Generic placeholder image

Anti-Cancer Agents in Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 1871-5206
ISSN (Online): 1875-5992

Research Article

Bioinformatics Analysis Predicts hsa_circ_0026337/miR-197-3p as a Potential Oncogenic ceRNA Network for Non-Small Cell Lung Cancers

Author(s): Qian Zhang*, Lingkai Kang, Xiaoyue Li*, Zhirui Li, Shimin Wen and Xi Fu

Volume 22, Issue 5, 2022

Published on: 12 July, 2021

Page: [874 - 886] Pages: 13

DOI: 10.2174/1871520621666210712090721

Price: $65

Abstract

Background: Circular RNAs (circRNAs) play an essential role in developing tumors, but their role in Non- Small Cell Lung Cancer (NSCLC) is unclear. Thus, the present study explored the possible molecular mechanism of circRNAs in NSCLC.

Methods: Three circular RNA (circRNA) microarray datasets were downloaded from the Gene Expression Omnibus (GEO) database. Differential expressions of circRNAs (DECs) were identified in NSCLC tissue and compared to adjacent healthy tissue. The online cancer-specific circRNA database (CSCD) was used for the analysis of the DECs function. Protein-Protein Interaction (PPI) network, Kyoto Encyclopedia of Genes and Genomes (KEGG), Gene Ontology (GO), Cytoscape and UALCAN were used to predict the critical nodes and perform patient survival analysis, respectively. The interaction between the DECs, the predicted miRNAs, and hub genes was also determined. Finally, the circRNA-miRNA-mRNA network was established.

Results: The expression of hsa_circ_0049271, hsa_circ_0026337, hsa_circ_0043256, and hsa_circ_0008234 was decreased in NSCLC tissues. The Encyclopedia of RNA Interactomes (ENCORI) and CSCD database results showed that hsa_circ_0026337 was found to sponge with miR-1193, miR-197-3p, miR-3605-5p, miR-433-3p and miR-652-3p, and hsa_circ_0043256 to sponge with miR-1252-5p, miR-494-3p and miR-558, respectively. Subsequently, 100 mRNAs were predicted to bind with these seven miRNA response elements (MREs). The GO analysis and KEGG pathway revealed that these 100 MREs might be involved in “histone deacetylase binding” and “cellular senescence.” PPI network and Cytoscape identified the top ten hub genes. Survival analysis data showed that the low expression of hsa_circ_0026337 was significantly associated with shortened survival time in NSCLC (P = 0.037), which increased the expression level of hsa-miR-197-3p, thereby inhibiting the translation of specific proteins.

Conclusion: This study examined the circRNA-miRNA-mRNA regulatory network associated with NSCLC and explored the potential functions of DECs in the network to elucidate the mechanisms underlying disease progression in NSCLC.

Keywords: Bioinformatics analysis, GEO, NSCLC, circRNAs, miRNAs, ceRNA network.

Graphical Abstract
[1]
Bray, F.; Ferlay, J.; Soerjomataram, I.; Siegel, R.L.; Torre, L.A.; Jemal, A. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J. Clin., 2018, 68(6), 394-424.
[http://dx.doi.org/10.3322/caac.21492] [PMID: 30207593]
[2]
Herbst, R.S.; Morgensztern, D.; Boshoff, C. The biology and management of non-small cell lung cancer. Nature, 2018, 553(7689), 446-454.
[http://dx.doi.org/10.1038/nature25183] [PMID: 29364287]
[3]
Smith, R.A.; Andrews, K.S.; Brooks, D.; Fedewa, S.A.; Manassaram-Baptiste, D.; Saslow, D.; Brawley, O.W.; Wender, R.C. Cancer screening in the United States, 2018: A review of current American Cancer Society guidelines and current issues in cancer screening. CA Cancer J. Clin., 2018, 68(4), 297-316.
[http://dx.doi.org/10.3322/caac.21446] [PMID: 29846940]
[4]
Petersen, I. The morphological and molecular diagnosis of lung cancer. Dtsch. Arztebl. Int., 2011, 108(31-32), 525-531.
[http://dx.doi.org/10.3238/arztebl.2011.0525] [PMID: 21886665]
[5]
Nakaya, H.I.; Amaral, P.P.; Louro, R.; Lopes, A.; Fachel, A.A.; Moreira, Y.B.; El-Jundi, T.A.; da Silva, A.M.; Reis, E.M.; Verjovski-Almeida, S. Genome mapping and expression analyses of human intronic noncoding RNAs reveal tissue-specific patterns and enrichment in genes related to regulation of transcription. Genome Biol., 2007, 8(3), R43.
[http://dx.doi.org/10.1186/gb-2007-8-3-r43] [PMID: 17386095]
[6]
Prasanth, K.V.; Spector, D.L. Eukaryotic regulatory RNAs: An answer to the ‘genome complexity’ conundrum. Genes Dev., 2007, 21(1), 11-42.
[http://dx.doi.org/10.1101/gad.1484207] [PMID: 17210785]
[7]
Hurst, D.R.; Edmonds, M.D.; Welch, D.R. Metastamir: The field of metastasis-regulatory microRNA is spreading. Cancer Res., 2009, 69(19), 7495-7498.
[http://dx.doi.org/10.1158/0008-5472.CAN-09-2111] [PMID: 19773429]
[8]
Lee, Y.S.; Dutta, A. MicroRNAs in cancer. Annu. Rev. Pathol., 2009, 4, 199-227.
[http://dx.doi.org/10.1146/annurev.pathol.4.110807.092222] [PMID: 18817506]
[9]
Mueller, D.W.; Bosserhoff, A.K. Role of miRNAs in the progression of malignant melanoma. Br. J. Cancer, 2009, 101(4), 551-556.
[http://dx.doi.org/10.1038/sj.bjc.6605204] [PMID: 19638982]
[10]
Jiang, H.; Huang, G.; Zhao, N.; Zhang, T.; Jiang, M.; He, Y.; Zhou, X.; Jiang, X. Long non-coding RNA TPT1-AS1 promotes cell growth and metastasis in cervical cancer via acting AS a sponge for miR-324-5p. J. Exp. Clin. Cancer Res., 2018, 37(1), 169.
[http://dx.doi.org/10.1186/s13046-018-0846-8] [PMID: 30045766]
[11]
Xiong, H.; Chen, R.; Liu, S.; Lin, Q.; Chen, H.; Jiang, Q. MicroRNA-183 induces epithelial-mesenchymal transition and promotes endometrial cancer cell migration and invasion in by targeting CPEB1. J. Cell. Biochem., 2018, 119(10), 8123-8137.
[http://dx.doi.org/10.1002/jcb.26763] [PMID: 29923214]
[12]
Chen, L.L.; Yang, L. Regulation of circRNA biogenesis. RNA Biol., 2015, 12(4), 381-388.
[http://dx.doi.org/10.1080/15476286.2015.1020271] [PMID: 25746834]
[13]
Zheng, L.L.; Li, J.H.; Wu, J.; Sun, W.J.; Liu, S.; Wang, Z.L.; Zhou, H.; Yang, J.H.; Qu, L.H. deepBase v2.0: Identification, expression, evolution and function of small RNAs, LncRNAs and circular RNAs from deep-sequencing data. Nucleic Acids Res., 2016, 44(D1), D196-D202.
[http://dx.doi.org/10.1093/nar/gkv1273] [PMID: 26590255]
[14]
Ashwal-Fluss, R.; Meyer, M.; Pamudurti, N.R.; Ivanov, A.; Bartok, O.; Hanan, M.; Evantal, N.; Memczak, S.; Rajewsky, N.; Kadener, S. circRNA biogenesis competes with pre-mRNA splicing. Mol. Cell, 2014, 56(1), 55-66.
[http://dx.doi.org/10.1016/j.molcel.2014.08.019] [PMID: 25242144]
[15]
Abdelmohsen, K.; Panda, A.C.; Munk, R.; Grammatikakis, I.; Dudekula, D.B.; De, S.; Kim, J.; Noh, J.H.; Kim, K.M.; Martindale, J.L.; Gorospe, M. Identification of HuR target circular RNAs uncovers suppression of PABPN1 translation by CircPABPN1. RNA Biol., 2017, 14(3), 361-369.
[http://dx.doi.org/10.1080/15476286.2017.1279788] [PMID: 28080204]
[16]
Burd, C.E.; Jeck, W.R.; Liu, Y.; Sanoff, H.K.; Wang, Z.; Sharpless, N.E. Expression of linear and novel circular forms of an INK4/ARF-associated non-coding RNA correlates with atherosclerosis risk. PLoS Genet., 2010, 6(12), e1001233.
[http://dx.doi.org/10.1371/journal.pgen.1001233] [PMID: 21151960]
[17]
Huang, S.; He, X.; Ding, J.; Liang, L.; Zhao, Y.; Zhang, Z.; Yao, X.; Pan, Z.; Zhang, P.; Li, J.; Wan, D.; Gu, J. Upregulation of miR-23a approximately 27a approximately 24 decreases transforming growth factor-beta-induced tumor-suppressive activities in human hepatocellular carcinoma cells. Int. J. Cancer, 2008, 123(4), 972-978.
[http://dx.doi.org/10.1002/ijc.23580] [PMID: 18508316]
[18]
Wen, J.; Liao, J.; Liang, J.; Chen, X.P.; Zhang, B.; Chu, L. Circular RNA HIPK3: A key circular rna in a variety of human cancers. Front. Oncol., 2020, 10, 773.
[http://dx.doi.org/10.3389/fonc.2020.00773] [PMID: 32500032]
[19]
Li, C.; Zhang, L.; Meng, G.; Wang, Q.; Lv, X.; Zhang, J.; Li, J. Circular RNAs: Pivotal molecular regulators and novel diagnostic and prognostic biomarkers in non-small cell lung cancer. J. Cancer Res. Clin. Oncol., 2019, 145(12), 2875-2889.
[http://dx.doi.org/10.1007/s00432-019-03045-4] [PMID: 31630262]
[20]
Tian, M.; Dong, J.; Yuan, B.; Huiying, J. Identification of potential circRNAs and circRNA-miRNA-mRNA regulatory network in the development of diabetic foot ulcers by integrated bioinformatics analysis. Int. Wound J., 2021, 18(3), 323-331.
[PMID: 33314661]
[21]
Gong, K.; Miao, S.; Yang, L.; Wu, Y.; Guo, J.; Chen, W.; Dai, J.; Du, J.; Xi, S. Aaptamine attenuates the proliferation and progression of non-small cell lung carcinoma. Pharm. Biol., 2020, 58(1), 1044-1054.
[http://dx.doi.org/10.1080/13880209.2020.1822420] [PMID: 33027592]
[22]
David, M.; Waterhouse, J.L.; Bismark, B.; Jack, M.; Nicholas, J.R.; Elizabeth, T.M. Retrospective observational study of alk-inhibitor therapy sequencing and outcomes in patients with alk-positive non-small cell lung cancer. Drugs Real World Outcomes, 2020, 7(4), 261-269.
[http://dx.doi.org/10.1007/s40801-020-00207-6] [PMID: 32725539]
[23]
Team, R.C.R. A language and environment for statistical computing., 2014.Available from:. http://www.R-project.org.
[24]
Tatomer, D.C.; Liang, D.; Wilusz, J.E. RNAi screening to identify factors that control circular rna localization. Methods Mol. Biol., 2021, 2209, 321-332.
[http://dx.doi.org/10.1007/978-1-0716-0935-4_20] [PMID: 33201478]
[25]
Sun, Y.; Bao, X.; Ren, Y.; Jia, L.; Zou, S.; Han, J.; Zhao, M.; Han, M.; Li, H.; Hua, Q.; Fang, Y.; Yang, J.; Wu, C.; Chen, G.; Wang, L. Targeting HDAC/OAZ1 axis with a novel inhibitor effectively reverses cisplatin resistance in non-small cell lung cancer. Cell Death Dis., 2019, 10(6), 400.
[http://dx.doi.org/10.1038/s41419-019-1597-y] [PMID: 31127087]
[26]
Choudhary, C.; Kumar, C.; Gnad, F.; Nielsen, M.L.; Rehman, M.; Walther, T.C.; Olsen, J.V.; Mann, M. Lysine acetylation targets protein complexes and co-regulates major cellular functions. Science, 2009, 325(5942), 834-840.
[http://dx.doi.org/10.1126/science.1175371] [PMID: 19608861]
[27]
Zhu, L.; Wu, K.; Ma, S.; Zhang, S. HDAC inhibitors: A new radiosensitizer for non-small-cell lung cancer. Tumori, 2015, 101(3), 257-262.
[http://dx.doi.org/10.5301/tj.5000347] [PMID: 25953446]
[28]
Liu, R.Y.; Zeng, Y.; Lei, Z.; Wang, L.; Yang, H.; Liu, Z.; Zhao, J.; Zhang, H.T. JAK/STAT3 signaling is required for TGF-β-induced epithelial-mesenchymal transition in lung cancer cells. Int. J. Oncol., 2014, 44(5), 1643-1651.
[http://dx.doi.org/10.3892/ijo.2014.2310] [PMID: 24573038]
[29]
Yilmaz, M.; Christofori, G.; Lehembre, F. Distinct mechanisms of tumor invasion and metastasis. Trends Mol. Med., 2007, 13(12), 535-541.
[http://dx.doi.org/10.1016/j.molmed.2007.10.004] [PMID: 17981506]
[30]
Wu, C.Y.; Tsai, Y.P.; Wu, M.Z.; Teng, S.C.; Wu, K.J. Epigenetic reprogramming and post-transcriptional regulation during the epithelial-mesenchymal transition. Trends Genet., 2012, 28(9), 454-463.
[http://dx.doi.org/10.1016/j.tig.2012.05.005] [PMID: 22717049]
[31]
Galbraith, M.D.; Bender, H.; Espinosa, J.M. Therapeutic targeting of transcriptional cyclin-dependent kinases. Transcription, 2019, 10(2), 118-136.
[http://dx.doi.org/10.1080/21541264.2018.1539615] [PMID: 30409083]
[32]
Li, L.; Sun, D.; Li, X.; Yang, B.; Zhang, W. Identification of key circRNAs in non-small cell lung cancer. Am. J. Med. Sci., 2021, 361(1), 98-105.
[http://dx.doi.org/10.1016/j.amjms.2020.08.008] [PMID: 32962802]
[33]
Tian, F.; Yu, C.T.; Ye, W.D.; Wang, Q. Cinnamaldehyde induces cell apoptosis mediated by a novel circular RNA hsa_circ_0043256 in non-small cell lung cancer. Biochem. Biophys. Res. Commun., 2017, 493(3), 1260-1266.
[http://dx.doi.org/10.1016/j.bbrc.2017.09.136] [PMID: 28958934]
[34]
Zhu, L.; Wang, X.; Wang, T.; Zhu, W.; Zhou, X. miR 494 3p promotes the progression of endometrial cancer by regulating the PTEN/PI3K/AKT pathway. Mol. Med. Rep., 2019, 19(1), 581-588.
[PMID: 30431102]
[35]
Lin, H.; Huang, Z.P.; Liu, J.; Qiu, Y.; Tao, Y.P.; Wang, M.C.; Yao, H.; Hou, K.Z.; Gu, F.M.; Xu, X.F. MiR-494-3p promotes PI3K/AKT pathway hyperactivation and human hepatocellular carcinoma progression by targeting PTEN. Sci. Rep., 2018, 8(1), 10461.
[http://dx.doi.org/10.1038/s41598-018-28519-2] [PMID: 29992971]
[36]
Li, X.T.; Wang, H.Z.; Wu, Z.W.; Yang, T.Q.; Zhao, Z.H.; Chen, G.L.; Xie, X.S.; Li, B.; Wei, Y.X.; Huang, Y.L.; Zhou, Y.X.; Du, Z.W. miR-494-3p regulates cellular proliferation, invasion, migration, and apoptosis by pten/akt signaling in human glioblastoma cells. Cell. Mol. Neurobiol., 2015, 35(5), 679-687.
[http://dx.doi.org/10.1007/s10571-015-0163-0] [PMID: 25662849]
[37]
Faversani, A.; Amatori, S.; Augello, C.; Colombo, F.; Porretti, L.; Fanelli, M.; Ferrero, S.; Palleschi, A.; Pelicci, P.G.; Belloni, E.; Ercoli, G.; Degrassi, A.; Baccarin, M.; Altieri, D.C.; Vaira, V.; Bosari, S. miR-494-3p is a novel tumor driver of lung carcinogenesis. Oncotarget, 2017, 8(5), 7231-7247.
[http://dx.doi.org/10.18632/oncotarget.13933] [PMID: 27980227]
[38]
Li, J.; Chen, M.; Yu, B. miR-433 suppresses tumor progression via Smad2 in non-small cell lung cancer. Pathol. Res. Pract., 2019, 215(10), 152591.
[http://dx.doi.org/10.1016/j.prp.2019.152591] [PMID: 31445716]
[39]
Zhang, T.; Jiang, K.; Zhu, X.; Zhao, G.; Wu, H.; Deng, G.; Qiu, C. miR-433 inhibits breast cancer cell growth via the MAPK signaling pathway by targeting Rap1a. Int. J. Biol. Sci., 2018, 14(6), 622-632.
[http://dx.doi.org/10.7150/ijbs.24223] [PMID: 29904277]
[40]
Wang, Z.X.; Zhao, Y.; Yu, Y.; Liu, N.; Zou, Q.X.; Liang, F.H.; Cheng, K.P.; Lin, F.W. Effects of lncRNA SNHG20 on proliferation and apoptosis of non-small cell lung cancer cells through Wnt/β-catenin signaling pathway. Eur. Rev. Med. Pharmacol. Sci., 2020, 24(1), 230-237.
[PMID: 31957836]
[41]
Xin, J.; Zhang, X.K.; Xin, D.Y.; Li, X.F.; Sun, D.K.; Ma, Y.Y.; Tian, L.Q. FUS1 acts as a tumor-suppressor gene by upregulating miR-197 in human glioblastoma. Oncol. Rep., 2015, 34(2), 868-876.
[http://dx.doi.org/10.3892/or.2015.4069] [PMID: 26081814]
[42]
Yang, T.; Li, H.; Chen, T.; Ren, H.; Shi, P.; Chen, M. LncRNA MALAT1 depressed chemo-sensitivity of nsclc cells through directly functioning on mir-197-3p/p120 catenin axis. Mol. Cells, 2019, 42(3), 270-283.
[http://dx.doi.org/10.14348/molcells.2019.2364] [PMID: 30841025]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy