Generic placeholder image

Current Chinese Science


ISSN (Print): 2210-2981
ISSN (Online): 2210-2914

Research Article Section: Bioinformatics

Target Gene Identification and sgRNA Design for Waterlogging Tolerance in Foxtail Millet via CRISPR-Based Transcriptional Activation

Author(s): Siti N.A. Abdullah*, Sean Mayes and Mahdi Moradpour

Volume 1, Issue 5, 2021

Published on: 08 July, 2021

Page: [523 - 533] Pages: 11

DOI: 10.2174/2210298101666210709104258


Background: CRISPR activation (CRISPRa) uses non-functional Cas9 endonuclease (dCas9) but retains the genome targeting ability through its single guide RNAs (sgRNAs). CRISPRa is widely used as a gene activation system exploiting its ability in recruiting various transcriptional activation domains (TADs) for enhancing expression of the target gene(s). Drought tolerant and resource-efficient crops like millets have the potential for mitigating effects of climate change and for enhancing food security.

Objective: This study aimed to use the Setaria italica (foxtail millet) genome sequence in the identification of a target gene and the subsequent generation of sgRNAs for use in CRISPRa for conferring water logging tolerance that will benefit the future expansion of its cultivation area.

Methods and Results: Leveraging existing RNA-seq data and information on functional studies in model plants and from other cereal species, maize and barley, have enabled the identification of candidate ERFVII from the foxtail millet genome sequence in the attempt to engineer water logging tolerance. The study provides a step-by-step example for using publicly accessible databases and bioinformatics tools from NCBI and Phytozome for the identification and characterization of the ortholog from Setaria italica. Soft berry was used for promoter annotation to obtain the transcription start site (TSS). Subsequently, CRISP-P 2.0 design tools were employed to generate and select a few efficient sgRNAs for CRISPRa that minimize potentially deleterious off-target binding.

Conclusion: The study is a useful example of how to advance in genomics research including the revolutionizing CRISPR technology in Setaria italica, which can be adopted in other plant species, through the utilization of the available genome sequence.

Keywords: CRISPR/dCas9, CRISPRa, sgRNA, Setaria italica, water logging tolerance, ERFVII.

Graphical Abstract

© 2024 Bentham Science Publishers | Privacy Policy