin, C.C. Apigenin induced apoptosis through p53-dependent pathway in human cervical carcinoma cells. Life Sci., 2005, 76(12), 1367-1379.
[http://dx.doi.org/10.1016/j.lfs.2004.08.023] [PMID: 15670616]
[47]
Lee, I.R.; Yang, M.Y. Phenolic compounds from Duchesnea chrysantha and their cytotoxic activities in human cancer cell. Arch. Pharm. Res., 1994, 17(6), 476-479.
[http://dx.doi.org/10.1007/BF02979129] [PMID: 10319162]
[48]
Márquez Martín, A.; de la Puerta Vázquez, R.; Fernández-Arche, A.; Ruiz-Gutiérrez, V. Supressive effect of maslinic acid from pomace olive oil on oxidative stress and cytokine production in stimulated murine macrophages. Free Radic. Res., 2006, 40(3), 295-302.
[http://dx.doi.org/10.1080/10715760500467935] [PMID: 16484046]
[49]
Gurfinkel, D.M.; Chow, S.; Hurren, R.; Gronda, M.; Henderson, C.; Berube, C.; Hedley, D.W.; Schimmer, A.D. Disruption of the endoplasmic reticulum and increases in cytoplasmic calcium are early events in cell death induced by the natural triterpenoid Asiatic acid. Apoptosis, 2006, 11(9), 1463-1471.
[http://dx.doi.org/10.1007/s10495-006-9086-z] [PMID: 16820960]
[50]
Niedzwiecki, A.; Roomi, M.W.; Kalinovsky, T.; Rath, M. Anticancer efficacy of polyphenols and their combinations. Nutrients, 2016, 8(9), 552.
[http://dx.doi.org/10.3390/nu8090552] [PMID: 27618095]
[51]
Briguglio, G.; Costa, C.; Pollicino, M.; Giambò, F.; Catania, S.; Fenga, C. Polyphenols in cancer prevention: new insights. Int. J. Funct. Nutrit., 2020, 1(2), 1-1.
[http://dx.doi.org/10.3892/ijfn.2020.9]
[52]
Prakash, O.; Usmani, S.; Gupta, A.; Singh, R.; Singh, N.; Ved, A. Bioactive polyphenols as promising natural medicinal agents against cancer: the emerging trends and prospective goals. Curr. Bioact. Compd., 2020, 16(3), 243-264.
[http://dx.doi.org/10.2174/1573407214666181030122046]
[53]
Turrini, E.; Ferruzzi, L.; Fimognari, C. Potential effects of pomegranate polyphenols in cancer prevention and therapy. Oxid. Med. Cell. Longev., 2015, 2015, 1-19.
[54]
Cheng, X.; Gao, Y.Y.; Yao, X.; Yu, H.X.; Bao, J.D.; Guan, H.X.; Sun, Y.; Zhang, L. Punicalagin induces apoptosis-independent autophagic cell death in human papillary thyroid carcinoma BCPAP cells. RSC Advances, 2016, 6(72), 68485-68493.
[http://dx.doi.org/10.1039/C6RA13431A]
[55]
Avtanski, D.; Poretsky, L. Phyto-polyphenols as potential inhibitors of breast cancer metastasis. Mol. Med., 2018, 24(1), 29.
[http://dx.doi.org/10.1186/s10020-018-0032-7] [PMID: 30134816]
[56]
Abdal Dayem, A.; Choi, H.Y.; Yang, G.M.; Kim, K.; Saha, S.K.; Cho, S.G. The anti-cancer effect of polyphenols against breast cancer and cancer stem cells: molecular mechanisms. Nutrients, 2016, 8(9), 581.
[http://dx.doi.org/10.3390/nu8090581] [PMID: 27657126]
[57]
Losada-Echeberría, M.; Herranz-López, M.; Micol, V.; Barrajón-Catalán, E. Polyphenols as promising drugs against main breast cancer signatures. Antioxidants, 2017, 6(4), 88.
[http://dx.doi.org/10.3390/antiox6040088] [PMID: 29112149]
[58]
Gu, H.F.; Mao, X.Y.; Du, M. Prevention of breast cancer by dietary polyphenols-role of cancer stem cells. Crit. Rev. Food Sci. Nutr., 2020, 60(5), 810-825.
[http://dx.doi.org/10.1080/10408398.2018.1551778] [PMID: 30632783]
[59]
Mansouri, N.; Alivand, M.R.; Bayat, S.; Khaniani, M.S.; Derakhshan, S.M. The hopeful anticancer role of oleuropein in breast cancer through histone deacetylase modulation. J. Cell. Biochem., 2019, 120(10), 17042-17049.
[http://dx.doi.org/10.1002/jcb.28965] [PMID: 31119806]
[60]
Silva, C.; Correia-Branco, A.; Andrade, N.; Ferreira, A.C.; Soares, M.L.; Sonveaux, P.; Stephenne, J.; Martel, F. Selective pro-apoptotic and antimigratory effects of polyphenol complex catechin:lysine 1:2 in breast, pancreatic and colorectal cancer cell lines. Eur. J. Pharmacol., 2019, 859, 172533
[http://dx.doi.org/10.1016/j.ejphar.2019.172533] [PMID: 31301308]
[61]
Ahmed, S.; Khan, H.; Fratantonio, D.; Hasan, M.M.; Sharifi, S.; Fathi, N.; Ullah, H.; Rastrelli, L. Apoptosis induced by luteolin in breast cancer: mechanistic and therapeutic perspectives. Phytomedicine, 2019, 59, 152883
[http://dx.doi.org/10.1016/j.phymed.2019.152883] [PMID: 30986716]
[62]
Jeong, H.; Phan, A.N.H.; Choi, J.W. Anti-cancer effects of polyphenolic compounds in epidermal growth factor receptor tyrosine kinase inhibitor-resistant non-small cell lung cancer. Pharmacogn. Mag., 2017, 13(52), 595-599.
[http://dx.doi.org/10.4103/pm.pm_535_16] [PMID: 29200719]
[63]
Amararathna, M.; Johnston, M.R.; Rupasinghe, H.P.V. Plant polyphenols as chemopreventive agents for lung cancer. Int. J. Mol. Sci., 2016, 17(8), 1352.
[http://dx.doi.org/10.3390/ijms17081352] [PMID: 27548149]
[64]
Hazafa, A.; Rehman, K-U.; Jahan, N.; Jabeen, Z. The role of polyphenol (Flavonoids) compounds in the treatment of cancer cells. Nutr. Cancer, 2020, 72(3), 386-397.
[http://dx.doi.org/10.1080/01635581.2019.1637006] [PMID: 31287738]
[65]
Zhang, L.; Chen, W.; Tu, G.; Chen, X.; Lu, Y.; Wu, L.; Zheng, D. Enhanced chemotherapeutic efficacy of plga-encapsulated Epigallocatechin Gallate (EGCG) against human lung cancer. Int. J. Nanomedicine, 2020, 15, 4417-4429.
[PMID: 32606686]
[66]
Gallazzi, M.; Festa, M.; Corradino, P.; Sansone, C.; Albini, A.; Noonan, D.M. An extract of olive mill wastewater downregulates growth, adhesion and invasion pathways in lung cancer cells: involvement of CXCR4. Nutrients, 2020, 12(4), 903.
[http://dx.doi.org/10.3390/nu12040903] [PMID: 32224910]
[67]
Mileo, A.M.; Nisticò, P.; Miccadei, S. Polyphenols: immunomodulatory and therapeutic implication in colorectal cancer. Front. Immunol., 2019, 10, 729.
[http://dx.doi.org/10.3389/fimmu.2019.00729] [PMID: 31031748]
[68]
Yao, J.; Wei, C.; Wang, J.Y.; Zhang, R.; Li, Y.X.; Wang, L.S. Effect of resveratrol on Treg/Th17 signaling and ulcerative colitis treatment in mice. World J. Gastroenterol., 2015, 21(21), 6572-6581.
[http://dx.doi.org/10.3748/wjg.v21.i21.6572] [PMID: 26074695]
[69]
Ghanemi, F.Z.; Belarbi, M.; Fluckiger, A.; Nani, A.; Dumont, A.; De Rosny, C.; Aboura, I.; Khan, A.S.; Murtaza, B.; Benammar, C.; Lahfa, B.F.; Patoli, D.; Delmas, D.; Rebe, C.; Apetoh, L.; Khan, N.A.; Ghringhelli, F.; Rialland, M.; Hichami, A. Carob leaf polyphenols trigger intrinsic apoptotic pathway and induce cell cycle arrest in colon cancer cells. J. Funct. Foods, 2017, 33, 112-121.
[http://dx.doi.org/10.1016/j.jff.2017.03.032]
[70]
Wu, X.; Xue, L.; Tata, A.; Song, M.; Neto, C.C.; Xiao, H. Bioactive components of polyphenol-rich and non-polyphenol-rich cranberry fruit extracts and their chemopreventive effects on colitis-associated colon cancer. J. Agric. Food Chem., 2020, 68(25), 6845-6853.
[http://dx.doi.org/10.1021/acs.jafc.0c02604] [PMID: 32390426]
[71]
Siegel, R.L.; Miller, K.D.; Jemal, A. Cancer statistics, 2016. CA Cancer J. Clin., 2016, 66(1), 7-30.
[http://dx.doi.org/10.3322/caac.21332] [PMID: 26742998]
[72]
Albrecht, M.; Jiang, W.; Kumi-Diaka, J.; Lansky, E.P.; Gommersall, L.M.; Patel, A.; Mansel, R.E.; Neeman, I.; Geldof, A.A.; Campbell, M.J. Pomegranate extracts potently suppress proliferation, xenograft growth, and invasion of human prostate cancer cells. J. Med. Food, 2004, 7(3), 274-283.
[http://dx.doi.org/10.1089/jmf.2004.7.274] [PMID: 15383219]
[73]
Malik, A.; Afaq, F.; Sarfaraz, S.; Adhami, V.M.; Syed, D.N.; Mukhtar, H. Pomegranate fruit juice for chemoprevention and chemotherapy of prostate cancer. Proc. Natl. Acad. Sci. USA, 2005, 102(41), 14813-14818.
[http://dx.doi.org/10.1073/pnas.0505870102] [PMID: 16192356]
[74]
Malik, A.; Mukhtar, H. Prostate cancer prevention through pomegranate fruit. Cell Cycle, 2006, 5(4), 371-373.
[http://dx.doi.org/10.4161/cc.5.4.2486] [PMID: 16479165]
[75]
Deng, Y.; Li, Y.; Yang, F.; Zeng, A.; Yang, S.; Luo, Y.; Zhang, Y.; Xie, Y.; Ye, T.; Xia, Y.; Yin, W. The extract from Punica granatum (pomegranate) peel induces apoptosis and impairs metastasis in prostate cancer cells. Biomed. Pharmacother., 2017, 93, 976-984.
[http://dx.doi.org/10.1016/j.biopha.2017.07.008] [PMID: 28724216]
[76]
Modaeinama, S.; Abasi, M.; Abbasi, M.M.; Jahanban-Esfahlan, R. Anti tumoral properties of Punica granatum (pomegranate) peel extract on different human cancer cells. Asian Pac. J. Cancer Prev., 2015, 16(14), 5697-5701.
[http://dx.doi.org/10.7314/APJCP.2015.16.14.5697] [PMID: 26320438]
[77]
Li, Y.J.; Ye, T.H.; Yang, F.F.; Hu, M.X.; Liang, L.B.; He, H.; Li, Z.P.; Zeng, A.Q.; Li, Y.L.; Yao, Y.Q.; Xie, Y.M.; An, Z.M.; Li, S.Q. Punica granatum (pomegranate) peel extract exerts potent antitumor and anti-metastasis activity in thyroid cancer. RSC Advances, 2016, 6(87), 84523-84535.
[http://dx.doi.org/10.1039/C6RA13167K]
[78]
Li, Y.; Ye, T.; Yang, F.; Hu, M.; Liang, L.; He, H.; Li, Z.; Zeng, A.; Li, Y.; Yao, Y. Correction: Punica granatum (pomegranate) peel extract exerts potent antitumor and anti-metastasis activity in thyroid cancer. RSC Advances, 2017, 7(47), 29882-29882.
[http://dx.doi.org/10.1039/C7RA90068F]
[79]
Cheng, Y.J.; Nie, X.Y.; Ji, C.C.; Lin, X.X.; Liu, L.J.; Chen, X.M.; Yao, H.; Wu, S.H. Long-term cardiovascular risk after radiotherapy in women with breast cancer. J. Am. Heart Assoc., 2017, 6(5), e005633
[http://dx.doi.org/10.1161/JAHA.117.005633] [PMID: 28529208]
[80]
Yao, X.; Cheng, X.; Zhang, L.; Yu, H.; Bao, J.; Guan, H.; Lu, R. Punicalagin from pomegranate promotes human papillary thyroid carcinoma BCPAP cell death by triggering ATM-mediated DNA damage response. Nutr. Res., 2017, 47, 63-71.
[http://dx.doi.org/10.1016/j.nutres.2017.09.001] [PMID: 29241579]
[81]
Bhise, K.; Kashaw, S.K.; Sau, S.; Iyer, A.K. Nanostructured lipid carriers employing polyphenols as promising anticancer agents: Quality by Design (QbD) approach. Int. J. Pharm., 2017, 526(1-2), 506-515.
[http://dx.doi.org/10.1016/j.ijpharm.2017.04.078] [PMID: 28502895]
[82]
Jain, A.; Tiwari, A.; Verma, A.; Saraf, S.; Jain, S.K. Combination cancer therapy using multifunctional liposomes. Crit. Rev. Ther. Drug Carrier Syst., 2020, 37(2), 105-134.
[http://dx.doi.org/10.1615/CritRevTherDrugCarrierSyst.2019026358] [PMID: 32865902]
[83]
Jain, A.; Kumari, R.; Tiwari, A.; Verma, A.; Tripathi, A.; Shrivastava, A.; Jain, S.K. Nanocarrier based advances in drug delivery to tumor: an overview. Curr. Drug Targets, 2018, 19(13), 1498-1518.
[http://dx.doi.org/10.2174/1389450119666180131105822] [PMID: 29384060]
[84]
Saraf, S.; Jain, A.; Tiwari, A.; Verma, A.; Jain, S.K. Engineered liposomes bearing camptothecin analogue for tumour targeting: in vitro and ex vivo studies. J. Liposome Res., 2021, 31(4), 326-341.
[http://dx.doi.org/10.1080/08982104.2020.1801725] [PMID: 32718195]
[85]
Jain, A.; Tripathi, M.; Prajapati, S.K.; Raichur, A.M. Biopolymer matrix composite for drug delivery applications in cancer. In: Reference Module in Materials Science and Materials Engineering; Elsevier: Amsterdam, 2021.
[http://dx.doi.org/10.1016/B978-0-12-819724-0.00028-8]
[86]
Liang, H.; Zhou, B.; Li, J.; Liu, X.; Deng, Z.; Li, B. Engineering multifunctional coatings on nanoparticles based on oxidative coupling assembly of polyphenols for stimuli-responsive drug delivery. J. Agric. Food Chem., 2018, 66(26), 6897-6905.
[http://dx.doi.org/10.1021/acs.jafc.8b01208] [PMID: 29877704]
[87]
Zhang, H.; Yi, Z.; Sun, Z.; Ma, X.; Li, X. Functional nanoparticles of tea polyphenols for doxorubicin delivery in cancer treatment. J. Mater. Chem. B Mater. Biol. Med., 2017, 5(36), 7622-7631.
[http://dx.doi.org/10.1039/C7TB01323J] [PMID: 32264237]
[88]
Vittorio, O.; Curcio, M.; Cojoc, M.; Goya, G.F.; Hampel, S.; Iemma, F.; Dubrovska, A.; Cirillo, G. Polyphenols delivery by polymeric materials: challenges in cancer treatment. Drug Deliv., 2017, 24(1), 162-180.
[http://dx.doi.org/10.1080/10717544.2016.1236846] [PMID: 28156178]
[89]
Yi, Z.; Chen, G.; Chen, X.; Ma, X.; Cui, X.; Sun, Z.; Su, W.; Li, X. Preparation of strong antioxidative, therapeutic nanoparticles based on amino acid-induced ultrafast assembly of tea polyphenols. ACS Appl. Mater. Interfaces, 2020, 12(30), 33550-33563.
[http://dx.doi.org/10.1021/acsami.0c10282] [PMID: 32627530]
[90]
Zhang, X.; Parekh, G.; Guo, B.; Huang, X.; Dong, Y.; Han, W.; Chen, X.; Xiao, G. Polyphenol and self-assembly: metal polyphenol nanonetwork for drug delivery and pharmaceutical applications. Fut. Sci.,, 2019, 1(1)
[91]
Tabrez, S.; Jabir, N.R.; Adhami, V.M.; Khan, M.I.; Moulay, M.; Kamal, M.A.; Mukhtar, H. Nanoencapsulated dietary polyphenols for cancer prevention and treatment: successes and challenges. Nanomedicine (Lond.), 2020, 15(11), 1147-1162.
[http://dx.doi.org/10.2217/nnm-2019-0398] [PMID: 32292109]
[92]
Rahaiee, S.; Assadpour, E.; Faridi Esfanjani, A.; Silva, A.S.; Jafari, S.M. Application of nano/microencapsulated phenolic compounds against cancer. Adv. Colloid Interface Sci., 2020, 279, 102153
[http://dx.doi.org/10.1016/j.cis.2020.102153] [PMID: 32289738]
[93]
Xie, X.; Li, Y.; Zhao, D.; Fang, C.; He, D.; Yang, Q.; Yang, L.; Chen, R.; Tan, Q.; Zhang, J. Oral administration of natural polyphenol-loaded natural polysaccharide-cloaked lipidic nanocarriers to improve efficacy against small-cell lung cancer. Nanomedicine (Lond.), 2020, 29, 102261
[http://dx.doi.org/10.1016/j.nano.2020.102261] [PMID: 32621880]
[94]
Guo, Z.; Yang, Y.; Shu, Y.; Qiao, L.; Peng, M.; Wang, Z. Stimulus-responsive tea polyphenols as nanocarrier for selective intracellular drug delivery. J. Biomater. Appl., 2020, 35(2), 149-157.
[http://dx.doi.org/10.1177/0885328220924539] [PMID: 32390570]
[95]
Echeverri-Cuartas, C.E.; Agudelo, N.A.; Gartner, C. Chitosan-PEG-folate- Fe(III) complexes as nanocarriers of epigallocatechin-3-gallate Int. J. Biol. Macromol.,, 2020, 165(Pt B), 2909-2919.
[http://dx.doi.org/10.1016/j.ijbiomac.2020.10.166] [PMID: 33736290]
[96]
Jarrard, D.; Filon, M.; Huang, W.; Havighurst, T.; DeShong, K.; Kim, K.; Konety, B.R.; Saltzstein, D.; Mukhtar, H.; Wollmer, B.; Suen, C.; House, M.G.; Parnes, H.L.; Bailey, H.H. A phase II randomized placebo-controlled trial of pomegranate fruit extract in men with localized prostate cancer undergoing active surveillance. Prostate, 2021, 81(1), 41-49.
[http://dx.doi.org/10.1002/pros.24076] [PMID: 33095939]
[97]
Pantuck, A.J.; Leppert, J.T.; Zomorodian, N.; Aronson, W.; Hong, J.; Barnard, R.J.; Seeram, N.; Liker, H.; Wang, H.; Elashoff, R.; Heber, D.; Aviram, M.; Ignarro, L.; Belldegrun, A. Phase II study of pomegranate juice for men with rising prostate-specific antigen following surgery or radiation for prostate cancer. Clin. Cancer Res., 2006, 12(13), 4018-4026.
[http://dx.doi.org/10.1158/1078-0432.CCR-05-2290] [PMID: 16818701]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy