Generic placeholder image

Pharmaceutical Nanotechnology

Editor-in-Chief

ISSN (Print): 2211-7385
ISSN (Online): 2211-7393

Review Article

Formulation Development of Nifedipine through Nanotechnology: A Comprehensive Review

Author(s): Sabarni Sarker* and Md. Rajdoula Rafe

Volume 9, Issue 4, 2021

Published on: 07 July, 2021

Page: [262 - 270] Pages: 9

DOI: 10.2174/2211738509666210707162155

Price: $65

Abstract

Background: The therapeutic use of nifedipine, a dihydropyridine calcium channel blocker, is limited due to its poor solubility profile, rapid onset of its action, stability profile and short biological half-life. Many formulation techniques have been applied to improve physicochemical and pharmacological properties of the drug.

Objective: The objective of the study is to summarize the nanotechnology approaches made to improve the therapeutic and pharmacokinetic properties of nifedipine till 2020.

Methods: The searches for the related articles were done up to 28 March 2020 with the specific keywords in Pubmed and Google Scholar excluding review articles.

Results: The discussion showed that among the nano-carriers used to improve the pharmacological property of the drug, lipid nanoparticles, polymeric nanoparticles, crystalline nanoparticles, and nano-emulsions were prevalent. Nanotechnology has been efficient to improve the solubility profile of nifedipine, achieve sustained and controlled release by achieving targeted and local delivery and transdermal drug delivery. Exploiting nano-formulations, new windows of therapeutic applications have been achieved. Finally, micelle media, polymeric nanoparticles, and microcrystalline nanoparticles have been used to develop a photostable formulation.

Conclusion: The technological innovations in the field of nanomedicine have paved many ways for the delivery of nifedipine and such sparingly water-soluble compounds.

Keywords: Nifedipine, nanoparticles, nanocarrier, delivery system, hydrophobic, formulation development.

Graphical Abstract
[1]
Ali SL. Nifedpine. Analytical profiles of drug substances. United States: Academic Press 1990; 18: pp. 221-88.
[2]
Bittar N. Usefulness of nifedipine for myocardial ischemia and the nifedipine gastrointestinal therapeutic system. Am J Cardiol 1989; 64(11): 31F-4F.
[http://dx.doi.org/10.1016/0002-9149(89)90743-1] [PMID: 2675587]
[3]
Raemsch KD, Sommer JO. Pharmacokinetics and metabolism of nifedipine. Hypertension 1983; 5(4_pt_2): II18.
[http://dx.doi.org/10.1161/01.HYP.5.4_Pt_2.II18]
[4]
Sorkin EM, Clissold SP, Brogden RN. Nifedipine. A review of its pharmacodynamic and pharmacokinetic properties, and therapeutic efficacy, in ischaemic heart disease, hypertension and related cardiovascular disorders. Drugs 1985; 30(3): 182-274.
[http://dx.doi.org/10.2165/00003495-198530030-00002] [PMID: 2412780]
[5]
Gambaro V, Caligara M, Pesce E. Stability of nifedipine drops exposed to light during conditions of therapeutic use. Boll Chim Farm 1985; 124: 13-8.
[PMID: 4015863]
[6]
Duhm B, Maul W, Medenwald H, Patzschke K, Wegner LA. Tierexperimentelle untersuchungen zur pharmakokinetik und biotransformation von radioaktiv markiertem 4-(2′-nitrophenyl)- 2,6-dimethyl-1,4-dihydropyridin-3,5-dicarbonsäuredimethylester. Arzneimittelforschung 1972; 22(1): 42-53.
[PMID: 5066997]
[7]
Pabst G, Lutz D, Molz KH, Dahmen W, Jaeger H. Pharmacokinetics and bioavailability of three different galenic nifedipine preparations. Arzneimittelforschung 1986; 36(2): 256-60.
[PMID: 3964332]
[8]
Lin CW, Cham TM. Effect of particle size on the available surface area of nifedipine from nifedipine-polyethylene glycol 6000 solid dispersions. Int J Pharm 1996; 127(2): 261-72.
[http://dx.doi.org/10.1016/0378-5173(95)04245-8]
[9]
Chutimaworapan S, Ritthidej GC, Yonemochi E, Oguchi T, Yamamoto K. Effect of water-soluble carriers on dissolution characteristics of nifedipine solid dispersions. Drug Dev Ind Pharm 2000; 26(11): 1141-50.
[http://dx.doi.org/10.1081/DDC-100100985] [PMID: 11068687]
[10]
Vippagunta SR, Maul KA, Tallavajhala S, Grant DJ. Solid-state characterization of nifedipine solid dispersions. Int J Pharm 2002; 236(1-2): 111-23.
[http://dx.doi.org/10.1016/S0378-5173(02)00019-4] [PMID: 11891075]
[11]
Friedrich H, Nada A, Bodmeier R. Solid state and dissolution rate characterization of co-ground mixtures of nifedipine and hydrophilic carriers. Drug Dev Ind Pharm 2005; 31(8): 719-28.
[http://dx.doi.org/10.1080/03639040500216097] [PMID: 16221606]
[12]
Sugimoto I, Kuchiki A, Nakagawa H. Stability of Nifedipine-polyvinylpyrrolidone coprecipitate. Chem Pharm Bull (Tokyo) 1981; 29(6): 1715-23.
[http://dx.doi.org/10.1248/cpb.29.1715] [PMID: 7296722]
[13]
Mura P, Faucci MT, Parrini PL. Effects of grinding with microcrystalline cellulose and cyclodextrins on the ketoprofen physicochemical properties. Drug Dev Ind Pharm 2001; 27(2): 119-28.
[http://dx.doi.org/10.1081/DDC-100000478] [PMID: 11266223]
[14]
Flenady V, Wojcieszek AM, Papatsonis DN, et al. Calcium channel blockers for inhibiting preterm labour and birth. Cochrane Database Syst Rev 2014; 2014(6): CD002255.
[15]
Thompson AE, Pope JE. Calcium channel blockers for primary Raynaud’s phenomenon: a meta-analysis. Rheumatology (Oxford) 2005; 44(2): 145-50.
[http://dx.doi.org/10.1093/rheumatology/keh390] [PMID: 15546967]
[16]
Golfam F, Golfam P, Khalaj A, Sayed MS. The effect of topical nifedipine in treatment of chronic anal fissure. Acta Med Iran 2010; 48(5): 295-9.
[17]
Peters R, Booth A, Peters J. A systematic review of calcium channel blocker use and cognitive decline/dementia in the elderly. J Hypertens 2014; 32(10): 1945-57.
[http://dx.doi.org/10.1097/HJH.0000000000000273] [PMID: 25068540]
[18]
Polese A, Fiorentini C, Olivari MT, Guazzi MD. Clinical use of a calcium antagonistic agent (nifedipine) in acute pulmonary edema. Am J Med 1979; 66(5): 825-30.
[http://dx.doi.org/10.1016/0002-9343(79)91123-9] [PMID: 443258]
[19]
Myers MG. Dihydropyridine calcium antagonists and the trough: peak ratio: focus on adverse effects. J Hypertens Suppl 1994; 12(8): S73-6.
[20]
Berson JA, Brown E. Studies on Dihydropyridines. II. The Photochemical Disproportionation of 4-(2′-Nitrophenyl)-1, 4-dihydropyridines1. J Am Chem Soc 1955; 77(2): 447-50.
[http://dx.doi.org/10.1021/ja01607a067]
[21]
Greenhill JV, McLelland MA. Photodecomposition of drugs. Prog Med Chem 1990; 27: 51-121.
[http://dx.doi.org/10.1016/S0079-6468(08)70289-3] [PMID: 2217829]
[22]
Emerich DF, Thanos CG. Targeted nanoparticle-based drug delivery and diagnosis. J Drug Target 2007; 15(3): 163-83.
[http://dx.doi.org/10.1080/10611860701231810] [PMID: 17454354]
[23]
Groneberg DA, Giersig M, Welte T, Pison U. Nanoparticle-based diagnosis and therapy. Curr Drug Targets 2006; 7(6): 643-8.
[http://dx.doi.org/10.2174/138945006777435245] [PMID: 16787165]
[24]
Zhang L, Gu FX, Chan JM, Wang AZ, Langer RS, Farokhzad OC. Nanoparticles in medicine: therapeutic applications and developments. Clin Pharmacol Ther 2008; 83(5): 761-9.
[http://dx.doi.org/10.1038/sj.clpt.6100400] [PMID: 17957183]
[25]
Vyas SP, Singh R, Dimitrijevic D. Development and characterization of nifedipine lipospheres. Pharmazie 1997; 52(5): 403-4.
[PMID: 9183794]
[26]
Takatsuka T, Endo T, Jianguo Y, Yuminoki K, Hashimoto N. Nanosizing of poorly water soluble compounds using rotation/revolution mixer. Chem Pharm Bull (Tokyo) 2009; 57(10): 1061-7.
[http://dx.doi.org/10.1248/cpb.57.1061] [PMID: 19801859]
[27]
Patel PJ, Gajera BY, Dave RH. A quality-by-design study to develop Nifedipine nanosuspension: examining the relative impact of formulation variables, wet media milling process parameters and excipient variability on drug product quality attributes. Drug Dev Ind Pharm 2018; 44(12): 1942-52.
[http://dx.doi.org/10.1080/03639045.2018.1503296] [PMID: 30027778]
[28]
Fujii H, Watano S. Development of universal formulation with superior re-dispersion using nanocrystal approach with simultaneous identification of api physicochemical properties. Chem Pharm Bull (Tokyo) 2019; 67(10): 1050-60.
[http://dx.doi.org/10.1248/cpb.c19-00092] [PMID: 31582625]
[29]
Mengesha AE, Wydra RJ, Hilt JZ, Bummer PM. Binary blend of glyceryl monooleate and glyceryl monostearate for magnetically induced thermo-responsive local drug delivery system. Pharm Res 2013; 30(12): 3214-24.
[http://dx.doi.org/10.1007/s11095-013-1230-1] [PMID: 24158728]
[30]
Cavalli R, Aquilano D, Carlotti ME, Gasco MR. Study by X-ray powder diffraction and differential scanning calorimetry of two model drugs, phenothiazine and nifedipine, incorporated into lipid nanoparticles. Eur J Pharm Biopharm 1995; 41(5): 329-33.
[31]
Cavalli R, Peira E, Caputo O, Gasco MR. Solid lipid nanoparticles as carriers of hydrocortisone and progesterone complexes with β- cyclodextrins. Int J Pharm 1999; 182(1): 59-69.
[http://dx.doi.org/10.1016/S0378-5173(99)00066-6] [PMID: 10332075]
[32]
Kamiya S, Yamada M, Kurita T, Miyagishima A, Arakawa M, Sonobe T. Preparation and stabilization of nifedipine lipid nanoparticles. Int J Pharm 2008; 354(1-2): 242-7.
[http://dx.doi.org/10.1016/j.ijpharm.2007.10.049] [PMID: 18082344]
[33]
Saito M, Ugajin T, Nozawa Y, Sadzuka Y, Miyagishima A, Sonobe T. Preparation and dissolution characteristics of griseofulvin solid dispersions with saccharides. Int J Pharm 2002; 249(1-2): 71-9.
[http://dx.doi.org/10.1016/S0378-5173(02)00455-6] [PMID: 12433435]
[34]
Ohshima H, Miyagishima A, Kurita T, et al. Freeze-dried nifedipine-lipid nanoparticles with long-term nano-dispersion stability after reconstitution. Int J Pharm 2009; 377(1-2): 180-4.
[http://dx.doi.org/10.1016/j.ijpharm.2009.05.004] [PMID: 19446623]
[35]
Barman RK, Iwao Y, Funakoshi Y, et al. Development of highly stable nifedipine solid-lipid nanoparticles. Chem Pharm Bull (Tokyo) 2014; 62(5): 399-406.
[http://dx.doi.org/10.1248/cpb.c13-00684] [PMID: 24789922]
[36]
Matsuo S, Higashi K, Moribe K, et al. Combination of roll grinding and high-pressure homogenization can prepare stable bicelles for drug delivery. Nanomaterials (Basel) 2018; 8(12): 998.
[http://dx.doi.org/10.3390/nano8120998] [PMID: 30513913]
[37]
Funakoshi Y, Iwao Y, Noguchi S, Itai S. Lipid nanoparticles with no surfactant improve oral absorption rate of poorly water-soluble drug. Int J Pharm 2013; 451(1-2): 92-4.
[http://dx.doi.org/10.1016/j.ijpharm.2013.04.050] [PMID: 23624178]
[38]
Barman RK, Iwao Y, Islam MR, et al. In vivo pharmacokinetic and hemocompatible evaluation of lyophilization induced nifedipine solid-lipid nanoparticle. Pharmacol Pharm 2014; 05(05): 455-61.
[http://dx.doi.org/10.4236/pp.2014.55055]
[39]
Barman RK, Iwao Y, Noguchi S, Wahed MI, Itai S. Improving flow property of nifedipine loaded solid-lipid nanoparticles by means of silica for oral solid dosage form. Pharmacol Pharm 2014; 5(12): 1119.
[http://dx.doi.org/10.4236/pp.2014.512122]
[40]
Hecq J, Deleers M, Fanara D, Vranckx H, Amighi K. Preparation and characterization of nanocrystals for solubility and dissolution rate enhancement of nifedipine. Int J Pharm 2005; 299(1-2): 167-77.
[http://dx.doi.org/10.1016/j.ijpharm.2005.05.014] [PMID: 15996838]
[41]
Ondriaš K, Mišík V, Gergelˇ D, Staško A. Lipid peroxidation of phosphatidylcholine liposomes depressed by the calcium channel blockers nifedipine and verapamil and by the antiarrhythmic-antihypoxic drug stobadine. Biochimic Biophys Acta 1989; 1003(3): 238-45.
[http://dx.doi.org/10.1016/0005-2760(89)90228-2] [PMID: 2645503]
[42]
Ondriaš K, Misík V, Staško A, Gergel D, Hromadová M. Comparison of antioxidant properties of nifedipine and illuminated nifedipine with nitroso spin traps in low density lipoproteins and phosphatidylcholine liposomes. Biochim Biophys Acta 1994; 1211(1): 114-9.
[http://dx.doi.org/10.1016/0005-2760(94)90145-7] [PMID: 8123675]
[43]
Vyas SP, Goswami SK, Singh R. Liposomes based nasal delivery system of nifedipine: Development and characterization. Int J Pharm 1995; 118(1): 23-30.
[http://dx.doi.org/10.1016/0378-5173(94)00296-H]
[44]
Paul JW, Hua S, Ilicic M, et al. Drug delivery to the human and mouse uterus using immunoliposomes targeted to the oxytocin receptor. Am J Obstet Gynecol 2017; 216(3): 283.e1-283.e14.
[http://dx.doi.org/10.1016/j.ajog.2016.08.027] [PMID: 27567564]
[45]
Franzé S, Marengo A, Stella B, Minghetti P, Arpicco S, Cilurzo F. Hyaluronan-decorated liposomes as drug delivery systems for cutaneous administration. Int J Pharm 2018; 535(1-2): 333-9.
[http://dx.doi.org/10.1016/j.ijpharm.2017.11.028] [PMID: 29146539]
[46]
Fritz HF, Ortiz AC, Velaga SP, Morales JO. Preparation of a novel lipid-core micelle using a low-energy emulsification method. Drug Deliv Transl Res 2018; 8(6): 1807-14.
[http://dx.doi.org/10.1007/s13346-018-0521-9] [PMID: 29663150]
[47]
Sarker S, Ali MA, Barman RK, et al. Preparation and antidiabetic effect of orally administered nifedipine-loaded solid lipid nanoparticles in fructose-induced diabetic rats. Pharmacol Pharm 2018; 9(10): 457.
[http://dx.doi.org/10.4236/pp.2018.910035]
[48]
Franzè S, Musazzi UM, Minghetti P, Cilurzo F. Drug-in-micelles-in-liposomes (DiMiL) systems as a novel approach to prevent drug leakage from deformable liposomes. Eur J Pharm Sci 2019; 130: 27-35.
[http://dx.doi.org/10.1016/j.ejps.2019.01.013] [PMID: 30654112]
[49]
Bi Y, Lv B, Li L, et al. A liposomal formulation for improving solubility and oral bioavailability of nifedipine. Molecules 2020; 25(2): 338.
[http://dx.doi.org/10.3390/molecules25020338] [PMID: 31947655]
[50]
Yamada T, Saito N, Imai T, Otagiri M. Effect of grinding with hydroxypropyl cellulose on the dissolution and particle size of a poorly water-soluble drug. Chem Pharm Bull (Tokyo) 1999; 47(9): 1311-3.
[http://dx.doi.org/10.1248/cpb.47.1311] [PMID: 10517010]
[51]
Itoh K, Pongpeerapat A, Tozuka Y, Oguchi T, Yamamoto K. Nanoparticle formation of poorly water-soluble drugs from ternary ground mixtures with PVP and SDS. Chem Pharm Bull (Tokyo) 2003; 51(2): 171-4.
[http://dx.doi.org/10.1248/cpb.51.171] [PMID: 12576650]
[52]
Yang YH, Ding PT. Study on the preparation of nifedipine-loaded oral copolymer micelles and its pharmacokinetics in rats. Cell Biochem Biophys 2015; 71(1): 155-60.
[http://dx.doi.org/10.1007/s12013-014-0178-z] [PMID: 25151141]
[53]
Chinh NT, Trang NT, Giang NV, et al. In vitro nifedipine release from poly (lactic acid)/chitosan nanoparticles loaded with nifedipine. J Appl Polym Sci 2016; 133(16)
[http://dx.doi.org/10.1002/app.43330]
[54]
Chinh NT, Trang NTT, Mai TT, et al. Polylactic acid/chitosan nanoparticles loading Nifedipine: Characterization findings and in vivo investigation in animal. J Nanosci Nanotechnol 2018; 18(4): 2294-303.
[http://dx.doi.org/10.1166/jnn.2018.14537] [PMID: 29442895]
[55]
Jeong YI, Sun HS, Shim YH, et al. Nifedipine encapsulated core-shell type nanoparticles based on poly(γ-benzyl L-glutamate)/poly(ethylene glycol) diblock copolymers. J Microencapsul 2004; 21(4): 445-53.
[http://dx.doi.org/10.1080/02652040410001729241] [PMID: 15513750]
[56]
Jog R, Unachukwu K, Burgess DJ. Formulation design space for stable, pH sensitive crystalline nifedipine nanoparticles. Int J Pharm 2016; 514(1): 81-92.
[http://dx.doi.org/10.1016/j.ijpharm.2016.08.039] [PMID: 27863686]
[57]
Zhao Y, Wang Y, Ran F, et al. A comparison between sphere and rod nanoparticles regarding their in vivo biological behavior and pharmacokinetics. Sci Rep 2017; 7(1): 4131.
[http://dx.doi.org/10.1038/s41598-017-03834-2] [PMID: 28646143]
[58]
Devarakonda B, Hill RA, de Villiers MM. The effect of PAMAM dendrimer generation size and surface functional group on the aqueous solubility of nifedipine. Int J Pharm 2004; 284(1-2): 133-40.
[http://dx.doi.org/10.1016/j.ijpharm.2004.07.006] [PMID: 15454304]
[59]
Devarakonda B, Li N, de Villiers MM. Effect of polyamidoamine (PAMAM) dendrimers on the in vitro release of water-insoluble nifedipine from aqueous gels. AAPS PharmSciTech 2005; 6(3): E504-12.
[http://dx.doi.org/10.1208/pt060363] [PMID: 16354011]
[60]
Date AA, Desai N, Dixit R, Nagarsenker M. Self-nanoemulsifying drug delivery systems: Formulation insights, applications and advances. Nanomedicine (Lond) 2010; 5(10): 1595-616.
[http://dx.doi.org/10.2217/nnm.10.126] [PMID: 21143036]
[61]
Weerapol Y, Limmatvapirat S, Kumpugdee-Vollrath M, Sriamornsak P. Spontaneous emulsification of nifedipine-loaded self-nanoemulsifying drug delivery system. AAPS PharmSciTech 2015; 16(2): 435-43.
[http://dx.doi.org/10.1208/s12249-014-0238-0] [PMID: 25367002]
[62]
Kim YI, Fluckiger L, Hoffman M, Lartaud-Idjouadiene I, Atkinson J, Maincent P. The antihypertensive effect of orally administered nifedipine-loaded nanoparticles in spontaneously hypertensive rats. Br J Pharmacol 1997; 120(3): 399-404.
[http://dx.doi.org/10.1038/sj.bjp.0700910] [PMID: 9031742]
[63]
Fessi HP, Puisieux F, Devissaguet JP, Ammoury N, Benita S. Nanocapsule formation by interfacial polymer deposition following solvent displacement. Int J Pharm 1989; 55(1): R1-4.
[http://dx.doi.org/10.1016/0378-5173(89)90281-0]
[64]
Hubert B, Atkinson J, Guerret M, Hoffman M, Devissaguet JP, Maincent P. The preparation and acute antihypertensive effects of a nanocapsular form of darodipine, a dihydropyridine calcium entry blocker. Pharm Res 1991; 8(6): 734-8.
[http://dx.doi.org/10.1023/A:1015897900363] [PMID: 2062803]
[65]
Ogawa Y. Monthly microcapsule-depot form of lhrh agonist, leuprorelin acetate (enantone depot): Formation and pharmacokinetics in animals. Eur J Hosp Pharm Sci Pract 1992; 2: 120.
[66]
Maincent P, Fluckiger L, Leroueil M, Hoffman M, Atkinson J. Interest of colloidal carriers as vectors of antihypertensive dihydropyridine calcium-entry blockers to decrease blood pressure in hypertensive rats. Proc Int Symp Control Release Bioact Mater 1994; 21: 33-4.
[67]
Granada A, Tagliari MP, Soldi V, et al. Nifedipine-loaded polymeric nanocapsules: Validation of a stability-indicating HPLC method to evaluate the drug entrapment efficiency and in vitro release profiles. J AOAC Int 2013; 96(2): 276-81.
[http://dx.doi.org/10.5740/jaoacint.11-050] [PMID: 23767350]
[68]
Yang YQ, Lin WJ, Zhao B, Wen XF, Guo XD, Zhang LJ. Synthesis and physicochemical characterization of amphiphilic triblock copolymer brush containing pH-sensitive linkage for oral drug delivery. Langmuir 2012; 28(21): 8251-9.
[http://dx.doi.org/10.1021/la301099q] [PMID: 22568600]
[69]
Ozakar E, Cetin M, Ates O, Hacimuftuoglu A. Nifedipine-loaded polymeric nanoparticles: Preparation and in vitro characterization. Pak J Pharm Sci 2019; 32(2): 547-54.
[PMID: 31081765]
[70]
Škalko N, Brandl M, Bećirević-Laćan M, Filipović-Grčić J, Jalšenjak I. Liposomes with nifedipine and nifedipine-cyclodextrin complex: calorimetrical and plasma stability comparison. Eur J Pharm Sci 1996; 4(6): 359-66.
[http://dx.doi.org/10.1016/S0928-0987(96)00180-7]
[71]
Misík V, Stasko A, Gergeĺ D, Ondrias K. Spin-trapping and antioxidant properties of illuminated and nonilluminated nifedipine and nimodipine in heart homogenate and model system. Mol Pharmacol 1991; 40(3): 435-9.
[PMID: 1654516]
[72]
Sánchez S, Bartrons R, Rodríguez L, González P, Planas ME. Protective effect of nifedipine against carrageenan-induced inflammation. Pharmacology 1998; 56(3): 131-6.
[http://dx.doi.org/10.1159/000028190] [PMID: 9532612]
[73]
Plumley C, Gorman EM, El-Gendy N, Bybee CR, Munson EJ, Berkland C. Nifedipine nanoparticle agglomeration as a dry powder aerosol formulation strategy. Int J Pharm 2009; 369(1-2): 136-43.
[http://dx.doi.org/10.1016/j.ijpharm.2008.10.016] [PMID: 19015016]
[74]
Lee S, Han D, Kang HG, et al. Intravenous sustained-release nifedipine ameliorates nonalcoholic fatty liver disease by restoring autophagic clearance. Biomaterials 2019; 197: 1-11.
[http://dx.doi.org/10.1016/j.biomaterials.2019.01.008] [PMID: 30623792]
[75]
Liu J, Xu P, Collins C, et al. HIV-1 Tat protein increases microglial outward K(+) current and resultant neurotoxic activity. PLoS One 2013; 8(5): e64904.
[http://dx.doi.org/10.1371/journal.pone.0064904] [PMID: 23738010]
[76]
Rai A, Jain A, Jain A, et al. Targeted SLNs for management of HIV-1 associated dementia. Drug Dev Ind Pharm 2015; 41(8): 1321-7.
[http://dx.doi.org/10.3109/03639045.2014.948453] [PMID: 25113430]
[77]
Hua S, Chang HI, Davies NM, Cabot PJ. Targeting of ICAM-1-directed immunoliposomes specifically to activated endothelial cells with low cellular uptake: use of an optimized procedure for the coupling of low concentrations of antibody to liposomes. J Liposome Res 2011; 21(2): 95-105.
[http://dx.doi.org/10.3109/08982101003754401] [PMID: 20429814]
[78]
Ennis H, Hughes M, Anderson ME, Wilkinson J, Herrick AL. Calcium channel blockers for primary raynaud's phenomenon. Cochrane database of systematic reviews 2016; 25(2): CD002069.
[http://dx.doi.org/10.1002/14651858.CD002069.pub5]
[79]
Yasam VR, Jakki SL, Natarajan J, et al. A novel vesicular transdermal delivery of nifedipine - preparation, characterization and in vitro/in-vivo evaluation. Drug Deliv 2016; 23(2): 619-30.
[http://dx.doi.org/10.3109/10717544.2014.931484] [PMID: 25005581]
[80]
Franzé S, Donadoni G, Podestà A, et al. Tuning the extent and depth of penetration of flexible liposomes in human skin. Mol Pharm 2017; 14(6): 1998-2009.
[http://dx.doi.org/10.1021/acs.molpharmaceut.7b00099] [PMID: 28409629]
[81]
Mishra KK, Kaur CD, Verma S, et al. Transethosomes and nanoethosomes: Recent approach on transdermal drug delivery system. Nanomedicine (Lond) 2019; 2: 33-54.
[82]
Bnyan R, Khan I, Ehtezazi T, et al. Surfactant effects on lipid-based vesicles properties. J Pharm Sci 2018; 107(5): 1237-46.
[http://dx.doi.org/10.1016/j.xphs.2018.01.005] [PMID: 29336980]
[83]
Hussain A, Singh S, Sharma D, Webster TJ, Shafaat K, Faruk A. Elastic liposomes as novel carriers: recent advances in drug delivery. Int J Nanomedicine 2017; 12: 5087-108.
[http://dx.doi.org/10.2147/IJN.S138267] [PMID: 28761343]
[84]
Grundy JS, Kherani R, Foster RT. Photostability determination of commercially available nifedipine oral dosage formulations. J Pharm Biomed Anal 1994; 12(12): 1529-35.
[http://dx.doi.org/10.1016/0731-7085(94)00100-6] [PMID: 7696377]
[85]
Gil-Agustí MT, Carda-Broch S, Monferrer-Pons L, Esteve-Romero JS. Photostability studies for micellar liquid chromatographic determination of nifedipine in serum and urine samples. Biomed Chromatogr 2006; 20(2): 154-60.
[http://dx.doi.org/10.1002/bmc.541] [PMID: 16035137]
[86]
Li N, Kommireddy DS, Lvov Y, Liebenberg W, Tiedt LR, De Villiers MM. Nanoparticle multilayers: surface modification of photosensitive drug microparticles for increased stability and in vitro bioavailability. J Nanosci Nanotechnol 2006; 6(9-10): 3252-60.
[http://dx.doi.org/10.1166/jnn.2006.421] [PMID: 17048544]
[87]
Tagliari MP, Granada A, Silva MA, et al. Development of oral nifedipine-loaded polymeric nanocapsules: physicochemical characterisation, photostability studies, in vitro and in vivo evaluation. Quim Nova 2015; 38(6): 781-6.
[http://dx.doi.org/10.5935/0100-4042.20150076]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy