Generic placeholder image

Anti-Cancer Agents in Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 1871-5206
ISSN (Online): 1875-5992

Mini-Review Article

Structural Aspects of mTOR Inhibitors: Search for Potential Compounds

Author(s): Kamalpreet Kaur, Arjun Anant and Vivek Asati*

Volume 22, Issue 6, 2022

Published on: 20 July, 2021

Page: [1037 - 1055] Pages: 19

DOI: 10.2174/1871520621666210720121403

Price: $65

Abstract

mTOR (mammalian target of rapamycin) is a catalytic subunit composed of two multi-protein complexes that indicate mTORC1 and mTORC2. It plays a crucial role in various fundamental cell processes like cell proliferation, metabolism, survival, cell growth, etc. Various first line mTOR inhibitors such as Rapamycin, Temsirolimus, Everolimus, Ridaforolimus, Umirolimus, and Zotarolimus have been used popularly. In contrast, several mTOR inhibitors such as Gedatolisib (PF-05212384) are under phase 2 clinical trials studies for the treatment of triple-negative breast cancer. The mTOR inhibitors bearing heterocyclic moieties such as quinazoline, thiophene, morpholine, imidazole, pyrazine, furan, quinoline are under investigation against various cancer cell lines (U87MG, PC-3, MCF-7, A549, MDA-231). In this review, we summarized updated research related to mTOR inhibitors and their structure-activity relationship, which may help scientists develop potent inhibitors against cancer.

Keywords: Anti-cancer, mTOR pathways, SAR, pyrimidine derivatives, heterocyclic compounds, triple-negative breast cancer.

Graphical Abstract
[1]
Xie, J.; Wang, X.; Proud, C.G. mTOR inhibitors in cancer therapy. F1000 Res., 2016, 5, 5.
[http://dx.doi.org/10.12688/f1000research.9207.1] [PMID: 27635236]
[2]
Inoki, K.; Ouyang, H.; Li, Y.; Guan, K.L. Signaling by target of rapamycin proteins in cell growth control. Microbiol. Mol. Biol. Rev., 2005, 69(1), 79-100.
[http://dx.doi.org/10.1128/MMBR.69.1.79-100.2005] [PMID: 15755954]
[3]
Sadowski, K.; Kotulska, K.; Jóźwiak, S. Management of side effects of mTOR inhibitors in tuberous sclerosis patients. Pharmacol. Rep., 2016, 68(3), 536-542.
[http://dx.doi.org/10.1016/j.pharep.2016.01.005] [PMID: 26891243]
[4]
Asati, V.; Mahapatra, D.K.; Bharti, S.K. PI3K/Akt/mTOR and Ras/Raf/MEK/ERK signaling pathways inhibitors as anticancer agents: Structural and pharmacological perspectives. Eur. J. Med. Chem., 2016, 109, 314-341.
[http://dx.doi.org/10.1016/j.ejmech.2016.01.012] [PMID: 26807863]
[5]
Kim, L.C.; Cook, R.S.; Chen, J. mTORC1 and mTORC2 in cancer and the tumor microenvironment. Oncogene, 2017, 36(16), 2191-2201.
[http://dx.doi.org/10.1038/onc.2016.363] [PMID: 27748764]
[6]
McKenna, M.; McGarrigle, S.; Pidgeon, G.P. The next generation of PI3K-Akt-mTOR pathway inhibitors in breast cancer cohorts. Biochim. Biophys. Acta Rev. Cancer, 2018, 1870(2), 185-197.
[http://dx.doi.org/10.1016/j.bbcan.2018.08.001] [PMID: 30318472]
[7]
Kaplan, B.; Qazi, Y.; Wellen, J.R. Strategies for the management of adverse events associated with mTOR inhibitors. Transplant. Rev. (Orlando), 2014, 28(3), 126-133.
[http://dx.doi.org/10.1016/j.trre.2014.03.002] [PMID: 24685370]
[8]
Alzahrani, A.S. PI3K/Akt/mTOR inhibitors in cancer: At the bench and bedside. Semin. Cancer Biol., 2019, 59, 125-132.
[http://dx.doi.org/10.1016/j.semcancer.2019.07.009] [PMID: 31323288]
[9]
Fernandes-Silva, G.; Ivani de Paula, M.; Rangel, É.B. mTOR inhibitors in pancreas transplant: Adverse effects and drug-drug interactions. Expert Opin. Drug Metab. Toxicol., 2017, 13(4), 367-385.
[http://dx.doi.org/10.1080/17425255.2017.1239708] [PMID: 27659512]
[10]
Castinetti, F.; Albarel, F.; Archambeaud, F.; Bertherat, J.; Bouillet, B.; Buffier, P.; Briet, C.; Cariou, B.; Caron, P.; Chabre, O.; Chanson, P. Endocrine side-effects of new anticancer therapies: Overall monitoring and conclusions. InAnnalesd’endocrinologie., 2018, 79, 591-595.
[http://dx.doi.org/10.1016/j.ando.2018.07.005]
[11]
Bee, J.; Fuller, S.; Miller, S.; Johnson, S.R. Lung function response and side effects to rapamycin for lymphangioleiomyomatosis: A prospective national cohort study. Thorax, 2018, 73(4), 369-375.
[http://dx.doi.org/10.1136/thoraxjnl-2017-210872] [PMID: 28993539]
[12]
Formisano, L.; Napolitano, F.; Rosa, R.; D’Amato, V.; Servetto, A.; Marciano, R.; De Placido, P.; Bianco, C.; Bianco, R. Mechanisms of resistance to mTOR inhibitors. Crit. Rev. Oncol. Hematol., 2020, 147, 102886.
[http://dx.doi.org/10.1016/j.critrevonc.2020.102886] [PMID: 32014673]
[13]
Nguyen, L.S.; Vautier, M.; Allenbach, Y.; Zahr, N.; Benveniste, O.; Funck-Brentano, C.; Salem, J.E. Sirolimus and mTOR inhibitors: A review of side effects and specific management in solid organ transplantation. Drug Saf., 2019, 42(7), 813-825.
[http://dx.doi.org/10.1007/s40264-019-00810-9] [PMID: 30868436]
[14]
Curigliano, G.; Shah, R.R. Safety and tolerability of phosphatidylinositol-3-kinase (PI3K) inhibitors in oncology. Drug Saf., 2019, 42(2), 247-262.
[http://dx.doi.org/10.1007/s40264-018-0778-4] [PMID: 30649751]
[15]
Bahrami, A.; Khazaei, M.; Shahidsales, S.; Hassanian, S.M.; Hasanzadeh, M.; Maftouh, M.; Ferns, G.A.; Avan, A. The therapeutic potential of PI3K/Akt/mTOR inhibitors in breast cancer: Rational and progress. J. Cell. Biochem., 2018, 119(1), 213-222.
[http://dx.doi.org/10.1002/jcb.26136] [PMID: 28513879]
[16]
Hare, S.H.; Harvey, A.J. mTOR function and therapeutic targeting in breast cancer. Am. J. Cancer Res., 2017, 7(3), 383-404.
[PMID: 28400999]
[17]
Linke, M.; Fritsch, S.D.; Sukhbaatar, N.; Hengstschläger, M.; Weichhart, T. mTORC1 and mTORC2 as regulators of cell metabolism in immunity. FEBS Lett., 2017, 591(19), 3089-3103.
[http://dx.doi.org/10.1002/1873-3468.12711] [PMID: 28600802]
[18]
Tang, H.; Wu, K.; Wang, J.; Vinjamuri, S.; Gu, Y.; Song, S.; Wang, Z.; Zhang, Q.; Balistrieri, A.; Ayon, R.J.; Rischard, F.; Vanderpool, R.; Chen, J.; Zhou, G.; Desai, A.A.; Black, S.M.; Garcia, J.G.N.; Yuan, J.X.; Makino, A. Pathogenic role of mTORC1 and mTORC2 in pulmonary hypertension. JACC Basic Transl. Sci., 2018, 3(6), 744-762.
[http://dx.doi.org/10.1016/j.jacbts.2018.08.009] [PMID: 30623134]
[19]
Tian, T.; Li, X.; Zhang, J. mTOR signaling in cancer and mTOR inhibitors in solid tumor targeting therapy. Int. J. Mol. Sci., 2019, 20(3), 755.
[http://dx.doi.org/10.3390/ijms20030755] [PMID: 30754640]
[20]
Teng, Q.X.; Ashar, Y.V.; Gupta, P.; Gadee, E.; Fan, Y.F.; Reznik, S.E.; Wurpel, J.N.D.; Chen, Z.S. Revisiting mTOR inhibitors as anticancer agents. Drug Discov. Today, 2019, 24(10), 2086-2095.
[http://dx.doi.org/10.1016/j.drudis.2019.05.030] [PMID: 31173912]
[21]
Boutouja, F.; Stiehm, C.M.; Platta, H.W. mTOR: A cellular regulator interface in health and disease. Cells, 2019, 8(1), 18.
[http://dx.doi.org/10.3390/cells8010018] [PMID: 30609721]
[22]
Chen, Y.; Zhou, X. Research progress of mTOR inhibitors. Eur. J. Med. Chem., 2020, 208, 112820.
[http://dx.doi.org/10.1016/j.ejmech.2020.112820] [PMID: 32966896]
[23]
Arif, A.; Jia, J.; Willard, B.; Li, X.; Fox, P.L. Multisite phosphorylation of S6K1 directs a kinase phospho-code that determines substrate selection. Mol. Cell, 2019, 73(3), 446-457.e6.
[http://dx.doi.org/10.1016/j.molcel.2018.11.017] [PMID: 30612880]
[24]
Saxton, R.A.; Sabatini, D.M. mTOR signaling in growth, metabolism, and disease. Cell, 2017, 168(6), 960-976.
[http://dx.doi.org/10.1016/j.cell.2017.02.004] [PMID: 28283069]
[25]
Zou, Z.; Tao, T.; Li, H.; Zhu, X. mTOR signaling pathway and mTOR inhibitors in cancer: Progress and challenges. Cell Biosci., 2020, 10(1), 31.
[http://dx.doi.org/10.1186/s13578-020-00396-1] [PMID: 32175074]
[26]
Reddy, G.L.; Guru, S.K.; Srinivas, M.; Pathania, A.S.; Mahajan, P.; Nargotra, A.; Bhushan, S.; Vishwakarma, R.A.; Sawant, S.D. Synthesis of 5-substituted-1H-pyrazolo[4,3-d]pyrimidin-7(6H)-one analogs and their biological evaluation as anticancer agents: mTOR inhibitors. Eur. J. Med. Chem., 2014, 80, 201-208.
[http://dx.doi.org/10.1016/j.ejmech.2014.04.051] [PMID: 24780597]
[27]
Xu, T.; Sun, D.; Chen, Y.; Ouyang, L. Targeting mTOR for fighting diseases: A revisited review of mTOR inhibitors. Eur. J. Med. Chem., 2020, 199, 112391.
[http://dx.doi.org/10.1016/j.ejmech.2020.112391] [PMID: 32416459]
[28]
Costa, R.L.B.; Han, H.S.; Gradishar, W.J. Targeting the PI3K/AKT/mTOR pathway in triple-negative breast cancer: A review. Breast Cancer Res. Treat., 2018, 169(3), 397-406.
[http://dx.doi.org/10.1007/s10549-018-4697-y] [PMID: 29417298]
[29]
Woo, S.U.; Sangai, T.; Akcakanat, A.; Chen, H.; Wei, C.; Meric-Bernstam, F. Vertical inhibition of the PI3K/Akt/mTOR pathway is synergistic in breast cancer. Oncogenesis, 2017, 6(10), e385.
[http://dx.doi.org/10.1038/oncsis.2017.86] [PMID: 28991258]
[30]
Gasparri, M.L.; Bardhi, E.; Ruscito, I.; Papadia, A.; Farooqi, A.A.; Marchetti, C.; Bogani, G.; Ceccacci, I.; Mueller, M.D.; Benedetti Panici, P. PI3K/AKT/mTOR pathway in ovarian cancer treatment. Geburtshilfe Frauenheilkd., 2017, 77(10), 1095-1103.
[http://dx.doi.org/10.1055/s-0043-118907] [PMID: 29093603]
[31]
Alqurashi, N.; Hashimi, S.M.; Alowaidi, F.; Ivanovski, S.; Wei, M.Q. Dual mTOR/PI3K inhibitor NVP BEZ235 arrests colorectal cancer cell growth and displays differential inhibition of 4E BP1. Oncol. Rep., 2018, 40(2), 1083-1092.
[http://dx.doi.org/10.3892/or.2018.6457] [PMID: 29845289]
[32]
Zhang, J.; Zhao, P.; Quan, N.; Wang, L.; Chen, X.; Cates, C.; Rousselle, T.; Li, J. The endotoxemia cardiac dysfunction is attenuated by AMPK/mTOR signaling pathway regulating autophagy. Biochem. Biophys. Res. Commun., 2017, 492(3), 520-527.
[http://dx.doi.org/10.1016/j.bbrc.2017.08.034] [PMID: 28807827]
[33]
Reinwald, M.; Silva, J.T.; Mueller, N.J.; Fortún, J.; Garzoni, C.; de Fijter, J.W.; Fernández-Ruiz, M.; Grossi, P.; Aguado, J.M. ESCMID study group for infections in compromised hosts (ESGICH) consensus document on the safety of targeted and biological therapies: An infectious diseases perspective (Intracellular signaling pathways: Tyrosine kinase and mTOR inhibitors). Clin. Microbiol. Infect., 2018, 24(Suppl. 2), S53-S70.
[http://dx.doi.org/10.1016/j.cmi.2018.02.009] [PMID: 29454849]
[34]
Dey, N.; De, P.; Leyland-Jones, B. PI3K-AKT-mTOR inhibitors in breast cancers: From tumor cell signaling to clinical trials. Pharmacol. Ther., 2017, 175, 91-106.
[http://dx.doi.org/10.1016/j.pharmthera.2017.02.037] [PMID: 28216025]
[35]
Schneider, T.C.; de Wit, D.; Links, T.P.; van Erp, N.P.; van der Hoeven, J.J.; Gelderblom, H.; Roozen, I.C.; Bos, M.; Corver, W.E.; van Wezel, T.; Smit, J.W.; Morreau, H.; Guchelaar, H.J.; Kapiteijn, E. Everolimus in patients with advanced follicular-derived thyroid cancer: Results of a phase II clinical trial. J. Clin. Endocrinol. Metab., 2017, 102(2), 698-707.
[PMID: 27870581]
[36]
Zhao, H.F.; Wang, J.; Shao, W.; Wu, C.P.; Chen, Z.P.; To, S.T.; Li, W.P. Recent advances in the use of PI3K inhibitors for glioblastoma multiforme: current preclinical and clinical development. Mol. Cancer, 2017, 16(1), 100.
[http://dx.doi.org/10.1186/s12943-017-0670-3] [PMID: 28592260]
[37]
Hu, S.; Zhao, Z.; Ni, Y.; Xin, H.; Yan, H.; Song, X. Design, synthesis and biological evaluation of 4-Aryl-5,7-dihydro-6H-pyrrolo[2,3-d]pyrimidin-6-one Derivatives as a PI3Kα Inhibitor. Biol. Pharm. Bull., 2019, 42(6), 1013-1018.
[http://dx.doi.org/10.1248/bpb.b19-00080] [PMID: 31155575]
[38]
Liu, Y.; Xia, Q.; Fang, L. Design and synthesis of alkyl substituted pyridino[2,3-D]pyrimidine compounds as PI3Kα/mTOR dual inhibitors with improved pharmacokinetic properties and potent in vivo antitumor activity. Bioorg. Med. Chem., 2018, 26(14), 3992-4000.
[http://dx.doi.org/10.1016/j.bmc.2018.06.025] [PMID: 29945756]
[39]
Ye, T.; Han, Y.; Wang, R.; Yan, P.; Chen, S.; Hou, Y.; Zhao, Y. Design, synthesis and biological evaluation of novel 2,4-bismorpholinothieno[3,2-d]pyrimidine and 2-morpholinothieno[3,2-d]pyrimidinone derivatives as potent antitumor agents. Bioorg. Chem., 2020, 99, 103796.
[http://dx.doi.org/10.1016/j.bioorg.2020.103796] [PMID: 32283346]
[40]
Zhu, W.; Sun, C.; Xu, S.; Wu, C.; Wu, J.; Xu, M.; Zhao, H.; Chen, L.; Zeng, W.; Zheng, P. Design, synthesis, anticancer activity and docking studies of novel 4-morpholino-7,8-dihydro-5hthiopyrano[4,3-d]pyrimidine derivatives as mtor inhibitors. 2020.
[41]
Hu, S.; Zhao, Z.; Yan, H. Discovery and optimization of 5,7-dihydro-6H-pyrrolo[2,3-d]pyrimidin-6-one derivatives as mTORC1/mTORC2 dual inhibitors. Bioorg. Chem., 2019, 92, 103232.
[http://dx.doi.org/10.1016/j.bioorg.2019.103232] [PMID: 31526911]
[42]
Sun, Y.; Fu, R.; Lin, S.; Zhang, J.; Ji, M.; Zhang, Y.; Wu, D.; Zhang, K.; Tian, H.; Zhang, M.; Sheng, L.; Li, Y.; Jin, J.; Chen, X.; Xu, H. Discovery of new thieno[2,3-d]pyrimidine and thiazolo[5,4-d]pyrimidine derivatives as orally active phosphoinositide 3-kinase inhibitors. Bioorg. Med. Chem., 2021, 29, 115890.
[http://dx.doi.org/10.1016/j.bmc.2020.115890] [PMID: 33285407]
[43]
Yu, L.; Wang, Q.; Wang, C.; Zhang, B.; Yang, Z.; Fang, Y.; Zhu, W.; Zheng, P. Design, synthesis, and biological evaluation of novel thienopyrimidine derivatives as PI3Kα Inhibitors. Molecules, 2019, 24(19), 3422.
[http://dx.doi.org/10.3390/molecules24193422]
[44]
Feng, Y.; Duan, W.; Fan, S.; Zhang, H.; Zhang, S.Q.; Xin, M. Synthesis and biological evaluation of 4-(piperid-3-yl)amino substituted 6-pyridylquinazolines as potent PI3Kδ inhibitors. Bioorg. Med. Chem., 2019, 27(19), 115035.
[http://dx.doi.org/10.1016/j.bmc.2019.07.051] [PMID: 31434616]
[45]
Peng, W.; Tu, Z.; Long, Z.; Liu, Q.; Lu, G. Discovery Of 2-(2-Aminopyrimidin-5-Yl)-4-Morpholino- N -(Pyridin-3-Yl)Quinazolin-7-Amines As Novel PI3K/mtor inhibitors and anticancer agents. 2020.
[46]
Hu, H.; Dong, Y.; Li, M.; Wang, R.; Zhang, X.; Gong, P.; Zhao, Y. Design, synthesis and biological evaluation of novel thieno[3,2-d]pyrimidine and quinazoline derivatives as potent antitumor agents. Bioorg. Chem., 2019, 90, 103086.
[http://dx.doi.org/10.1016/j.bioorg.2019.103086] [PMID: 31280016]
[47]
Hei, Y.Y.; Zhang, S.Q.; Feng, Y.; Wang, J.; Duan, W.; Zhang, H.; Mao, S.; Sun, H.; Xin, M. Alkylsulfonamide-containing quinazoline derivatives as potent and orally bioavailable PI3Ks inhibitors. Bioorg. Med. Chem., 2019, 27(20), 114930.
[http://dx.doi.org/10.1016/j.bmc.2019.05.043] [PMID: 31176568]
[48]
Ding, H.W.; Yu, L.; Bai, M.X.; Qin, X.C.; Song, M.T.; Zhao, Q.C. Design, synthesis and evaluation of some 1,6-disubstituted-1H-benzo[d]imidazoles derivatives targeted PI3K as anticancer agents. Bioorg. Chem., 2019, 93, 103283.
[http://dx.doi.org/10.1016/j.bioorg.2019.103283] [PMID: 31585260]
[49]
Xiao, Z.; Lei, F.; Chen, X.; Wang, X.; Cao, L.; Ye, K.; Zhu, W.; Xu, S. Design, synthesis, and antitumor evaluation of quinoline-imidazole derivatives. Arch. Pharm. (Weinheim), 2018, 351(6), e1700407.
[http://dx.doi.org/10.1002/ardp.201700407] [PMID: 29732607]
[50]
Padhy, G.; Panda, J.; Behera, A. Synthesis and characterization of novel N-benzylbenzimidazole linked pyrimidine derivatives as anticancer agents. Indian Journal of pharmaceutical education and research, 2019, 53, 129-134.
[http://dx.doi.org/10.5530/ijper.53.2s.57]
[51]
Zhang, J.; Lv, X.; Ma, X.; Hu, Y. Discovery of a series of N-(5-(quinolin-6-yl)pyridin-3-yl)benzenesulfonamides as PI3K/mTOR dual inhibitors. Eur. J. Med. Chem., 2017, 127, 509-520.
[http://dx.doi.org/10.1016/j.ejmech.2017.01.016] [PMID: 28109945]
[52]
Vennila, K.N.; Prabha, K.; Sunny, D.; Madhuri, S.; Elango, K.P. Preparation and biological evaluation of quinoline amines as anticancer agents and its molecular docking. Med. Chem. Res., 2019, 28(8), 1298-1307.
[http://dx.doi.org/10.1007/s00044-019-02374-w]
[53]
Wu, T.T.; Guo, Q.Q.; Chen, Z.L.; Wang, L.L.; Du, Y.; Chen, R.; Mao, Y.H.; Yang, S.G.; Huang, J.; Wang, J.T.; Wang, L.; Tang, L.; Zhang, J.Q. Design, synthesis and bioevaluation of novel substituted triazines as potential dual PI3K/mTOR inhibitors. Eur. J. Med. Chem., 2020, 204, 112637.
[http://dx.doi.org/10.1016/j.ejmech.2020.112637] [PMID: 32717477]
[54]
Zhang, B.; Zhang, Q.; Xiao, Z.; Sun, X.; Yang, Z.; Gu, Q.; Liu, Z.; Xie, T.; Jin, Q.; Zheng, P.; Xu, S.; Zhu, W. Design, synthesis and biological evaluation of substituted 2-(thiophen-2-yl)-1,3,5-triazine derivatives as potential dual PI3Kα/mTOR inhibitors. Bioorg. Chem., 2020, 95, 103525.
[http://dx.doi.org/10.1016/j.bioorg.2019.103525] [PMID: 31887474]
[55]
Liao, W.; Wang, Z.; Han, Y.; Qi, Y.; Liu, J.; Xie, J.; Tian, Y.; Lei, Q.; Chen, R.; Sun, M.; Tang, L.; Gong, G.; Zhao, Y. Design, synthesis and biological activity of novel 2,3,4,5-tetra-substituted thiophene derivatives as PI3Kα inhibitors with potent antitumor activity. Eur. J. Med. Chem., 2020, 197, 112309.
[http://dx.doi.org/10.1016/j.ejmech.2020.112309] [PMID: 32375077]
[56]
Liu, L.; Shi, B.; Li, X.; Wang, X.; Lu, X.; Cai, X.; Huang, A.; Luo, G.; You, Q.; Xiang, H. Design and synthesis of benzofuro[3,2-b]pyridin-2(1H)-one derivatives as anti-leukemia agents by inhibiting Btk and PI3Kδ. Bioorg. Med. Chem., 2018, 26(15), 4537-4543.
[http://dx.doi.org/10.1016/j.bmc.2018.07.047] [PMID: 30077608]
[57]
Yu, Y.; Han, Y.; Zhang, F.; Gao, Z.; Zhu, T.; Dong, S.; Ma, M. Design, synthesis, and biological evaluation of imidazo[1,2-a]pyridine Derivatives as Novel PI3K/mTOR Dual Inhibitors. J. Med. Chem., 2020, 63(6), 3028-3046.
[http://dx.doi.org/10.1021/acs.jmedchem.9b01736] [PMID: 32069401]
[58]
Xu, S.; Sun, C.; Chen, C.; Zheng, P.; Zhou, Y.; Zhou, H.; Zhu, W. Synthesis and biological evaluation of novel 8-morpholinoimidazo[1,2-a]pyrazine derivatives bearing phenylpyridine/phenylpyrimidine-carboxamides. Molecules, 2017, 22(2), 310.
[http://dx.doi.org/10.3390/molecules22020310] [PMID: 28218676]
[59]
Ibrahim, M.; Abou-Seri, S.; Hanna, M.; Abdalla, M.; El Sayed, N. Design, synthesis and biological evaluation of novel condensed pyrrolo[1,2-C]pyrimidines featuring morpholine moiety As Pi3kα inhibitors. 2020.

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy