Generic placeholder image

Current Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 0929-8673
ISSN (Online): 1875-533X

Research Article

Structure-Activity Studies of Novel Di-substituted [1,2,5]oxadiazolo [3,4-b]pyrazine Analogs Targeting the A-loop Regulatory Site of p38 MAP Kinase

Author(s): Esther Carrasco, Patricia Gomez-Gutierrez, Pedro M. Campos, Miguel Vega, Angel Messeguer and Juan Jesus Perez*

Volume 29, Issue 9, 2022

Published on: 12 July, 2021

Page: [1640 - 1653] Pages: 14

DOI: 10.2174/0929867328666210712165659

Price: $65

Abstract

Introduction: In the quest for novel allosteric inhibitors of the p38 MAP kinase, we recently described the A-loop regulatory site, identified by means of molecular modeling studies together with the disclosure of a small molecule hit with a moderate inhibitory profile. Starting from this structure, we subsequently identified two additional hits with simpler molecular structures from an in silico screening study, using a substructure search in the SciFinder database. After corroboration of their inhibitory profile, analysis of their structures permitted to conclude about the suitability of the [1,2,5]oxadiazolo[3,4-b]pyrazine (furazano[ 3,4-b]pyrazine) scaffold for the development of potent A-loop regulatory site p38 MAP kinase inhibitors. Accordingly, we report the synthesis and pharmacological evaluation of a series of di-substituted analogs with a potent inhibitory profile of p38 MAP kinase, as shown by in vitro assays of their capability to inhibit IL-1β secretion in human monocyte-derived macrophages.

Objective: To find small molecule potent inhibitors of the p38 MAP kinase A-loop regulatory site.

Methods: Starting from this structure, we subsequently identified two additional hits with simpler molecular structures from an in silico screening study, using a substructure search in the SciFinder database. After corroboration of their inhibitory profile, we carried out a hit-tolead optimization process guided by molecular modeling using a [1,2,5]oxadiazolo[3,4- b]pyrazine (furazano[3,4-b]pyrazine) scaffold.

Results: We report the synthesis and pharmacological evaluation of a series of di-substituted analogs with a potent inhibitory profile of p38 MAP kinase, as shown by in vitro assays of their capability to inhibit IL-1β secretion in human monocyte-derived macrophages.

Conclusion: We describe in the present work a series of [1,2,5]oxadiazolo[3,4-b]pyrazine (furazano[3,4-b]pyrazine), which are potent inhibitors of IL-1β secretion in human monocytederived macrophages allosteric modulators of the p38 MAP kinase A-loop regulatory site.

Keywords: Non-competitive kinase inhibitors, furazano[3, 4-b]pyrazine derivatives, 1, 2, 5-oxadiazole derivatives, MAPK inhibitors, IL-1β inhibitors, kinome, orthosteric ligands.

« Previous
[1]
Manning, G.; Whyte, D.B.; Martinez, R.; Hunter, T.; Sudarsanam, S. The protein kinase complement of the human genome. Science, 2002, 298(5600), 1912-1934.
[http://dx.doi.org/10.1126/science.1075762] [PMID: 12471243]
[2]
Nolen, B.; Taylor, S.; Ghosh, G. Regulation of protein kinases; controlling activity through activation segment conformation. Mol. Cell, 2004, 15(5), 661-675.
[http://dx.doi.org/10.1016/j.molcel.2004.08.024] [PMID: 15350212]
[3]
Cohen, P. The role of protein phosphorylation in human health and disease. The Sir Hans Krebs Medal Lecture. Eur. J. Biochem., 2001, 268(19), 5001-5010.
[http://dx.doi.org/10.1046/j.0014-2956.2001.02473.x] [PMID: 11589691]
[4]
Lahiry, P.; Torkamani, A.; Schork, N.J.; Hegele, R.A. Kinase mutations in human disease: Interpreting genotype-phenotype relationships. Nat. Rev. Genet., 2010, 11(1), 60-74.
[http://dx.doi.org/10.1038/nrg2707] [PMID: 20019687]
[5]
Backes, A.; Zech, B.; Felber, B.; Klebl, B.; Müller, G. Small-molecule inhibitors binding to protein kinases. Part I: Exceptions from the traditional pharmacophore approach of type I inhibition. Expert Opin. Drug Discov., 2008, 3(12), 1409-1425.
[http://dx.doi.org/10.1517/17460440802579975] [PMID: 23506106]
[6]
Morphy, R. Selectively nonselective kinase inhibition: Striking the right balance. J. Med. Chem., 2010, 53(4), 1413-1437.
[http://dx.doi.org/10.1021/jm901132v] [PMID: 20166671]
[7]
Eglen, R.M.; Reisine, T. Human kinome drug discovery and the emerging importance of atypical allosteric inhibitors. Expert Opin. Drug Discov., 2010, 5(3), 277-290.
[http://dx.doi.org/10.1517/17460441003636820] [PMID: 22823023]
[8]
Palmieri, L.; Rastelli, G. αC helix displacement as a general approach for allosteric modulation of protein kinases. Drug Discov. Today, 2013, 18(7-8), 407-414.
[http://dx.doi.org/10.1016/j.drudis.2012.11.009] [PMID: 23195331]
[9]
Fang, Z.; Grütter, C.; Rauh, D. Strategies for the selective regulation of kinases with allosteric modulators: Exploiting exclusive structural features. ACS Chem. Biol., 2013, 8(1), 58-70.
[http://dx.doi.org/10.1021/cb300663j] [PMID: 23249378]
[10]
Lu, S.; He, X.; Ni, D.; Zhang, J. Allosteric modulator discovery: From serendipity to structure-based design. J. Med. Chem., 2019, 62(14), 6405-6421.
[http://dx.doi.org/10.1021/acs.jmedchem.8b01749] [PMID: 30817889]
[11]
Lu, S.; Shen, Q.; Zhang, J. Allosteric methods and their applications: Facilitating the discovery of allosteric drugs and the investigation of allosteric mechanisms. Acc. Chem. Res., 2019, 52(2), 492-500.
[http://dx.doi.org/10.1021/acs.accounts.8b00570] [PMID: 30688063]
[12]
Jenardhanan, P.; Panneerselvam, M.; Mathur, P.P. Targeting kinase interaction networks: A new paradigm in ppi based design of kinase inhibitors. Curr. Top. Med. Chem., 2019, 19(6), 467-485.
[http://dx.doi.org/10.2174/1568026619666190304155711] [PMID: 31184298]
[13]
Cargnello, M.; Roux, P.P. Activation and function of the MAPKs and their substrates, the MAPK-activated protein kinases. Microbiol. Mol. Biol. Rev., 2011, 75(1), 50-83.
[http://dx.doi.org/10.1128/MMBR.00031-10] [PMID: 21372320]
[14]
Zhang, J.; Shen, B.; Lin, A. Novel strategies for inhibition of the p38 MAPK pathway. Trends Pharmacol. Sci., 2007, 28(6), 286-295.
[http://dx.doi.org/10.1016/j.tips.2007.04.008] [PMID: 17482683]
[15]
Bühler, S.; Laufer, S.A. p38 MAPK inhibitors: A patent review (2012 - 2013). Expert Opin. Ther. Pat., 2014, 24(5), 535-554.
[http://dx.doi.org/10.1517/13543776.2014.894977] [PMID: 24611721]
[16]
Goldstein, D.M.; Kuglstatter, A.; Lou, Y.; Soth, M.J. Selective p38α inhibitors clinically evaluated for the treatment of chronic inflammatory disorders. J. Med. Chem., 2010, 53(6), 2345-2353.
[http://dx.doi.org/10.1021/jm9012906] [PMID: 19950901]
[17]
Fiore, M.; Forli, S.; Manetti, F. Targeting mitogen-activated protein kinase-activated protein kinase 2 (mapkapk2, mk2): Medicinal chemistry efforts to lead small molecule inhibitors to clinical trials. J. Med. Chem., 2016, 59(8), 3609-3634.
[http://dx.doi.org/10.1021/acs.jmedchem.5b01457] [PMID: 26502061]
[18]
Hammaker, D.; Firestein, G.S. “Go upstream, young man”: Lessons learned from the p38 saga. Ann. Rheum. Dis., 2010, 69(Suppl. 1), i77-i82.
[http://dx.doi.org/10.1136/ard.2009.119479] [PMID: 19995751]
[19]
Paunovic, V.; Harnett, M.M. Mitogen-activated protein kinases as therapeutic targets for rheumatoid arthritis. Drugs, 2013, 73(2), 101-115.
[http://dx.doi.org/10.1007/s40265-013-0014-6] [PMID: 23371304]
[20]
Lu, X.; Smaill, J.B.; Ding, K. New promise and opportunities for allosteric kinase inhibitors. Angew. Chem. Int. Ed. Engl., 2020, 59(33), 13764-13776.
[http://dx.doi.org/10.1002/anie.201914525] [PMID: 31889388]
[21]
Rabiller, M.; Getlik, M.; Klüter, S.; Richters, A.; Tückmantel, S.; Simard, J.R.; Rauh, D. Proteus in the world of proteins: Conformational changes in protein kinases. Arch. Pharm. (Weinheim), 2010, 343(4), 193-206.
[http://dx.doi.org/10.1002/ardp.201000028] [PMID: 20336692]
[22]
Prikas, E.; Poljak, A.; Ittner, A. Mapping p38α mitogen-activated protein kinase signaling by proximity-dependent labeling. Protein Sci., 2020, 29(5), 1196-1210.
[http://dx.doi.org/10.1002/pro.3854] [PMID: 32189389]
[23]
Canovas, B.; Nebreda, A.R. Diversity and versatility of p38 kinase signalling in health and disease. Nat. Rev. Mol. Cell Biol., 2021, 22(5), 346-366.
[http://dx.doi.org/10.1038/s41580-020-00322-w] [PMID: 33504982]
[24]
Gomez-Gutierrez, P.; Rubio-Martinez, J.; Perez, J.J. Identification of potential small molecule binding pockets in p38α map kinase. J. Chem. Inf. Model., 2017, 57(10), 2566-2574.
[http://dx.doi.org/10.1021/acs.jcim.7b00439] [PMID: 28872880]
[25]
Gomez-Gutierrez, P.; Campos, P.M.; Vega, M.; Perez, J.J. Identification of a novel inhibitory allosteric site in p38α. PLoS One, 2016, 11(11)e0167379
[http://dx.doi.org/10.1371/journal.pone.0167379] [PMID: 27898710]
[26]
Gabrielson, S.W. SciFinder. J. Med. Libr. Assoc., 2018, 106, 588-590.
[http://dx.doi.org/10.5195/JMLA.2018.515]
[27]
Mancini, R.S.; Barden, C.J.; Weaver, D.F.; Reed, M.A. Furazans in medicinal chemistry. J. Med. Chem., 2021, 64(4), 1786-1815.
[http://dx.doi.org/10.1021/acs.jmedchem.0c01901] [PMID: 33569941]
[28]
Starchenkov, I.; Andrianov, V. Chemistry of furazano [3,4-b] pyrazines. Chem. Heterocycl. Compd., 1997, 33, 1219-1233.
[http://dx.doi.org/10.1007/BF02290874]
[29]
MOE (the molecular operating environment) version 2009 10. Chemical Computing Group Inc.: 1010 Sherbrooke Street West. Suite 910. Montreal, Canada H3A 2R7 2009.
[30]
Kaneko, N.; Kurata, M.; Yamamoto, T.; Morikawa, S.; Masumoto, J. The role of interleukin-1 in general pathology. Inflamm. Regen., 2019, 39, 12.
[http://dx.doi.org/10.1186/s41232-019-0101-5] [PMID: 31182982]

Rights & Permissions Print Export Cite as
© 2024 Bentham Science Publishers | Privacy Policy