Generic placeholder image

Nanoscience & Nanotechnology-Asia

Editor-in-Chief

ISSN (Print): 2210-6812
ISSN (Online): 2210-6820

Research Article

Green Synthesis of Silver Chloride Nanoparticles using Phlomoides Labiosa (Bunge) Adylov, Kamelin & Makhm Herbal Extract by Investigating Antioxidant Properties and Antibacterial Effects

Author(s): Toktam Arkani, Ali Firoznia and Cobra Izanloo*

Volume 12 , Issue 1 , 2022

Published on: 12 July, 2021

Article ID: e120721194696 Pages: 12

DOI: 10.2174/2210681211666210712113210

Price: $65

Abstract

Background: Considering the high cost of nano-particles chemical synthesis and bacteria’s high resistance against antibiotics, investigating silver particles biosynthesis and their effect on clinical and standard strains of different bacteria is very important.

Objectives: This study investigates the feasibility of green synthesis of silver chloride nanoparticles by labiosa (Bunge) Adylov, Kamelin & Makhm Phlomoides (Eremostachys labiosa Bunge) herbal extract and Phlomoides binaludensis Salmaki & Joharchi (Binaloud Cistanche tubulosa) plant.

Methods: Scanning Electron Microscope (SEM), X-Ray Diffraction (XRD), UV-Visible Spectroscopy, and Energy-Dispersive X-ray Spectroscopy (EDS) are used for nano-particles characterization. The antibacterial property of extracts and synthesized nano-particles was evaluated against Staphylococcus aureus, Bacillus cereus and Escherichia coli by agar disk diffusion and well diffusion, respectively. As antioxidants existing in plants are expected to act as regenerators in nano-particles synthesis, the plants used were investigated considering the existence of antioxidants through two DPPH and FRAP methods. Total values of phenol and IC50 were determined by the extract of considered plants.

Results: The results showed that what has been successful in nano-particles synthesis is silver chloride nano-particles synthesis, which is due to the existence of chlorinated compounds in the herbal extract. Synthesized nano-particles are spherical, and their size is in the range of 27-35 nm, and synthesized nano-particles were distributed consistently. Also nano-particles enjoy significant antibacterial activity.

Conclusion: IC50 was 0.56 mg/ml and 0.96 mg/ml for the aerial organs of Eremostachys labiosa Bunge and Binaloud Cistanche tubulosa, respectively, in this study, while it was 0.38 mg/ml for BHT synthetic antioxidant. Also, iron regeneration ability reported 255.990 and 64.110 Fe ion mmol/extract gr by the extracts.

Keywords: Antioxidant, antibacterial, green synthesis, eremostachys labiosa bunge, binaloud cistanche tubulosa, nano-particles.

Graphical Abstract
[1]
Shahverdi, A.R.; Fakhimi, A.; Shahverdi, H.R. Synthesis and effect of silver nanoparticles on the antibacterial activity of different antibiotics against Staphylococcus aureus and Escherichia coli. Nanotechnol. Biol. Med., 2007, 3, 168-171.https://www.sciencedirect.com/science/article/abs/pii/S1549963407000469
[2]
Lee, K.J.; Dnallathamby, P. In vivo imaging of transport and biocompatibility of single silver nanoparticles in early development of zebrafish embryos. ACS Nano, 2007, 2, 133-143.
[http://dx.doi.org/10.1021/nn700048y] [PMID: 19122772]
[3]
Zhou, W.; Ma, Y.; Yang, H.; Ding, Y.; Luo, X. A label-free biosensor based on silver nanoparticles array for clinical detection of serum p53 in head and neck squamous cell carcinoma. Int. J. Nanomedicine, 2011, 6, 381-386.
[http://dx.doi.org/10.2147/IJN.S13249] [PMID: 21468351]
[4]
Keare, M.D.; Bukhari, S.S.; Swann, A.; Spier, P.; Mclaren, I.; Myers, J. Reduction of catheter-related colonisation by the use of a silver zeolite-impregnated central vascular catheter in adult critical care. J. Infect., 2007, 54, 146-150.
[http://dx.doi.org/10.1016/j.jinf.2006.03.002] [PMID: 16678904]
[5]
Prokopovich, P.; Kobrick, M.; Brousseau, E.; Perni, S. Properties of dehydrated human amnion/chorion composite grafts: Implications for wound repair and soft tissue regeneration. J. Biomed. Mater. Res. B Appl. Biomater., 2014, 102(6), 1353-1362.
[6]
Tsuji, T.; Kakita, T.; Tsuji, M. Preparation of nano-size particles of silver with femtosecond laser ablation in water. Appl. Surf. Sci., 2003, 206, 314-320.
[http://dx.doi.org/10.1016/S0169-4332(02)01230-8]
[7]
Jensen, T.R.; Malinsky, M.D.; Haynes, C.L.; Van Duyne, R.P. Nanosphere lithography: Tunable localized surface plasmon resonance spectra of silver nanoparticles. J. Phys. Chem. B, 2000, 104, 10549-10556.
[http://dx.doi.org/10.1021/jp002435e]
[8]
Lu, H.; Liu, S.; Wang, X.; Qian, X.; Yin, J.; Zhu, Z. Silver nanocrystals by hyperbranched polyurethane-assisted photochemical reduction of Ag+. Mater. Chem. Phys., 2003, 81, 104-107.
[http://dx.doi.org/10.1016/S0254-0584(03)00147-0]
[9]
Yin, B.; Ma, H.; Wang, S.; Chen, S. Electrochemical synthesis of silver nanoparticles under protection of poly(N-vinylpyrrolidone). J. Phys. Chem. B, 2003, 107, 8898-8904.
[http://dx.doi.org/10.1021/jp0349031]
[10]
Dimitrijevic, N.M.; Bartels, D.M.; Jonah, C.D.; Takahashi, K.; Rajh, T. Radiolytically induced formation and optical absorption spectra of colloidal silver nanoparticles in supercritical ethane. J. Phys. Chem. B, 2001, 105, 954-959.
[http://dx.doi.org/10.1021/jp0028296]
[11]
Roy, N.; Barik, A. Green synthesis of silver nanoparticles from the unexploited weed resources. IJNT, 2010, 4, 95-101.
[12]
Mittal, A.K.; Chisti, Y.; Banerjee, U.C. Synthesis of metallic nanoparticles using plant extracts. Biotechnol. Adv., 2013, 31(2), 346-356.
[http://dx.doi.org/10.1016/j.biotechadv.2013.01.003] [PMID: 23318667]
[13]
Kumar, V.A.; Uchida, T.; Mizuki, T.; Nakajima, Y.; Katsube, Y.; Hanajiri, T. Synthesis of nanoparticles composed of silver and silver chloride for a plasmonic photo-catalyst using an extract from a weed Solidagoaltissima (goldenrod). Adv. Nat. Sci. Nanosci. Nanotechnol., 2016, 7(1)015002
[14]
Shahverdi, A.R.; Minaeian, S.; Shahverdi, H.R.; Jamalifar, H.; Nohi, A.A. Rapid synthesis of silver nanoparticles using cult- ureesupernatants of enterobacteria: A novel biological approach. Process Biochem., 2007, 42, 919-923.
[15]
Hemlata, P.R.M.; Meena, P.R.; Singh, A.P.; Tejavath, K.K. Biosynthesis of silver nanoparticles using Cucumis prophetarum aqueous leaf extract and their antibacterial and antiproliferative activity against cancer cell lines. ACS Omega, 2020, 5(10), 5520-5528.
[http://dx.doi.org/10.1021/acsomega.0c00155] [PMID: 32201844]
[16]
Henry, F.A.; Koleangan, H.; Wuntu, A.D. Synthesis of silver nanoparticles using aqueous extract of medicinal plants’ (impatiens balsamina and lantana camara) fresh leaves and analysis of antimicrobial activity. Int. J. Microbiol., 2019, 2019, 8.
[17]
Castillo-Henríquez, L.; Alfaro-Aguilar, K.; Ugalde-Álvarez, J.; Vega-Fernández, L.; de Oca-Vásquez, G.M.; Vega-Baudrit, J.R. Green synthesis of gold and silver nanoparticles from plant extracts and their possible applications as antimicrobial agents in the agricultural area. Nanomaterials (Basel), 2020, 10, 1763.
[http://dx.doi.org/10.3390/nano10091763]
[18]
Bawazeer, S.; Rauf, A.; Syed, U.A.S.; Shawky, A.M.; Al-Awthan, Y.S.; Bahattab, O.S.; Uddin, G.; Sabir, J.; El-Esawi, M.A. Green synthesis of silver nanoparticles using Tropaeolum majus: Phytochemical screening and antibacterial studies. Green Process. Syn., 2021, 10, 85-94.
[http://dx.doi.org/10.1515/gps-2021-0003]
[19]
Vanlalveni, C.; Lallianrawna, S.; Biswas, A.; Selvaraj, M.; Changmai, B.; Rokhum, S.L. Green synthesis of silver nanoparticles using plant extracts and their antimicrobial activities: A review of recent literature. RSC Advances, 2021, 11, 2804-2837.
[http://dx.doi.org/10.1039/D0RA09941D]
[20]
Salmaki, Y.; Joharchi, M.R. Phlomoides binaludensis (Phlomideae, Lamioideae, Lamiaceae), a new species from northeastern Iran. Phytotaxa, 2014, 172(3), 265-270.
[21]
Mozaffarian, V. Dictionary of Iranian plants names; FarhangMo’aser Publications: Tehran, 1996, p. 596.
[22]
Hadipour, A.R.; Azizi, M.; Naghdi, B.H.; Del Azar, A.; Panahandeh, J.; Aroui, H. Morphological diversity of some Eremostachyslaciniata bunge populations. Iran Horticul. Sci., 2015, 46(3), 497-507.
[23]
Peng, B.; Tang, J.; Luo, J.; Wang, P.; Ding, B.; Tam, K.C. Applications of nanotechnology in oil and gas industry: Progress and perspective. Can. J. Chem. Eng., 2018, 96(1), 91-100.
[24]
Haddadian, S.; Hosseini, M. Nanotechnology and biotechnology in medicine; Asar Sobhan Publications: Dacca, Bangladesh, 2017.
[25]
Maghsoudi, S. An introduction on nanotechnology in food industry and agriculture; Aghaye Ketab Publications, 2015.
[26]
Gajbhiye, M.; Kesharwani, J.; Ingle, A.; Gade, A.; Rai, M. Fungus-mediated synthesis of silver nanoparticles and their activity against pathogenic fungi in combination with fluconazole. Nanomedicine (Lond.), 2009, 5(4), 382-386.
[http://dx.doi.org/10.1016/j.nano.2009.06.005] [PMID: 19616127]
[27]
Jahanshahi, M. Bio-nanotechnology and molecular nanotechnology; Jahan Noor Publications: Dehli, 2009.
[28]
Laboratoire, A.; Contro, L. Nanozeolites: Synthesis, crystallization mechanism, and applications. Chem. Mater., 2005, 17, 2494-2513.
[http://dx.doi.org/10.1021/cm047908z]
[29]
Bilal, M.; Rasheed, T.; Iqbal, H.M.N.; Li, C.; Hu, H.; Zhang, X. Development of silver nanoparticles loaded chitosan-alginate constructs with biomedical potentialities. Int. J. Biol. Macromol., 2017, 105(Pt 1), 393-400.
[http://dx.doi.org/10.1016/j.ijbiomac.2017.07.047] [PMID: 28705499]
[30]
Abedi, A.; Firouznia, A.; Izanlou, K. Silver nanoparticle synthesis using common jasmine extract and investigating the antimicrobial properties of synthesized nanoparticles and the antioxidant properties of extract. In: The national conference on nanostructures of nano sciences and engineering, Islamic Azad University, Kashan Branch, 2019.
[31]
Kabir, S.R.; Asaduzzaman, A.; Amin, R.; Haque, A.T.; Ghose, R.; Rahman, M.M.; Islam, J.; Amin, M.B.; Hasan, I.; Debnath, T.; Chun, B.S.; Zhao, X.; Rahman Khan, M.K.; Alam, M.T. Zizyphus mauritiana fruit extract-mediated synthesized silver/silver chloride nanoparticles retain antimicrobial activity and induce apoptosis in MCF-7 Cells through the fas pathway. ACS Omega, 2020, 5(32), 20599-20608.
[http://dx.doi.org/10.1021/acsomega.0c02878] [PMID: 32832813]
[32]
Jeeva, K.; Thiyagarajan, M.; Elangovan, V.; Geetha, N.; Venkatachalam, P. Caesalpinia coriaria leaf extracts mediated biosynthesis of metallic silver nanoparticles and their antibacterial activity against clinically isolated pathogens. Ind. Crops Prod., 2014, 52, 714-720.
[http://dx.doi.org/10.1016/j.indcrop.2013.11.037]
[33]
Jha, A.K.; Prasad, K.; Prasad, K.; Kulkarni, A.R. Plant system: Nature’s nanofactory. Colloids Surf. B Biointerfaces, 2009, 73(2), 219-223.
[http://dx.doi.org/10.1016/j.colsurfb.2009.05.018] [PMID: 19539452]
[34]
Saratale, R.G.; Benelli, G.; Kumar, G.; Kim, D.S.; Saratale, G.D. Bio-fabrication of silver nanoparticles using the leaf extract of an ancient herbal medicine, dandelion (Taraxacum officinale), evaluation of their antioxidant, anticancer potential, and antimicrobial activity against phytopathogens. Environ. Sci. Pollut. Res. Int., 2018, 25(11), 10392-10406.
[http://dx.doi.org/10.1007/s11356-017-9581-5] [PMID: 28699009]
[35]
Netai, M-M.; Moyo Joyce, N.; Stephen, N.; Musekiwa, C. Synthesis of silver nanoparticles using wild Cucumis anguria: Characterization and antibacterial activity. Afr. J. Biotechnol., 2017, 16, 1911-1921.
[http://dx.doi.org/10.5897/AJB2017.16076]
[36]
Ahmed, S.; Ahmad, M.; Swami, B.L.; Ikram, S. A review on plants extract mediated synthesis of silver nanoparticles for antimicrobial applications: A green expertise. J. Adv. Res., 2016, 7(1), 17-28.
[http://dx.doi.org/10.1016/j.jare.2015.02.007] [PMID: 26843966]
[37]
Franci, G.; Falanga, A.; Galdiero, S.; Palomba, L.; Rai, M.; Morelli, G.; Galdiero, M. Silver nanoparticles as potential antibacterial agents. Molecules, 2015, 20(5), 8856-8874.
[http://dx.doi.org/10.3390/molecules20058856] [PMID: 25993417]
[38]
Burrell, R.E. A scientific perspective on the use of topical silver preparations. Ostomy Wound Manage., 2003, 49(5A)(Suppl.), 19-24.
[PMID: 12883161]
[39]
Melaiye, A.; Youngs, W.J. Silver and its application as an antimicrobial agent. Expert Opin. Ther. Pat., 2005, 15(2), 125-130.
[http://dx.doi.org/10.1517/13543776.15.2.125]
[40]
Kota, S.; Dumpala, P.; Anantha, R.K.; Verma, M.K.; Kandepu, S. Evaluation of therapeutic potential of the silver/silver chloride nanoparticles synthesized with the aqueous leaf extract of Rumex acetosa. Sci. Rep., 2017, 7(1), 11566.
[http://dx.doi.org/10.1038/s41598-017-11853-2] [PMID: 28912484]
[41]
Gopinath, V.; Priyadarshini, S.; Meera Priyadharsshini, N.; Pandian, K.; Velusamy, P. Biogenic synthesis of antibacterial silver chloride nanoparticles using leaf extracts of Cissus quadrangularis Linn. Mater. Lett., 2013, 91, 224-227.
[http://dx.doi.org/10.1016/j.matlet.2012.09.102]
[42]
B., Aziz S.; Hussein, G.; Brza, M.; J Mohammed, S.; T Abdulwahid, R.; Raza Saeed, S.; Hassanzadeh, A. Fabrication of interconnected plasmonic spherical silver nanoparticles with enhanced localized surface plasmon resonance (lspr) peaks using quince leaf extract solution. Nanomaterials (Basel), 2019, 9, 1557.
[43]
Wongsa, P.; Chaiwarit, J.; Zamaludien, A. In vitro screening of phenolic compounds, potential inhibition against α-amylase and α glucosidase of culinary herbs in Thailand. Food Chem., 2012, 131, 964-971.
[http://dx.doi.org/10.1016/j.foodchem.2011.09.088]

Rights & Permissions Print Export Cite as
© 2022 Bentham Science Publishers | Privacy Policy