Generic placeholder image

Current Organocatalysis

Editor-in-Chief

ISSN (Print): 2213-3372
ISSN (Online): 2213-3380

Review Article

Versatile Synthesis of Organic Compounds Derived from Ascorbic Acid

Author(s): Aparna Das* and Bimal Krishna Banik*

Volume 9, Issue 1, 2022

Published on: 19 July, 2021

Page: [14 - 33] Pages: 20

DOI: 10.2174/2213337208666210719102301

Price: $65

Abstract

Ascorbic acid, also known as Vitamin C, is the most important vitamin observed in diverse food. Ascorbic acid has various applications in several fields. Studies have depicted that in organic synthesis, it can be used as a mediator or substrate. The derivatives of ascorbic acid have been found to possess numerous biological activities. In this review, we report the important derivatives of ascorbic acid, which have significant biological activities. Various studies are considered in this review to prove its wide range of availability.

Keywords: Ascorbic acid, organic molecules, aerobic organisms, biological activity, vitamin C, ascorbic acid derivatives.

Graphical Abstract
[1]
Haytowitz, D.B. Information from USDA’s Nutrient Data Bank. J. Nutr., 1995, 125(7), 1952-1955.
[http://dx.doi.org/10.1093/jn/125.7.1952] [PMID: 7616313]
[2]
Uttara, B.; Singh, A.V.; Zamboni, P.; Mahajan, R.T. Oxidative stress and neurodegenerative diseases: A review of upstream and downstream antioxidant therapeutic options. Curr. Neuropharmacol., 2009, 7(1), 65-74.
[http://dx.doi.org/10.2174/157015909787602823] [PMID: 19721819]
[3]
Das, A.; Banik, R.N.Y.; Ascorbic Acid-Mediated Reactions, B.K. in Organic Synthesis. Curr. Organocatal., 2020, 7(3), 212-241.
[http://dx.doi.org/10.2174/2213337207999200726231300]
[4]
Das, A.; Yadav, R.; Banik, B.K. Ascorbic Acid-Mediated Reactions. In: Encyclopedia; MDPI, 2020.
[5]
Das, A.; Yadav, R.; Banik, B.K. Ascorbic Acid-Induced Reactions. In: Encyclopedia; MDPI, 2020.
[6]
Mehlhorn, R.J. Ascorbate- and dehydroascorbic acid-mediated reduction of free radicals in the human erythrocyte. J. Biol. Chem., 1991, 266(5), 2724-2731.
[http://dx.doi.org/10.1016/S0021-9258(18)49905-X] [PMID: 1993652]
[7]
Tripathi, R.P.; Singh, B.; Bisht, S.S.; Pandey, J. L-Ascorbic acid in organic synthesis: An overview. Curr. Org. Chem., 2009, 13(1), 99-122.
[http://dx.doi.org/10.2174/138527209787193792]
[8]
Kochi, M.; Takeuchi, S.; Mizutani, T.; Mochizuki, K.; Matsumoto, Y.; Saito, Y. Antitumor activity of benzaldehyde. Cancer Treat. Rep., 1980, 64(1), 21-23.
[PMID: 6929727]
[9]
Kochi, M.; Isono, N.; Niwayama, M.; Shirakabe, K. Antitumor activity of a benzaldehyde derivative. Cancer Treat. Rep., 1985, 69(5), 533-537.
[PMID: 4005876]
[10]
Sakagami, H.; Asano, K.; Fukuchi, K.; Gomi, K.; Ota, H.; Kazama, K.; Tanuma, S.; Kochi, M. Induction of tumor degeneration by sodium benzylideneascorbate. Anticancer Res., 1991, 11(4), 1533-1538.
[PMID: 1746910]
[11]
Tanuma, S.; Shiokawa, D.; Tanimoto, Y.; Ikekita, M.; Sakagami, H.; Takeda, M.; Fukuda, S.; Kochi, M. Benzylideneascorbate induces apoptosis in L929 tumor cells. Biochem. Biophys. Res. Commun., 1993, 194(1), 29-35.
[http://dx.doi.org/10.1006/bbrc.1993.1780] [PMID: 8333843]
[12]
Raić-Malić, S.; Hergold-Brundić, A.; Nagl, A.; Grdiša, M.; Pavelić, K.; De Clercq, E.; Mintas, M. Novel pyrimidine and purine derivatives of L-ascorbic acid: Synthesis and biological evaluation. J. Med. Chem., 1999, 42(14), 2673-2678.
[http://dx.doi.org/10.1021/jm991017z] [PMID: 10411487]
[13]
Gazivoda, T.; Plevnik, M.; Plavec, J.; Kraljević, S.; Kralj, M.; Pavelić, K.; Balzarini, J.; De Clercq, E.; Mintas, M.; Raić-Malić, S. The novel pyrimidine and purine derivatives of l-ascorbic acid: Synthesis, one- and two-dimensional 1H and 13C NMR study, cytostatic and antiviral evaluation. Bioorg. Med. Chem., 2005, 13(1), 131-139.
[http://dx.doi.org/10.1016/j.bmc.2004.09.052] [PMID: 15582458]
[14]
Woolverton, C.J.; Veltri, R.W.; Snyder, I.S. Stimulation of human PMNs in vitro by a succinimide molecular complex of methylfurylbutyrolactone. J. Biol. Response Mod., 1986, 5(6), 527-538.
[PMID: 3540219]
[15]
Veltri, R.W.; Fodor, G.; Liu, C.M.; Woolverton, C.J.; Baseler, M.W. A new class of synthetic biological response modifiers: The methylfurylbutyrolactones (Nafocare B). J. Biol. Response Mod., 1986, 5(5), 444-461.
[PMID: 3021912]
[16]
Nihro, Y.; Miyataka, H.; Sudo, T.; Matsumoto, H.; Satoh, T. 3-O-alkylascorbic acids as free-radical quenchers: Synthesis and inhibitory effect on lipid peroxidation. J. Med. Chem., 1991, 34(7), 2152-2157.
[http://dx.doi.org/10.1021/jm00111a034] [PMID: 2066988]
[17]
Stamatis, H.; Sereti, V.; Kolisis, F.N. Studies on the enzymatic synthesis of lipophilic derivatives of natural antioxidants. J. Am. Oil Chem. Soc., 1999, 76(12), 1505.
[http://dx.doi.org/10.1007/s11746-999-0193-1]
[18]
Valentin, H.E.; Qi, Q. Biotechnological production and application of vitamin E: Current state and prospects. Appl. Microbiol. Biotechnol., 2005, 68(4), 436-444.
[http://dx.doi.org/10.1007/s00253-005-0017-7] [PMID: 16041505]
[19]
Narenji-Sani, F.; Tayebee, R.; Chahkandi, M. New task-specific and reusable ZIF-like grafted H6P2W18O62 catalyst for the effective esterification of free fatty acids. ACS Omega, 2020, 5(17), 9999-10010.
[http://dx.doi.org/10.1021/acsomega.0c00358] [PMID: 32391488]
[20]
Stamatis, H.; Sereti, V.; Kolisis, F.N. Enzymatic synthesis of hydrophilic and hydrophobic derivatives of natural phenolic acids in organic media. J. Mol. Catal. B Enzym., 2001, 11(4), 323-328.
[http://dx.doi.org/10.1016/S1381-1177(00)00016-3]
[21]
Bonrath, W.; Netscher, T. Catalytic processes in vitamins synthesis and production. Appl. Catal. Gen., 2005, 280(1), 55-73.
[http://dx.doi.org/10.1016/j.apcata.2004.08.028]
[22]
Yan, Y.; Bornscheuer, U.T.; Schmid, R.D. Lipase-catalyzed synthesis of vitamin C fatty acid esters. Biotechnol. Lett., 1999, 21(12), 1051-1054.
[http://dx.doi.org/10.1023/A:1005620125533]
[23]
Karmee, S.K. Biocatalytic synthesis of ascorbyl esters and their biotechnological applications. Appl. Microbiol. Biotechnol., 2009, 81(6), 1013-1022.
[http://dx.doi.org/10.1007/s00253-008-1781-y] [PMID: 19030854]
[24]
Reyes-Duarte, D.; Lopez-Cortes, N.; Torres, P.; Comelles, F.; Parra, J.L.; Peña, S.; Ugidos, A.V.; Ballesteros, A.; Plou, F.J. Synthesis and properties of ascorbyl esters catalyzed by lipozyme TL IM using triglycerides as acyl donors. J. Am. Oil Chem. Soc., 2011, 88(1), 57-64.
[http://dx.doi.org/10.1007/s11746-010-1643-5]
[25]
Moreno-Perez, S.; Filice, M.; Guisan, J.M.; Fernandez-Lorente, G. Synthesis of ascorbyl oleate by transesterification of olive oil with ascorbic acid in polar organic media catalyzed by immobilized lipases. Chem. Phys. Lipids, 2013, 174, 48-54.
[http://dx.doi.org/10.1016/j.chemphyslip.2013.06.003] [PMID: 23891831]
[26]
Kato, K.; Terao, S.; Shimamoto, N.; Hirata, M. Studies on scavengers of active oxygen species. 1. Synthesis and biological activity of 2-O-alkylascorbic acids. J. Med. Chem., 1988, 31(4), 793-798.
[http://dx.doi.org/10.1021/jm00399a019] [PMID: 3351858]
[27]
El-Demerdash, F.M.; Yousef, M.I.; Zoheir, M.A. Stannous chloride induces alterations in enzyme activities, lipid peroxidation and histopathology in male rabbit: Antioxidant role of vitamin C. Food Chem. Toxicol., 2005, 43(12), 1743-1752.
[http://dx.doi.org/10.1016/j.fct.2005.05.017] [PMID: 16051410]
[28]
Gazivoda, T.; Raić-Malić, S.; Marjanović, M.; Kralj, M.; Pavelić, K.; Balzarini, J.; De Clercq, E.; Mintas, M. The novel C-5 aryl, alkenyl, and alkynyl substituted uracil derivatives of L-ascorbic acid: Synthesis, cytostatic, and antiviral activity evaluations. Bioorg. Med. Chem., 2007, 15(2), 749-758.
[http://dx.doi.org/10.1016/j.bmc.2006.10.046] [PMID: 17092728]
[29]
Wittine, K.; Stipković Babić, M.; Makuc, D.; Plavec, J.; Kraljević Pavelić, S.; Sedić, M.; Pavelić, K.; Leyssen, P.; Neyts, J.; Balzarini, J.; Mintas, M. Novel 1,2,4-triazole and imidazole derivatives of L-ascorbic and imino-ascorbic acid: Synthesis, anti-HCV and antitumor activity evaluations. Bioorg. Med. Chem., 2012, 20(11), 3675-3685.
[http://dx.doi.org/10.1016/j.bmc.2012.01.054] [PMID: 22555152]
[30]
Sakagami, H.; Takeda, M.; Utsumi, A.; Fujinaga, S.; Tsunoda, A.; Yasuda, N.; Shibusawa, M.; Koike, T.; Ota, H.; Kazama, K. Effect of sodium benzylideneascorbate on chemically-induced tumors in rats. Anticancer Res., 1993, 13(1), 65-71.
[PMID: 8386496]
[31]
Kote, S.R.; Mishra, R.; Khan, A.A.; Thopate, S.R. Synthesis and cytotoxic evaluation of novel 2,3-Di-O-alkyl derivatives of l-ascorbic acid. Med. Chem. Res., 2014, 23(3), 1257-1266.
[http://dx.doi.org/10.1007/s00044-013-0714-1]
[32]
Ramch, S.; Kote, S.R. Chemoselective 3-O-Alkylation of L-Ascorbic Acid under Phase Transfer Catalysis. Afr. J. Pure Appl. Chem., 2012, 6(4), 50-54.
[33]
Deshmukh, R.S.; Thopate, S.R. C2/C3 Alkynylation of l -Ascorbic Acid by Sonogashira Coupling and Efficient Access to Some Potent and Highly Selective Novel Anticancer Agents. New J. Chem., 2019, 43(1), 208-216.
[http://dx.doi.org/10.1039/C8NJ04477E]
[34]
Stipković Babić, M.; Makuc, D.; Plavec, J.; Martinović, T.; Kraljević Pavelić, S.; Pavelić, K.; Snoeck, R.; Andrei, G.; Schols, D.; Wittine, K.; Mintas, M. Novel halogenated 3-deazapurine, 7-deazapurine and alkylated 9-deazapurine derivatives of L-ascorbic or imino-L-ascorbic acid: Synthesis, antitumour and antiviral activity evaluations. Eur. J. Med. Chem., 2015, 102, 288-302.
[http://dx.doi.org/10.1016/j.ejmech.2015.08.008] [PMID: 26291038]
[35]
Imbimbo, B.P. The potential role of non-steroidal anti-inflammatory drugs in treating Alzheimer’s disease. Expert Opin. Investig. Drugs, 2004, 13(11), 1469-1481.
[http://dx.doi.org/10.1517/13543784.13.11.1469] [PMID: 15500394]
[36]
Gasparini, L.; Ongini, E.; Wilcock, D.; Morgan, D. Activity of flurbiprofen and chemically related anti-inflammatory drugs in models of Alzheimer’s disease. Brain Res. Brain Res. Rev., 2005, 48(2), 400-408.
[http://dx.doi.org/10.1016/j.brainresrev.2004.12.029] [PMID: 15850679]
[37]
Côté, S.; Carmichael, P.H.; Verreault, R.; Lindsay, J.; Lefebvre, J.; Laurin, D. Nonsteroidal anti-inflammatory drug use and the risk of cognitive impairment and Alzheimer’s disease. Alzheimers Dement., 2012, 8(3), 219-226.
[http://dx.doi.org/10.1016/j.jalz.2011.03.012] [PMID: 22546354]
[38]
Laras, Y.; Sheha, M.; Pietrancosta, N.; Kraus, J.L.; Laras, Y.; Sheha, M.; Pietrancosta, N.; Kraus, J.L. Thiazolamide–ascorbic acid conjugate: A γ-secretase inhibitor with enhanced blood–brain barrier permeation. Aust. J. Chem., 2007, 60(2), 128-132.
[http://dx.doi.org/10.1071/CH06441]
[39]
Wu, X-Y.; Li, X-C.; Mi, J.; You, J.; Hai, L. Design, synthesis and preliminary biological evaluation of brain targeting l-ascorbic acid prodrugs of ibuprofen. Chin. Chem. Lett., 2013, 24(2), 117-119.
[http://dx.doi.org/10.1016/j.cclet.2013.01.022]
[40]
Wang, Z.; Tang, L.H. Design, synthesis and characterization of ascorbic acid pro-drugs of flurbiprofen. Strait Pharm. J., 2010, 22(110), 213-217.
[41]
Xiu, X.N.; Tang, L.H. Kinetics and thermodynamics of lascorbyl profen esters synthesis catalyzed by lipase in 2-methyl- 2-butanol. Shengwu Jiagong Guocheng, 2010, 8(6), 33-39.
[42]
Xin, J.Y.; Sun, L.R.; Chen, S.M.; Wang, Y.; Xia, C.G. Synthesis of L-Ascorbyl Flurbiprofenate by Lipase-Catalyzed Esterification and Transesterification Reactions. BioMed Res. Int., 2017, 2017, 5751262.
[http://dx.doi.org/10.1155/2017/5751262] [PMID: 28421196]
[43]
Kikuchi, H.; Sasaki, K.; Sekiya, J.; Maeda, Y.; Amagai, A.; Kubohara, Y.; Oshima, Y. Structural requirements of dictyopyrones isolated from Dictyostelium spp. in the regulation of Dictyostelium development and in anti-leukemic activity. Bioorg. Med. Chem., 2004, 12(12), 3203-3214.
[http://dx.doi.org/10.1016/j.bmc.2004.04.001] [PMID: 15158788]
[44]
Hoffmann, H.M.R.; Rabe, J. Synthesis and Biological Activity of α-Methylene-γ-Butyrolactones. Angew. Chem. Int. Ed. Engl., 1985, 24(2), 94-110.
[http://dx.doi.org/10.1002/anie.198500941]
[45]
Parker, S.R.; Cutler, H.G.; Jacyno, J.M.; Hill, R.A. Biological Activity of 6-Pentyl-2 H-Pyran-2-One and Its Analogs. J. Agric. Food Chem., 1997, 45(7), 2774-2776.
[http://dx.doi.org/10.1021/jf960681a]
[46]
Kondoh, M.; Usui, T.; Kobayashi, S.; Tsuchiya, K.; Nishikawa, K.; Nishikiori, T.; Mayumi, T.; Osada, H. Cell cycle arrest and antitumor activity of pironetin and its derivatives. Cancer Lett., 1998, 126(1), 29-32.
[http://dx.doi.org/10.1016/S0304-3835(97)00528-4] [PMID: 9563645]
[47]
Suzuki, K.; Kuwahara, A.; Yoshida, H.; Fujita, S.; Nishikiori, T.; Nakagawa, T. NF00659A1, A2, A3, B1 and B2, novel antitumor antibiotics produced by Aspergillus sp. NF 00659. I. Taxonomy, fermentation, isolation and biological activities. J. Antibiot. (Tokyo), 1997, 50(4), 314-317.
[http://dx.doi.org/10.7164/antibiotics.50.314] [PMID: 9186556]
[48]
Agrawal, V.K.; Mishra, K.C.; Singh, J.; Khadikar, P.V. QSAR Study on 5,6-Dihydro-2-Pyrones as HIV-1 Protease Inhibitors. arkivoc, 2006, 2006(2), 162-177.
[http://dx.doi.org/10.3998/ark.5550190.0007.219]
[49]
Hagen, S.E.; Domagala, J.; Gajda, C.; Lovdahl, M.; Tait, B.D.; Wise, E.; Holler, T.; Hupe, D.; Nouhan, C.; Urumov, A.; Zeikus, G.; Zeikus, E.; Lunney, E.A.; Pavlovsky, A.; Gracheck, S.J.; Saunders, J.; VanderRoest, S.; Brodfuehrer, J. 4-Hydroxy-5,6-dihydropyrones as inhibitors of HIV protease: The effect of heterocyclic substituents at C-6 on antiviral potency and pharmacokinetic parameters. J. Med. Chem., 2001, 44(14), 2319-2332.
[http://dx.doi.org/10.1021/jm0003844] [PMID: 11428926]
[50]
Hagen, S.; Vara Prasad, J.V.N.; Tait, B.D. Nonpeptide Inhibitors of HIV Protease.Advances in Medicinal Chemistry; Reitz, A.B.; Dax, S.L., Eds.; Elsevier, 2000, 5, pp. 159-195.
[51]
Aristoff, P.A. Dihydropyrone sulfonamides as a promising new class of HIV protease inhibitors. Drugs Future, 1998, 23(9), 995.
[http://dx.doi.org/10.1358/dof.1998.023.09.858365]
[52]
Romines, K.R.; Chrusciel, R.A. 4-Hydroxypyrones and related templates as nonpeptidic HIV protease inhibitors. Curr. Med. Chem., 1995, 2(4), 825-838.
[53]
Huang, Z. The chemical biology of apoptosis. Exploring protein-protein interactions and the life and death of cells with small molecules. Chem. Biol., 2002, 9(10), 1059-1072.
[http://dx.doi.org/10.1016/S1074-5521(02)00247-8] [PMID: 12401491]
[54]
Blatt, N.B.; Glick, G.D. Signaling pathways and effector mechanisms pre-programmed cell death. Bioorg. Med. Chem., 2001, 9(6), 1371-1384.
[http://dx.doi.org/10.1016/S0968-0896(01)00041-4] [PMID: 11408158]
[55]
Chan, K.M.; Rajab, N.F.; Ishak, M.H.A.; Ali, A.M.; Yusoff, K.; Din, L.B.; Inayat-Hussain, S.H. Goniothalamin induces apoptosis in vascular smooth muscle cells. Chem. Biol. Interact., 2006, 159(2), 129-140.
[http://dx.doi.org/10.1016/j.cbi.2005.10.107] [PMID: 16297902]
[56]
Inayat-Hussain, S.H.; Annuar, B.O.; Din, L.B.; Ali, A.M.; Ross, D. Loss of mitochondrial transmembrane potential and caspase-9 activation during apoptosis induced by the novel styryl-lactone goniothalamin in HL-60 leukemia cells. Toxicol. In vitro, 2003, 17(4), 433-439.
[http://dx.doi.org/10.1016/S0887-2333(03)00051-1] [PMID: 12849726]
[57]
Inayat-Hussain, S.H.; Osman, A.B.; Din, L.B.; Taniguchi, N. Altholactone, a novel styryl-lactone induces apoptosis via oxidative stress in human HL-60 leukemia cells. Toxicol. Lett., 2002, 131(3), 153-159.
[http://dx.doi.org/10.1016/S0378-4274(02)00025-5] [PMID: 11992734]
[58]
Collett, L.A.; Davies-Coleman, M.T.; Rivett, D.E.A. 5,6-Dihydro-α-Pyrones from Syncolostemon Argenteus. Phytochemistry, 1998, 48(4), 651-656.
[http://dx.doi.org/10.1016/S0031-9422(97)01075-3]
[59]
Prasad, K.R.; Gutala, P. Total synthesis and determination of the absolute configuration of 5,6-dihydro-α-pyrone natural product synargentolide B. J. Org. Chem., 2013, 78(7), 3313-3322.
[http://dx.doi.org/10.1021/jo400083v] [PMID: 23477705]
[60]
Sabitha, G.; Shankaraiah, K.; Yadav, J.S. Tandem ring-closing/cross-metathesis approach for the synthesis of synargentolide B and Its Stereoisomers. Eur. J. Org. Chem., 2013, 2013(22), 4870-4878.
[http://dx.doi.org/10.1002/ejoc.201300434]
[61]
Konda, S.; Bhaskar, K.; Nagarapu, L.; Akkewar, D.M. A Convenient approach to total synthesis of synargentolide-B from l-ascorbic acid and d-ribose. Tetrahedron Lett., 2014, 55(19), 3087-3089.
[http://dx.doi.org/10.1016/j.tetlet.2014.03.133]
[62]
Mannila, A.; Rautio, J.; Lehtonen, M.; Järvinen, T.; Savolainen, J. Inefficient central nervous system delivery limits the use of ibuprofen in neurodegenerative diseases. Eur. J. Pharm. Sci., 2005, 24(1), 101-105.
[http://dx.doi.org/10.1016/j.ejps.2004.10.004] [PMID: 15626583]
[63]
McGeer, P.L.; McGeer, E.G. NSAIDs and Alzheimer disease: Epidemiological, animal model and clinical studies. Neurobiol. Aging, 2007, 28(5), 639-647.
[http://dx.doi.org/10.1016/j.neurobiolaging.2006.03.013] [PMID: 16697488]
[64]
Weggen, S.; Rogers, M.; Eriksen, J. NSAIDs: Small molecules for prevention of Alzheimer’s disease or precursors for future drug development? Trends Pharmacol. Sci., 2007, 28(10), 536-543.
[http://dx.doi.org/10.1016/j.tips.2007.09.004] [PMID: 17900710]
[65]
Uhrig, R.K.; Picard, M.A.; Beyreuther, K.; Wiessler, M. Synthesis of antioxidative and anti-inflammatory drugs glucoconjugates. Carbohydr. Res., 2000, 325(1), 72-80.
[http://dx.doi.org/10.1016/S0008-6215(99)00311-0] [PMID: 10741829]
[66]
Siskou, I.C.; Rekka, E.A.; Kourounakis, A.P.; Chrysselis, M.C.; Tsiakitzis, K.; Kourounakis, P.N. Design and study of some novel ibuprofen derivatives with potential nootropic and neuroprotective properties. Bioorg. Med. Chem., 2007, 15(2), 951-961.
[http://dx.doi.org/10.1016/j.bmc.2006.10.056] [PMID: 17126019]
[67]
Matoga, M.; Péhourcq, F.; Lagrange, F.; Fawaz, F.; Bannwarth, B. Influence of a polymeric formulation of ketoprofen on its diffusion into cerebrospinal fluid in rats. J. Pharm. Biomed. Anal., 2002, 27(6), 881-888.
[http://dx.doi.org/10.1016/S0731-7085(01)00585-4] [PMID: 11836052]
[68]
Ruitenberg, B. A.; Hofman, A.; Launer, L. J.; van Duijn, C. M.; Stijnen, T.; Breteler, M. M.; Stricker, B. H. Nonsteroidal antiinflammatory drugs and the risk of alzheimer’s disease. N. Engl. J. Med., 2001, 345(21), 1515-1521.
[PMID: 11794217]
[69]
Zhao, Y.; Qu, B.; Wu, X.; Li, X.; Liu, Q.; Jin, X.; Guo, L.; Hai, L.; Wu, Y. Design, synthesis and biological evaluation of brain targeting l-ascorbic acid prodrugs of ibuprofen with “lock-in” function. Eur. J. Med. Chem., 2014, 82, 314-323.
[http://dx.doi.org/10.1016/j.ejmech.2014.05.072] [PMID: 24927052]
[70]
Chen, Q.; Espey, M.G.; Sun, A.Y.; Pooput, C.; Kirk, K.L.; Krishna, M.C.; Khosh, D.B.; Drisko, J.; Levine, M. Pharmacologic doses of ascorbate act as a prooxidant and decrease growth of aggressive tumor xenografts in mice. Proc. Natl. Acad. Sci. USA, 2008, 105(32), 11105-11109.
[http://dx.doi.org/10.1073/pnas.0804226105] [PMID: 18678913]
[71]
Pollard, H.B.; Levine, M.A.; Eidelman, O.; Pollard, M. Pharmacological ascorbic acid suppresses syngeneic tumor growth and metastases in hormone-refractory prostate cancer. In Vivo, 2010, 24(3), 249-255.
[PMID: 20554995]
[72]
Rawal, B.D.; Bartolini, F.; Vyas, G.N. In vitro inactivation of human immunodeficiency virus by ascorbic acid. Biologicals, 1995, 23(1), 75-81.
[http://dx.doi.org/10.1016/1045-1056(95)90016-0] [PMID: 7619441]
[73]
Gazivoda, T.; Sokcević, M.; Kralj, M.; Šuman, L.; Pavelić, K.; De Clercq, E.; Andrei, G.; Snoeck, R.; Balzarini, J.; Mintas, M.; Raić- Malić, S. Synthesis and antiviral and cytostatic evaluations of the new C-5 substituted pyrimidine and furo[2,3-d]pyrimidine 4′,5′- didehydro-L-ascorbic acid derivatives. J. Med. Chem., 2007, 50(17), 4105-4112.
[http://dx.doi.org/10.1021/jm070324z] [PMID: 17672445]
[74]
Madhusudana, S.N.; Shamsundar, R.; Seetharaman, S. In vitro inactivation of the rabies virus by ascorbic acid. Int. J. Infect. Dis., 2004, 8(1), 21-25.
[http://dx.doi.org/10.1016/j.ijid.2003.09.002] [PMID: 14690777]
[75]
Gomez, E.V.; Perez, Y.M.; Sanchez, H.V.; Forment, G.R.; Soler, E.A.; Bertot, L.C.; Garcia, A.Y.; del Rosario Abreu Vazquez, M.; Fabian, L.G. Antioxidant and immunomodulatory effects of viusid in patients with chronic hepatitis C. World J. Gastroenterol., 2010, 16(21), 2638-2647.
[http://dx.doi.org/10.3748/wjg.v16.i21.2638] [PMID: 20518086]
[76]
Wang, H.; Xu, R.; Shi, Y.; Si, L.; Jiao, P.; Fan, Z.; Han, X.; Wu, X.; Zhou, X.; Yu, F.; Zhang, Y.; Zhang, L.; Zhang, L.; Zhou, D.; Xiao, S. Design, synthesis and biological evaluation of novel l-ascorbic acid-conjugated pentacyclic triterpene derivatives as potential influenza virus entry inhibitors. Eur. J. Med. Chem., 2016, 110, 376-388.
[http://dx.doi.org/10.1016/j.ejmech.2016.01.005] [PMID: 26866456]
[77]
Yu, F.; Wang, Q.; Zhang, Z.; Peng, Y.; Qiu, Y.; Shi, Y.; Zheng, Y.; Xiao, S.; Wang, H.; Huang, X.; Zhu, L.; Chen, K.; Zhao, C.; Zhang, C.; Yu, M.; Sun, D.; Zhang, L.; Zhou, D. Development of oleanane-type triterpenes as a new class of HCV entry inhibitors. J. Med. Chem., 2013, 56(11), 4300-4319.
[http://dx.doi.org/10.1021/jm301910a] [PMID: 23662817]
[78]
Yu, F.; Peng, Y.; Wang, Q.; Shi, Y.; Si, L.; Wang, H.; Zheng, Y.; Lee, E.; Xiao, S.; Yu, M.; Li, Y.; Zhang, C.; Tang, H.; Wang, C.; Zhang, L.; Zhou, D. Development of bivalent oleanane-type triterpenes as potent HCV entry inhibitors. Eur. J. Med. Chem., 2014, 77, 258-268.
[http://dx.doi.org/10.1016/j.ejmech.2014.03.017] [PMID: 24650713]
[79]
Xiao, S.; Wang, Q.; Si, L.; Shi, Y.; Wang, H.; Yu, F.; Zhang, Y.; Li, Y.; Zheng, Y.; Zhang, C.; Wang, C.; Zhang, L.; Zhou, D. Synthesis and anti-HCV entry activity studies of β-cyclodextrin-pentacyclic triterpene conjugates. ChemMedChem, 2014, 9(5), 1060-1070.
[http://dx.doi.org/10.1002/cmdc.201300545] [PMID: 24623716]
[80]
Akram Khan, M.; Adams, H. The formation of lactams from l-ascorbic acid. Carbohydr. Res., 1999, 322(3), 279-283.
[http://dx.doi.org/10.1016/S0008-6215(99)00234-7]
[81]
Singh, B.K.; Bisht, S.S.; Tripathi, R.P. An efficient synthesis of tetramic acid derivatives with extended conjugation from L-ascorbic acid. Beilstein J. Org. Chem., 2006, 2(1), 24.
[http://dx.doi.org/10.1186/1860-5397-2-24] [PMID: 17147830]
[82]
Raić-Malić, S.; Svedruzić, D.; Gazivoda, T.; Marunović, A.; Hergold-Brundić, A.; Nagl, A.; Balzarini, J.; De Clercq, E.; Mintas, M. Synthesis and antitumor activities of novel pyrimidine derivatives of 2,3-O,O-dibenzyl-6-deoxy-L-ascorbic acid and 4,5-didehydro-5,6- dideoxy-L-ascorbic acid. J. Med. Chem., 2000, 43(25), 4806-4811.
[http://dx.doi.org/10.1021/jm0009540] [PMID: 11123990]
[83]
Swain, P.; Lokhande, R.; Bhattacharjee, M. Synthesis of 2,3-O,O-dibenzyl-6-o-tosyl-l-ascorbic acid. Int. J. Life- Sci. Sci. Res., 2017, 3, 1114-1117.
[http://dx.doi.org/10.21276/ijlssr.2017.3.4.2]
[84]
Macan, A.M.; Harej, A.; Cazin, I.; Klobučar, M.; Stepanić, V.; Pavelić, K.; Pavelić, S.K.; Schols, D.; Snoeck, R.; Andrei, G.; Raić-Malić, S. Antitumor and antiviral activities of 4-substituted 1,2,3-triazolyl-2,3-dibenzyl-L-ascorbic acid derivatives. Eur. J. Med. Chem., 2019, 184, 111739.
[http://dx.doi.org/10.1016/j.ejmech.2019.111739] [PMID: 31586832]
[85]
Das, A.; Banik, B. Studies on dipole moment of penicillin isomers and related antibiotics. J. Indian Chem. Soc., 2020, 97(6), 911-915.
[86]
Das, A.; Banik, B.K. Dipole moment in medicinal research: Green and sustainable approach.Green approaches in medicinal chemistry for sustainable drug design; Elsevier, 2020, pp. 921-964.
[http://dx.doi.org/10.1016/B978-0-12-817592-7.00021-6]
[87]
Das, A.; Banik, B.K. Dipole Moment Studies on α-Hydroxy β-Lactam Derivatives. J. Indian Chem. Soc., 2020, 97(9b), 1567-1571.
[88]
Das, A.; Banik, B. Quantum mechanical studies of physicochemical properties on estradiol and isomer; Authorea Prepr, 2020.
[89]
Das, A.; Abdulrahim Alqashqari, A.; Banik, B.K. Quantum mechanical calculations of dipole moment of diverse imines. J. Indian Chem. Soc., 2020, 97(9b), 1563-1566.
[90]
Das, A.; Das, A.; Banik, B.K. Influence of dipole moments on the medicinal activities of diverse organic compounds. J. Indian Chem. Soc., 2021, 100005.
[http://dx.doi.org/10.1016/j.jics.2021.100005]
[91]
Das, A.; Banik, B.K. Dipole Moment. Encyclopedia; MDPI, 2020.
[92]
Das, A.; Banik, B.K. β-Lactams: Geometry, dipole moment and anticancer activity. J. Indian Chem. Soc., 2020, 97(11b), 2461-2467.
[93]
Das, A. Quantitative structure-property relationships of taxol, taxotere and their Epi-Isomers. J. Indian Chem. Soc., 2020, 97(11b), 2468-2476.
[94]
Das, A.; Banik, B.K. Versatile thiosugars in medicinal chemistry.Green approaches in medicinal chemistry for sustainable drug design; Elsevier, 2020, pp. 549-574.
[http://dx.doi.org/10.1016/B978-0-12-817592-7.00015-0]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy