Generic placeholder image

Current Cosmetic Science

Editor-in-Chief

ISSN (Print): 2666-7797
ISSN (Online): 2666-7800

Research Article

Aqueous-based Nanoemulsion Containing (-)-α-bisabolol for Topical Treatment of Skin Burns

Author(s): Edson A.T. Almeida, Ricardo Ferreira-Nunes, Beatriz R.L. Aguiar, Paula E.D. dos Reis, Tais Gratieri, Marcilio Cunha-Filho and Guilherme M. Gelfuso*

Volume 1, Issue 1, 2022

Published on: 09 July, 2021

Article ID: e090721194664 Pages: 7

DOI: 10.2174/2666779701666210709113113

Abstract

Background: α-Bisabolol (BIS) is a sesquiterpene extracted from the chamomile flowers, whose use to topically treat burn skin has been reported. High lipophilicity of BIS, however, is a problem for both skin application and washing.

Objective: The present study aimed to prepare and characterize a stable and safe aqueous-based nanoemulsion to incorporate BIS and favor skin penetration focusing on skin burns' topical treatment.

Methods: Oil-in-water nanoemulsions were obtained from a pseudo-ternary phase diagram. The selected nanoemulsion was characterized (droplet size, PDI, and zeta potential), and the stability was assessed for 60 days at 6ºC and room temperature. The irritability of the formulation was determined by HET-CAM. Skin permeation studies were carried out in vitro intact skin, hot water burn skin, and hot plate burn skin.

Results: The nanoemulsion incorporated 1% (w/w) BIS, presented droplets' size of 14.0±0.8 nm (PDI= 0.13±0.02), the zeta potential of +7.5±1.9 mV, and was physically stable over 60 days. The HET-CAM did not show any irritability process provided by the nanoformulation. In the skin permeation experiments, when compared to an oily control solution of BIS, nanoemulsion increased 3.7-fold penetration of the drug in intact skin, likely because the nanoformulation acted as an absorption drug enhancer. On a hot water burn skin model, the increase in drug penetration was 1.7-fold, and in the hot plate burn skin, it was 2.3-fold.

Conclusion: The nanoemulsion seems to be a promising alternative for skin burns' topical treatment using this natural active.

Keywords: α-bisabolol, burn skin, nanoemulsion, skin permeation, topical drug delivery, chamomile flowers.

Graphical Abstract
[1]
Lee, S.H.; Jeong, S.K.; Ahn, S.K. An update of the defensive barrier function of skin. Yonsei Med. J., 2006, 47(3), 293-306.
[http://dx.doi.org/10.3349/ymj.2006.47.3.293] [PMID: 16807977]
[2]
Negut, I.; Grumezescu, V.; Grumezescu, A.M. Treatment strategies for infected wounds. Molecules, 2018, 23(9), 1-23.
[http://dx.doi.org/10.3390/molecules23092392] [PMID: 30231567]
[3]
Friedstat, J.; Brown, D.A.; Levi, B. Chemical, electrical, and radiation injuries. Clin. Plast. Surg., 2017, 44(3), 657-669.
[http://dx.doi.org/10.1016/j.cps.2017.02.021] [PMID: 28576255]
[4]
Rowan, M.P.; Cancio, L.C.; Elster, E.A.; Burmeister, D.M.; Rose, L.F.; Natesan, S.; Chan, R.K.; Christy, R.J.; Chung, K.K. Burn wound healing and treatment: review and advancements. Crit. Care, 2015, 19, 243.
[http://dx.doi.org/10.1186/s13054-015-0961-2] [PMID: 26067660]
[5]
Lateef, Z.; Stuart, G.; Jones, N.; Mercer, A.; Fleming, S.; Wise, L. The cutaneous inflammatory response to thermal burn in-jury in a Murine model. Int. J. Mol. Sci., 2019, 20(3), 1-17.
[http://dx.doi.org/10.3390/ijms20030538] [PMID: 30696002]
[6]
D’Almeida, A.P.L. Pacheco de Oliveira, M.T.; de Souza, É.T.; de Sá Coutinho, D.; Ciambarella, B.T.; Gomes, C.R.; Terroso, T.; Guterres, S.S.; Pohlmann, A.R.; Silva, P.M.; Martins, M.A.; Bernardi, A. α-bisabolol-loaded lipid-core nanocap-sules reduce lipopolysaccharide-induced pulmonary inflam-mation in mice. Int. J. Nanomedicine, 2017, 12, 4479-4491.
[http://dx.doi.org/10.2147/IJN.S130798] [PMID: 28684908]
[7]
Tomić, M.; Popović, V.; Petrović, S.; Stepanović-Petrović, R.; Micov, A.; Pavlović-Drobac, M.; Couladis, M. Antihyperalge-sic and antiedematous activities of bisabolol-oxides-rich mat-ricaria oil in a rat model of inflammation. Phytother. Res., 2014, 28(5), 759-766.
[http://dx.doi.org/10.1002/ptr.5057] [PMID: 23983133]
[8]
Werner, M.; Herling, M.; Garbe, B.; Theek, C.; Tronnier, H.; Heinrich, U.; Braun, N. Determination of the influence of the antiphlogistic ingredients panthenol and bisabolol on the SPF value in vivo. Skin Pharmacol. Physiol., 2017, 30(6), 284-291.
[http://dx.doi.org/10.1159/000480301] [PMID: 28972949]
[9]
Vila, R.; Santana, A.I.; Pérez-Rosés, R.; Valderrama, A.; Cas-telli, M.V.; Mendonca, S.; Zacchino, S.; Gupta, M.P.; Cañi-gueral, S. Composition and biological activity of the essential oil from leaves of Plinia cerrocampanensis, a new source of α-bisabolol. Bioresour. Technol., 2010, 101(7), 2510-2514.
[http://dx.doi.org/10.1016/j.biortech.2009.11.021] [PMID: 20015638]
[10]
Solovăstru, L.G.; Stîncanu, A.; De Ascentii, A.; Capparé, G.; Mattana, P.; Vâţă D. Randomized, controlled study of inno-vative spray formulation containing ozonated oil and α-bisabolol in the topical treatment of chronic venous leg ulcers. Adv. Skin Wound Care, 2015, 28(9), 406-409.
[http://dx.doi.org/10.1097/01.ASW.0000470155.29821.ed] [PMID: 26280699]
[11]
Kamatou, G.P.P.; Viljoen, A.M. A review of the application and pharmacological properties of α-bisabolol and α-bisabolol-rich oils. J. Am. Oil Chem. Soc., 2010, 87, 1-7.
[http://dx.doi.org/10.1007/s11746-009-1483-3]
[12]
Ferreira-Nunes, R.; Silva, S.M.M.; Souza, P.E.N.; Magalhães, P.O.; Cunha-Filho, M.; Gratieri, T.; Gelfuso, G.M. Incorpora-tion of Eugenia dysenterica extract in microemulsions pre-serves stability, antioxidant effect and provides enhanced cu-taneous permeation. J. Mol. Liq., 2018, 265, 408-415.
[http://dx.doi.org/10.1016/j.molliq.2018.06.023]
[13]
Quintão, W.S.C.; Alencar-Silva, T.; Borin, M.F.; Rezende, K.R.; Albernaz, L.C.; Cunha-Filho, M.; Gratieri, T.; Carvalho, J.L.; Sá-Barreto, L.C.L.; Gelfuso, G.M. Microemulsions in-corporating Brosimum gaudichaudii extracts as a topical treatment for vitiligo: in vitro stimulation of melanocyte mi-gration and pigmentation. J. Mol. Liq., 2019, 294, 111685.
[http://dx.doi.org/10.1016/j.molliq.2019.111685]
[14]
Fernández-Peña, L.; Gutiérrez-Muro, S.; Guzmán, E.; Lucia, A.; Ortega, F.G.; Rubio, R. oil-in-water microemulsions for thymol solubilization colloids and Interfaces, 2019, 3, 64.
[http://dx.doi.org/10.3390/colloids3040064]
[15]
Shakeel, F.; Baboota, S.; Ahuja, A.; Ali, J.; Shafiq, S. Skin permeation mechanism and bioavailability enhancement of celecoxib from transdermally applied nanoemulsion. J. Nanobiotechnology, 2008, 6, 8.
[http://dx.doi.org/10.1186/1477-3155-6-8] [PMID: 18613981]
[16]
Barbalho, G.N.; Matos, B.N.; Santo, M.E.L.E.; Silva, V.R.C.; Chaves, S.B.; Gelfuso, G.M.; Cunha-Filho, M.; Gratieri, T. In vitro skin model for the evaluation of burn healing drug deliv-ery systems. J. Drug Deliv. Sci. Technol., 2021, 62, 102330.
[http://dx.doi.org/10.1016/j.jddst.2021.102330]
[17]
Luepke, N.P.; Kemper, F.H. The HET-CAM test: An alterna-tive to the draize eye test. Food Chem. Toxicol., 1986, 24, 495-496.
[http://dx.doi.org/10.1016/0278-6915(86)90099-2]
[18]
Vinardell, M.P.; Macián, M. Comparative study of the HET-CAM test and the Draize eye test for assessment of irritancy potential. Toxicol. In Vitro, 1994, 8(3), 467-470.
[http://dx.doi.org/10.1016/0887-2333(94)90170-8] [PMID: 20692940]
[19]
São Pedro, A.; Detoni, C.; Ferreira, D.; Cabral-Albuquerque, E.; Sarmento, B. Validation of a high-performance liquid chromatography method for the determination of (-)-α-bisabolol from particulate systems. Biomed. Chromatogr., 2009, 23(9), 966-972.
[http://dx.doi.org/10.1002/bmc.1208] [PMID: 19353738]
[20]
ICH. International Conference on Harmonization Guid Valid Anal Proced, 2006, 2, pp. 1-15.
[21]
Hong, I.K.; Kim, S.I.; Lee, S.B. Effects of HLB value on oil-in-water emulsions: droplet size, rheological behavior, zeta potential and creaming index. J. Ind. Eng. Chem., 2018, 67, 123-131.
[http://dx.doi.org/10.1016/j.jiec.2018.06.022]
[22]
Lucia, A.; Guzmán, E. Emulsions containing essential oils, their components or volatile semiochemicals as promising tools for insect pest and pathogen management. Adv. Colloid Interface Sci., 2021, 287, 102330.
[http://dx.doi.org/10.1016/j.cis.2020.102330] [PMID: 33302055]
[23]
Mahdi, S.J.; He, Y.; Bhandari, B. Nanoemulsion production by sonication and microfluidization - a comparison. Int. J. Food Prop., 2006, 9, 475-485.
[http://dx.doi.org/10.1080/10942910600596464]
[24]
Lutz-Bueno, V.; Isabettini, S.; Walker, F.; Kuster, S.; Liebi, M.; Fischer, P. Ionic micelles and aromatic additives: a closer look at the molecular packing parameter. Phys. Chem. Chem. Phys., 2017, 19(32), 21869-21877.
[http://dx.doi.org/10.1039/C7CP03891G] [PMID: 28787055]
[25]
Kulkarni, C.V. Lipid self-assemblies and nanostructured emulsions for cosmetis formulations. Cosmetics, 2016, 3, 1-15.
[http://dx.doi.org/10.3390/cosmetics3040037]
[26]
Neto, A.R.; Miguel, A.M.R.O.; Mourad, A.L.; Henriques, E.A.; Alves, R.M.V. Environmental effect on sunflower oil quality. Crop Breed. Appl. Biotechnol., 2016, 16, 197-204.
[http://dx.doi.org/10.1590/1984-70332016v16n3a30]
[27]
Moghimipour, E.; Salimi, A.; Eftekhari, S. Design and charac-terization of microemulsion systems for naproxen. Adv. Pharm. Bull., 2013, 3(1), 63-71.
[PMID: 24312814]
[28]
Roland, I.; Piel, G.; Delattre, L.; Evrard, B. Systematic charac-terization of oil-in-water emulsions for formulation design. Int. J. Pharm., 2003, 263(1-2), 85-94.
[http://dx.doi.org/10.1016/S0378-5173(03)00364-8] [PMID: 12954183]
[29]
Chibowski, E.; Szczes, A. Zeta potential and surface charge of DPPC and DOPC lipossomes in the presence of PLC enzyme. Adsorption, 2016, 22, 755-765.
[http://dx.doi.org/10.1007/s10450-016-9767-z]
[30]
Oliveira, A.C.S.; Oliveira, P.M.; Cunha-Filho, M.; Gratieri, T.; Gelfuso, G.M. Latanoprost loaded in polymeric nanocapsules for effective topical treatment of alopecia. AAPS PharmSciTech, 2020, 21(8), 305.
[http://dx.doi.org/10.1208/s12249-020-01863-1] [PMID: 33151434]
[31]
Pereira, M.N.; Tolentino, S.; Pires, F.Q.; Anjos, J.L.V.; Alonso, A.; Gratieri, T.; Cunha-Filho, M.; Gelfuso, G.M. Nanostructured lipid carriers for hair follicle-targeted delivery of clindamycin and rifampicin to hidradenitis suppurativa treatment. Colloids Surf. B Biointerfaces, 2021, 197, 111448.
[http://dx.doi.org/10.1016/j.colsurfb.2020.111448] [PMID: 33181388]
[32]
Bernardi, D.S.; Pereira, T.A.; Maciel, N.R.; Bortoloto, J.; Viera, G.S.; Oliveira, G.C.; Rocha-Filho, P.A. Formation and stability of oil-in-water nanoemulsions containing rice bran oil: in vitro and in vivo assessments. J. Nanobiotechnology, 2011, 9, 44.
[http://dx.doi.org/10.1186/1477-3155-9-44] [PMID: 21952107]
[33]
Simonetti, L.D.D.; Gelfuso, G.M.; Barbosa, J.C.R.; Lopez, R.F.V. Assessment of the percutaneous penetration of cispla-tin: the effect of monoolein and the drug skin penetration pathway. Eur. J. Pharm. Biopharm., 2009, 73(1), 90-94.
[http://dx.doi.org/10.1016/j.ejpb.2009.04.016] [PMID: 19442727]
[34]
Wang, J.J.; Hung, C.F.; Yeh, C.H.; Fang, J.Y. The release and analgesic activities of morphine and its ester prodrug, mor-phine propionate, formulated by water-in-oil nanoemulsions. J. Drug Target., 2008, 16(4), 294-301.
[http://dx.doi.org/10.1080/10611860801900090] [PMID: 18446608]

© 2024 Bentham Science Publishers | Privacy Policy