Generic placeholder image

Current Analytical Chemistry

Editor-in-Chief

ISSN (Print): 1573-4110
ISSN (Online): 1875-6727

Review Article

Soft, Disruptive and Wearable Electrochemical Biosensors

Author(s): Quanxia Lyu, Shu Gong, Jennifer M. Dyson and Wenlong Cheng*

Volume 18, Issue 6, 2022

Published on: 06 July, 2021

Page: [689 - 704] Pages: 16

DOI: 10.2174/1573411017666210706154521

Price: $65

Abstract

Background: Soft wearable electrochemical biosensors are attracting increasing attention over the past several years due to their potential for non-invasive personalized health monitoring in real-time and in-situ.

Objective: Herein, we cover the design, fabrication, and applications of soft electrochemical sensing systems. Firstly, we describe key design requirements for fabricating the mechanically compliant electrochemical biosensors. This is followed by a narration of typical sensor configurations and the detecting methodologies. Next, on-body soft electrochemical biosensing and cell/tissue-based “wearable” sensing applications are summarized. Detection of key biochemical markers, including metabolites (glucose, lactate, uric acid and ethanol), electrolytes (Na+ and K+), nutrients (vitamin C), hormones (cortisol) and proteins (TNF-α), as well as cellular signalling molecules (nitric oxide, hydrogen peroxide and serotonin), is the focus of the discussion in this review.

Conclusion: We conclude the review with discussions on future opportunities and challenges of the soft and wearable electrochemical biosensors.

Keywords: Soft wearable electronics, biosensors, nanomaterials, stretchable, electrochemistry, review.

Graphical Abstract
[1]
Zhu, B.; Gong, S.; Cheng, W. Softening gold for elastronics. Chem. Soc. Rev., 2019, 48(6), 1668-1711.
[http://dx.doi.org/10.1039/C8CS00609A] [PMID: 30484794]
[2]
Zhai, Q.; Cheng, W. Soft and stretchable electrochemical biosensors. Materials Today Nano, 2019, 7, 100041.
[http://dx.doi.org/10.1016/j.mtnano.2019.100041]
[3]
Jeerapan, I.; Poorahong, S. Review-flexible and stretchable electrochemical sensing systems: Materials, energy sources, and integrations. J. Electrochem. Soc., 2020, 167(3), 037573.
[http://dx.doi.org/10.1149/1945-7111/ab7117]
[4]
Bandodkar, A.J.; Wang, J. Non-invasive wearable electrochemical sensors: A review. Trends Biotechnol., 2014, 32(7), 363-371.
[http://dx.doi.org/10.1016/j.tibtech.2014.04.005] [PMID: 24853270]
[5]
Yang, Y.; Gao, W. Wearable and flexible electronics for continuous molecular monitoring. Chem. Soc. Rev., 2019, 48(6), 1465-1491.
[http://dx.doi.org/10.1039/C7CS00730B] [PMID: 29611861]
[6]
Kim, J.; Campbell, A.S.; de Ávila, B.E.F.; Wang, J. Wearable biosensors for healthcare monitoring. Nat. Biotechnol., 2019, 37(4), 389-406.
[http://dx.doi.org/10.1038/s41587-019-0045-y] [PMID: 30804534]
[7]
Gao, W.; Ota, H.; Kiriya, D.; Takei, K.; Javey, A. Flexible Electronics toward Wearable Sensing. Acc. Chem. Res., 2019, 52(3), 523-533.
[http://dx.doi.org/10.1021/acs.accounts.8b00500] [PMID: 30767497]
[8]
Mukhopadhyay, S.C. Wearable sensors for human activity monitoring: A review. IEEE Sens. J., 2015, 15(3), 1321-1330.
[http://dx.doi.org/10.1109/JSEN.2014.2370945]
[9]
Dai, Y.; Liu, C.C. Recent advances on electrochemical biosensing strategies toward universal point-of-care systems. Angew. Chem. Int. Ed. Engl., 2019, 58(36), 12355-12368.
[http://dx.doi.org/10.1002/anie.201901879] [PMID: 30990933]
[10]
Wang, Y.; Gong, S.; Wang, S.J.; Yang, X.; Ling, Y.; Yap, L.W.; Dong, D.; Simon, G.P.; Cheng, W. Standing enokitake-like nanowire films for highly stretchable elastronics. ACS Nano, 2018, 12(10), 9742-9749.
[http://dx.doi.org/10.1021/acsnano.8b05019] [PMID: 30226045]
[11]
Zhai, Q.; Liu, Y.; Wang, R.; Wang, Y.; Lyu, Q.; Gong, S.; Wang, J.; Simon, G.P.; Cheng, W. Intrinsically stretchable fuel cell based on enokitake-like standing gold nanowires. Adv. Energy Mater., 2020, 10(2), 1-8.
[http://dx.doi.org/10.1002/aenm.201903512]
[12]
Zhai, Q.; Yap, L.W.; Wang, R.; Gong, S.; Guo, Z.; Liu, Y.; Lyu, Q.; Wang, J.; Simon, G.P.; Cheng, W. Vertically aligned gold nanowires as stretchable and wearable epidermal ion-selective electrode for noninvasive multiplexed sweat analysis. Anal. Chem., 2020, 92(6), 4647-4655.
[http://dx.doi.org/10.1021/acs.analchem.0c00274] [PMID: 32069026]
[13]
Wang, Y.; Gong, S.; Gómez, D.; Ling, Y.; Yap, L.W.; Simon, G.P.; Cheng, W. Unconventional janus properties of enokitake-like gold nanowire films. ACS Nano, 2018, 12(8), 8717-8722.
[http://dx.doi.org/10.1021/acsnano.8b04748] [PMID: 30047720]
[14]
Gong, S.; Yap, L.W.; Zhu, Y.; Zhu, B.; Wang, Y.; Ling, Y.; Zhao, Y.; An, T.; Lu, Y.; Cheng, W. A soft resistive acoustic sensor based on suspended standing nanowire membranes with point crack design. Adv. Funct. Mater., 2020, 30(25), 1910717.
[http://dx.doi.org/10.1002/adfm.201910717]
[15]
Zhao, Y.; Zhai, Q.; Dong, D.; An, T.; Gong, S.; Shi, Q.; Cheng, W. Highly stretchable and strain-insensitive fiber-based wearable electrochemical biosensor to monitor glucose in the sweat. Anal. Chem., 2019, 91(10), 6569-6576.
[http://dx.doi.org/10.1021/acs.analchem.9b00152] [PMID: 31006229]
[16]
Wang, R.; Zhai, Q.; An, T.; Gong, S.; Cheng, W. Stretchable gold fiber-based wearable textile electrochemical biosensor for lactate monitoring in sweat. Talanta, 2021, 222, 121484.
[http://dx.doi.org/10.1016/j.talanta.2020.121484] [PMID: 33167206]
[17]
Wang, R.; Zhai, Q.; Zhao, Y.; An, T.; Gong, S.; Guo, Z.; Shi, Q.; Yong, Z.; Cheng, W. Stretchable gold fiber-based wearable electrochemical sensor toward pH monitoring. J. Mater. Chem. B Mater. Biol. Med., 2020, 8(16), 3655-3660.
[http://dx.doi.org/10.1039/C9TB02477H] [PMID: 31998927]
[18]
Zhai, Q.; Gong, S.; Wang, Y.; Lyu, Q.; Liu, Y.; Ling, Y.; Wang, J.; Simon, G.P.; Cheng, W. Enokitake mushroom-like standing gold nanowires toward wearable noninvasive bimodal glucose and strain sensing. ACS Appl. Mater. Interfaces, 2019, 11(10), 9724-9729.
[http://dx.doi.org/10.1021/acsami.8b19383] [PMID: 30816047]
[19]
Gong, S.; Wang, Y.; Yap, L.W.; Ling, Y.; Zhao, Y.; Dong, D.; Shi, Q.; Liu, Y.; Uddin, H.; Cheng, W. A location- and sharpness-specific tactile electronic skin based on staircase-like nanowire patches. Nanoscale Horiz, 2018, 3(6), 640-647.
[http://dx.doi.org/10.1039/C8NH00125A] [PMID: 32254117]
[20]
Bandodkar, A.J.; Jeerapan, I.; You, J.M.; Nuñez-Flores, R.; Wang, J. Highly stretchable fully-printed cnt-based electrochemical sensors and biofuel cells: Combining intrinsic and design-induced stretchability. Nano Lett., 2016, 16(1), 721-727.
[http://dx.doi.org/10.1021/acs.nanolett.5b04549] [PMID: 26694819]
[21]
Gao, W.; Emaminejad, S.; Nyein, H.Y.Y.; Challa, S.; Chen, K.; Peck, A.; Fahad, H.M.; Ota, H.; Shiraki, H.; Kiriya, D.; Lien, D.H.; Brooks, G.A.; Davis, R.W.; Javey, A. Fully integrated wearable sensor arrays for multiplexed in situ perspiration analysis. Nature, 2016, 529(7587), 509-514.
[http://dx.doi.org/10.1038/nature16521] [PMID: 26819044]
[22]
Bobinger, M.R.; Romero, F.J.; Salinas-Castillo, A.; Becherer, M.; Lugli, P.; Morales, D.P.; Rodríguez, N.; Rivadeneyra, A. Flexible and robust laser-induced graphene heaters photothermally scribed on bare polyimide substrates. Carbon, 2019, 144, 116-126.
[http://dx.doi.org/10.1016/j.carbon.2018.12.010]
[23]
Yang, Y.; Song, Y.; Bo, X.; Min, J.; Pak, O.S.; Zhu, L.; Wang, M.; Tu, J.; Kogan, A.; Zhang, H.; Hsiai, T.K.; Li, Z.; Gao, W. A laser-engraved wearable sensor for sensitive detection of uric acid and tyrosine in sweat. Nat. Biotechnol., 2020, 38(2), 217-224.
[http://dx.doi.org/10.1038/s41587-019-0321-x] [PMID: 31768044]
[24]
Ling, Y.; An, T.; Yap, L.W.; Zhu, B.; Gong, S.; Cheng, W. Disruptive, soft, wearable sensors. Adv. Mater., 2020, 32(18), e1904664.
[http://dx.doi.org/10.1002/adma.201904664] [PMID: 31721340]
[25]
Gong, S.; Yap, L.W.; Zhu, B.; Cheng, W. Multiscale soft-hard interface design for flexible hybrid electronics. Adv. Mater., 2020, 32(15), e1902278.
[http://dx.doi.org/10.1002/adma.201902278] [PMID: 31468635]
[26]
Gong, S.; Cheng, W. Toward soft skin-like wearable and implantable energy devices. Adv. Energy Mater., 2017, 7(23), 1-33.
[http://dx.doi.org/10.1002/aenm.201700648]
[27]
Huang, W-H.; Liu, Y-L. Stretchable electrochemical sensors for cell and tissue detection. Angew. Chem. Int., 2020, 60(6), 2757-2767.
[28]
Zhao, X.; Wang, K.; Li, B.; Wang, C.; Ding, Y.; Li, C.; Mao, L.; Lin, Y. Fabrication of a flexible and stretchable nanostructured gold electrode using a facile ultraviolet-irradiation approach for the detection of nitric oxide released from cells. Anal. Chem., 2018, 90(12), 7158-7163.
[http://dx.doi.org/10.1021/acs.analchem.8b01088] [PMID: 29799730]
[29]
Kim, Y.; Zhu, J.; Yeom, B.; Di Prima, M.; Su, X.; Kim, J.G.; Yoo, S.J.; Uher, C.; Kotov, N.A. Stretchable nanoparticle conductors with self-organized conductive pathways. Nature, 2013, 500(7460), 59-63.
[http://dx.doi.org/10.1038/nature12401] [PMID: 23863931]
[30]
Ho, M.D.; Liu, Y.; Dong, D.; Zhao, Y.; Cheng, W. Fractal gold nanoframework for highly stretchable transparent strain-insensitive conductors. Nano Lett., 2018, 18(6), 3593-3599.
[http://dx.doi.org/10.1021/acs.nanolett.8b00694] [PMID: 29767529]
[31]
Gong, S.; Zhao, Y.; Shi, Q.; Wang, Y.; Yap, L.W.; Cheng, W. Self-assembled ultrathin gold nanowires as highly transparent, conductive and stretchable supercapacitor. Electroanalysis, 2016, 28(6), 1298-1304.
[http://dx.doi.org/10.1002/elan.201600081]
[32]
Zhai, Q.; Wang, Y.; Gong, S.; Ling, Y.; Yap, L.W.; Liu, Y.; Wang, J.; Simon, G.P.; Cheng, W. Vertical gold nanowires stretchable electrochemical electrodes. Anal. Chem., 2018, 90(22), 13498-13505.
[http://dx.doi.org/10.1021/acs.analchem.8b03423] [PMID: 30350612]
[33]
Zhu, B.; Gong, S.; Lin, F.; Wang, Y.; Ling, Y.; An, T.; Cheng, W. Patterning vertically grown gold nanowire electrodes for intrinsically stretchable organic transistors. Adv. Electron. Mater., 2019, 5(1), 1-6.
[http://dx.doi.org/10.1002/aelm.201800509]
[34]
Gong, S.; Yap, L.W.; Zhu, B.; Zhai, Q.; Liu, Y.; Lyu, Q.; Wang, K.; Yang, M.; Ling, Y.; Lai, D.T.H.; Marzbanrad, F.; Cheng, W. Local crack-programmed gold nanowire electronic skin tattoos for in-plane multisensor integration. Adv. Mater., 2019, 31(41), e1903789.
[http://dx.doi.org/10.1002/adma.201903789] [PMID: 31448484]
[35]
An, T.; Anaya, D.V.; Gong, S.; Yap, L.W.; Lin, F.; Wang, R.; Yuce, M.R.; Cheng, W. Self-powered gold nanowire tattoo triboelectric sensors for soft wearable human-machine interface. Nano Energy, 2020, 77, 105295.
[http://dx.doi.org/10.1016/j.nanoen.2020.105295]
[36]
Ling, Y.; Guo, K.; Zhu, B.; Prieto-Simon, B.; Voelcker, N.H.; Cheng, W. High-adhesion vertically aligned gold nanowire stretchable electrodes: Via a thin-layer soft nailing strategy. Nanoscale Horizons, 2019, 4(6), 1380-1387.
[http://dx.doi.org/10.1039/C9NH00336C]
[37]
Liu, Y.L.; Jin, Z.H.; Liu, Y.H.; Hu, X.B.; Qin, Y.; Xu, J.Q.; Fan, C.F.; Huang, W.H. Stretchable electrochemical sensor for real-time monitoring of cells and tissues. Angew. Chem. Int. Ed. Engl., 2016, 55(14), 4537-4541.
[http://dx.doi.org/10.1002/anie.201601276] [PMID: 26929123]
[38]
Moon, G.D.; Lim, G.H.; Song, J.H.; Shin, M.; Yu, T.; Lim, B.; Jeong, U. Highly stretchable patterned gold electrodes made of Au nanosheets. Adv. Mater., 2013, 25(19), 2707-2712.
[http://dx.doi.org/10.1002/adma.201300794] [PMID: 23568566]
[39]
Torrente-Rodríguez, R.M.; Tu, J.; Yang, Y.; Min, J.; Wang, M.; Song, Y.; Yu, Y.; Xu, C.; Ye, C. IsHak, W.W.; Gao, W. Investigation of cortisol dynamics in human sweat using a graphene-based wireless mHealth system. Matter, 2020, 2(4), 921-937.
[http://dx.doi.org/10.1016/j.matt.2020.01.021] [PMID: 32266329]
[40]
Park, H.J.; Yoon, J.H.; Lee, K.G.; Choi, B.G. Potentiometric performance of flexible pH sensor based on polyaniline nanofiber arrays. Nano Converg., 2019, 6(1), 9.
[http://dx.doi.org/10.1186/s40580-019-0179-0] [PMID: 30880366]
[41]
Kim, J.; Imani, S.; de Araujo, W.R.; Warchall, J.; Valdés-Ramírez, G.; Paixão, T.R.L.C.; Mercier, P.P.; Wang, J. Wearable salivary uric acid mouthguard biosensor with integrated wireless electronics. Biosens. Bioelectron., 2015, 74, 1061-1068.
[http://dx.doi.org/10.1016/j.bios.2015.07.039] [PMID: 26276541]
[42]
Kim, J.; Jeerapan, I.; Imani, S.; Cho, T.N.; Bandodkar, A.; Cinti, S.; Mercier, P.P.; Wang, J. Noninvasive alcohol monitoring using a wearable tattoo-based iontophoretic-biosensing system. ACS Sens., 2016, 1(8), 1011-1019.
[http://dx.doi.org/10.1021/acssensors.6b00356]
[43]
Kim, B.Y.; Lee, H.B.; Lee, N.E.A. Durable, stretchable, and disposable electrochemical biosensor on three-dimensional micro-patterned stretchable substrate. Sens. Actuators B Chem., 2019, 283(12), 312-320.
[http://dx.doi.org/10.1016/j.snb.2018.12.045]
[44]
Bariya, M.; Nyein, H.Y.Y.; Javey, A. Wearable sweat sensors. Nat. Electron., 2018, 1(3), 160-171.
[http://dx.doi.org/10.1038/s41928-018-0043-y]
[45]
Valdés-ramírez, G.; Li, Y.; Kim, J.; Jia, W.; Bandodkar, A.J.; Nuñez-flores, R.; Miller, P.R.; Wu, S.; Narayan, R.; Windmiller, J.R.; Polsky, R.; Wang, J. Electrochemistry communications microneedle-based self-powered glucose sensor. Electrochem. Commun., 2014, 47, 58-62.
[http://dx.doi.org/10.1016/j.elecom.2014.07.014]
[46]
Jeerapan, I.; Ciui, B.; Martin, I.; Cristea, C.; Sandulescu, R.; Wang, J. Fully edible biofuel cells. J. Mater. Chem. B Mater. Biol. Med., 2018, 6(21), 3571-3578.
[http://dx.doi.org/10.1039/C8TB00497H] [PMID: 32254452]
[47]
Elgrishi, N.; Rountree, K.J.; McCarthy, B.D.; Rountree, E.S.; Eisenhart, T.T.; Dempsey, J.L. A practical beginner’s guide to cyclic voltammetry. J. Chem. Educ., 2018, 95(2), 197-206.
[http://dx.doi.org/10.1021/acs.jchemed.7b00361]
[48]
Labib, M.; Sargent, E.H.; Kelley, S.O. Electrochemical methods for the analysis of clinically relevant biomolecules. Chem. Rev., 2016, 116(16), 9001-9090.
[http://dx.doi.org/10.1021/acs.chemrev.6b00220] [PMID: 27428515]
[49]
Gao, W.; Nyein, H.Y.Y.; Shahpar, Z.; Fahad, H.M.; Chen, K.; Emaminejad, S.; Gao, Y.; Tai, L.C.; Ota, H.; Wu, E.; Bullock, J.; Zeng, Y.; Lien, D.H.; Javey, A. Wearable microsensor array for multiplexed heavy metal monitoring of body fluids. ACS Sens., 2016, 1(7), 866-874.
[http://dx.doi.org/10.1021/acssensors.6b00287]
[50]
Tai, L.C.; Gao, W.; Chao, M.; Bariya, M.; Ngo, Q.P.; Shahpar, Z.; Nyein, H.Y.Y.; Park, H.; Sun, J.; Jung, Y.; Wu, E.; Fahad, H.M.; Lien, D.H.; Ota, H.; Cho, G.; Javey, A. Methylxanthine drug monitoring with wearable sweat sensors. Adv. Mater., 2018, 30(23), e1707442.
[http://dx.doi.org/10.1002/adma.201707442] [PMID: 29663538]
[51]
Torrente-Rodríguez, R.M.; Lukas, H.; Tu, J.; Min, J.; Yang, Y.; Xu, C.; Rossiter, H.B.; Gao, W. SARS-cov-2 rapidPlex: A graphene-based multiplexed telemedicine platform for rapid and low-cost covid-19 diagnosis and monitoring. Matter, 2020, 3(6), 1981-1998.
[http://dx.doi.org/10.1016/j.matt.2020.09.027] [PMID: 33043291]
[52]
Moyer, J.; Wilson, D.; Finkelshtein, I.; Wong, B.; Potts, R.; Potts, R.; Ph, D. Correlation between sweat glucose and blood glucose in subjects with diabetes. Diabetes Technol. Ther., 2012, 14(5), 398-402.
[http://dx.doi.org/10.1089/dia.2011.0262] [PMID: 22376082]
[53]
Nyein, H.Y.Y.; Tai, L.C.; Ngo, Q.P.; Chao, M.; Zhang, G.B.; Gao, W.; Bariya, M.; Bullock, J.; Kim, H.; Fahad, H.M.; Javey, A. A wearable microfluidic sensing patch for dynamic sweat secretion analysis. ACS Sens., 2018, 3(5), 944-952.
[http://dx.doi.org/10.1021/acssensors.7b00961] [PMID: 29741360]
[54]
Lee, H.; Choi, T.K.; Lee, Y.B.; Cho, H.R.; Ghaffari, R.; Wang, L.; Choi, H.J.; Chung, T.D.; Lu, N.; Hyeon, T.; Choi, S.H.; Kim, D.H. A graphene-based electrochemical device with thermoresponsive microneedles for diabetes monitoring and therapy. Nat. Nanotechnol., 2016, 11(6), 566-572.
[http://dx.doi.org/10.1038/nnano.2016.38] [PMID: 26999482]
[55]
Sen, D.K.; Sarin, G.S. Tear glucose levels in normal people and in diabetic patients. Br. J. Ophthalmol., 1980, 64(9), 693-695.
[http://dx.doi.org/10.1136/bjo.64.9.693] [PMID: 7426593]
[56]
Farandos, N.M.; Yetisen, A.K.; Monteiro, M.J.; Lowe, C.R.; Yun, S.H. Contact lens sensors in ocular diagnostics. Adv. Healthc. Mater., 2015, 4(6), 792-810.
[http://dx.doi.org/10.1002/adhm.201400504] [PMID: 25400274]
[57]
Aca, J.U.T.B.; Inegold, D.A.N.F.; Sher, S.A.A.A. Tear glucose analysis for the noninvasive detection and monitoring of diabetes mellitus. Clin. Sci., 2007, 5(4)
[58]
Chu, M.X.; Miyajima, K.; Takahashi, D.; Arakawa, T.; Sano, K.; Sawada, S.; Kudo, H.; Iwasaki, Y.; Akiyoshi, K.; Mochizuki, M.; Mitsubayashi, K. Soft contact lens biosensor for in situ monitoring of tear glucose as non-invasive blood sugar assessment. Talanta, 2011, 83(3), 960-965.
[http://dx.doi.org/10.1016/j.talanta.2010.10.055] [PMID: 21147344]
[59]
Bandodkar, A.J.; Jia, W.; Yardımcı, C.; Wang, X.; Ramirez, J.; Wang, J. Tattoo-based noninvasive glucose monitoring: A proof-of-concept study. Anal. Chem., 2015, 87(1), 394-398.
[http://dx.doi.org/10.1021/ac504300n] [PMID: 25496376]
[60]
Kim, J.; Campbell, A.S.; Wang, J. Wearable non-invasive epidermal glucose sensors: A review. Talanta, 2018, 177, 163-170.
[http://dx.doi.org/10.1016/j.talanta.2017.08.077] [PMID: 29108571]
[61]
Lee, H.; Hong, Y.J.; Baik, S.; Hyeon, T.; Kim, D.H. Enzyme-based glucose sensor: From invasive to wearable device. Adv. Healthc. Mater., 2018, 7(8), e1701150.
[http://dx.doi.org/10.1002/adhm.201701150] [PMID: 29334198]
[62]
Guilbault, G.G.; Lubrano, G.J. An enzyme electrode for the amperometric determination of glucose. Anal. Chim. Acta, 1973, 64(3), 439-455.
[http://dx.doi.org/10.1016/S0003-2670(01)82476-4] [PMID: 4701057]
[63]
Wang, J. Electrochemical glucose biosensors. Chem. Rev., 2008, 108(2), 814-825.
[http://dx.doi.org/10.1021/cr068123a] [PMID: 18154363]
[64]
Kim, J.; Jeerapan, I.; Sempionatto, J.R.; Barfidokht, A.; Mishra, R.K.; Campbell, A.S.; Hubble, L.J.; Wang, J. Wearable bioelectronics: Enzyme-based body-worn electronic devices. Acc. Chem. Res., 2018, 51(11), 2820-2828.
[http://dx.doi.org/10.1021/acs.accounts.8b00451] [PMID: 30398344]
[65]
Abellán-Llobregat, A.; Jeerapan, I.; Bandodkar, A.; Vidal, L.; Canals, A.; Wang, J.; Morallón, E. A stretchable and screen-printed electrochemical sensor for glucose determination in human perspiration. Biosens. Bioelectron., 2017, 91(1), 885-891.
[http://dx.doi.org/10.1016/j.bios.2017.01.058] [PMID: 28167366]
[66]
Jia, W.; Bandodkar, A.J.; Valdés-Ramírez, G.; Windmiller, J.R.; Yang, Z.; Ramírez, J.; Chan, G.; Wang, J. Electrochemical tattoo biosensors for real-time noninvasive lactate monitoring in human perspiration. Anal. Chem., 2013, 85(14), 6553-6560.
[http://dx.doi.org/10.1021/ac401573r] [PMID: 23815621]
[67]
Rathee, K.; Dhull, V.; Dhull, R.; Singh, S. Biosensors based on electrochemical lactate detection: A comprehensive review. Biochem. Biophys. Rep., 2015, 5, 35-54.
[http://dx.doi.org/10.1016/j.bbrep.2015.11.010] [PMID: 28955805]
[68]
Minami, T.; Sato, T.; Minamiki, T.; Fukuda, K.; Kumaki, D.; Tokito, S. A novel OFET-based biosensor for the selective and sensitive detection of lactate levels. Biosens. Bioelectron., 2015, 74, 45-48.
[http://dx.doi.org/10.1016/j.bios.2015.06.002] [PMID: 26101795]
[69]
Kim, J.; Valdés-Ramírez, G.; Bandodkar, A.J.; Jia, W.; Martinez, A.G.; Ramírez, J.; Mercier, P.; Wang, J. Non-invasive mouthguard biosensor for continuous salivary monitoring of metabolites. Analyst (Lond.), 2014, 139(7), 1632-1636.
[http://dx.doi.org/10.1039/C3AN02359A] [PMID: 24496180]
[70]
Kassal, P.; Kim, J.; Kumar, R.; De Araujo, W.R.; Steinberg, I.M.; Steinberg, M.D.; Wang, J. Smart bandage with wireless connectivity for uric acid biosensing as an indicator of wound status. Electrochem. Commun., 2015, 56, 6-10.
[http://dx.doi.org/10.1016/j.elecom.2015.03.018]
[71]
Guo, J. Uric acid monitoring with a smartphone as the electrochemical analyzer. Anal. Chem., 2016, 88(24), 11986-11989.
[http://dx.doi.org/10.1021/acs.analchem.6b04345] [PMID: 28193075]
[72]
Yan, Q.; Zhi, N.; Yang, L.; Xu, G.; Feng, Q.; Zhang, Q.; Sun, S. A highly sensitive uric acid electrochemical biosensor based on a nano-cube cuprous oxide/ferrocene/uricase modified glassy carbon electrode. Sci. Rep., 2020, 10(1), 10607.
[http://dx.doi.org/10.1038/s41598-020-67394-8] [PMID: 32606291]
[73]
Erden, P.E.; Kılıç, E. A review of enzymatic uric acid biosensors based on amperometric detection. Talanta, 2013, 107, 312-323.
[http://dx.doi.org/10.1016/j.talanta.2013.01.043] [PMID: 23598228]
[74]
Gamella, M.; Campuzano, S.; Manso, J.; González de Rivera, G.; López-Colino, F.; Reviejo, A.J.; Pingarrón, J.M. A novel non-invasive electrochemical biosensing device for in situ determination of the alcohol content in blood by monitoring ethanol in sweat. Anal. Chim. Acta, 2014, 806, 1-7.
[http://dx.doi.org/10.1016/j.aca.2013.09.020] [PMID: 24331037]
[75]
Bandodkar, A.J.; Molinnus, D.; Mirza, O.; Guinovart, T.; Windmiller, J.R.; Valdés-Ramírez, G.; Andrade, F.J.; Schöning, M.J.; Wang, J. Epidermal tattoo potentiometric sodium sensors with wireless signal transduction for continuous non-invasive sweat monitoring. Biosens. Bioelectron., 2014, 54, 603-609.
[http://dx.doi.org/10.1016/j.bios.2013.11.039] [PMID: 24333582]
[76]
Nyein, H.Y.Y.; Gao, W.; Shahpar, Z.; Emaminejad, S.; Challa, S.; Chen, K.; Fahad, H.M.; Tai, L.C.; Ota, H.; Davis, R.W.; Javey, A. A wearable electrochemical platform for noninvasive simultaneous monitoring of ca(2+) and ph. ACS Nano, 2016, 10(7), 7216-7224.
[http://dx.doi.org/10.1021/acsnano.6b04005] [PMID: 27380446]
[77]
Guinovart, T.; Bandodkar, A.J.; Windmiller, J.R.; Andrade, F.J.; Wang, J. A potentiometric tattoo sensor for monitoring ammonium in sweat. Analyst (Lond.), 2013, 138(22), 7031-7038.
[http://dx.doi.org/10.1039/c3an01672b] [PMID: 24098883]
[78]
Sempionatto, J.R.; Khorshed, A.A.; Ahmed, A.; De Loyola, E.; Silva, A.N.; Barfidokht, A.; Yin, L.; Goud, K.Y.; Mohamed, M.A.; Bailey, E.; May, J.; Aebischer, C.; Chatelle, C.; Wang, J. Epidermal enzymatic biosensors for sweat vitamin c: Toward personalized nutrition. ACS Sens., 2020, 5(6), 1804-1813.
[http://dx.doi.org/10.1021/acssensors.0c00604] [PMID: 32366089]
[79]
Zhao, J.; Nyein, H.Y.Y.; Hou, L.; Lin, Y.; Bariya, M.; Ahn, C.H.; Ji, W.; Fan, Z.; Javey, A.; Javey, A. A wearable nutrition tracker. Adv. Mater., 2021, 33(1), e2006444.
[http://dx.doi.org/10.1002/adma.202006444] [PMID: 33225539]
[80]
Tricoli, A.; Nasiri, N.; De, S. Wearable and miniaturized sensor technologies for personalized and preventive medicine. Adv. Funct. Mater., 2017, 27(15), 1605271.
[http://dx.doi.org/10.1002/adfm.201605271]
[81]
Bandodkar, A.J.; Gutruf, P.; Choi, J.; Lee, K.; Sekine, Y.; Reeder, J.T.; Jeang, W.J.; Aranyosi, A.J.; Lee, S.P.; Model, J.B.; Ghaffari, R.; Su, C.J.; Leshock, J.P.; Ray, T.; Verrillo, A.; Thomas, K.; Krishnamurthi, V.; Han, S.; Kim, J.; Krishnan, S.; Hang, T.; Rogers, J.A. Battery-free, skin-interfaced microfluidic/electronic systems for simultaneous electrochemical, colorimetric, and volumetric analysis of sweat. Sci. Adv., 2019, 5(1), eaav3294.
[http://dx.doi.org/10.1126/sciadv.aav3294] [PMID: 30746477]
[82]
He, W.; Wang, C.; Wang, H.; Jian, M.; Lu, W.; Liang, X.; Zhang, X.; Yang, F.; Zhang, Y. Integrated textile sensor patch for real-time and multiplex sweat analysis. Sci. Adv., 2019, 5(11), eaax0649.
[http://dx.doi.org/10.1126/sciadv.aax0649] [PMID: 31723600]
[83]
Imani, S.; Bandodkar, A.J.; Mohan, A.M.V.; Kumar, R.; Yu, S.; Wang, J.; Mercier, P.P. A wearable chemical-electrophysiological hybrid biosensing system for real-time health and fitness monitoring. Nat. Commun., 2016, 7(5), 11650.
[http://dx.doi.org/10.1038/ncomms11650] [PMID: 27212140]
[84]
Heikenfeld, J.; Jajack, A.; Feldman, B.; Granger, S.W.; Gaitonde, S.; Begtrup, G.; Katchman, B.A. Accessing analytes in biofluids for peripheral biochemical monitoring. Nat. Biotechnol., 2019, 37(4), 407-419.
[http://dx.doi.org/10.1038/s41587-019-0040-3] [PMID: 30804536]
[85]
Sonner, Z.; Wilder, E.; Heikenfeld, J.; Kasting, G.; Beyette, F.; Swaile, D.; Sherman, F.; Joyce, J.; Hagen, J.; Kelley-Loughnane, N.; Naik, R. The microfluidics of the eccrine sweat gland, including biomarker partitioning, transport, and biosensing implications. Biomicrofluidics, 2015, 9(3), 031301.
[http://dx.doi.org/10.1063/1.4921039] [PMID: 26045728]
[86]
Segura, R.; Javierre, C.; Ventura, J.L.L.; Lizarraga, M.A.; Campos, B.; Garrido, E. A new approach to the assessment of anaerobic metabolism: Measurement of lactate in saliva. Br. J. Sports Med., 1996, 30(4), 305-309.
[http://dx.doi.org/10.1136/bjsm.30.4.305] [PMID: 9015591]
[87]
Zhang, W.; Du, Y.; Wang, M.L. On-chip highly sensitive saliva glucose sensing using multilayer films composed of single-walled carbon nanotubes, gold nanoparticles, and glucose oxidase. Sens. Biosensing Res., 2015, 4, 96-102.
[http://dx.doi.org/10.1016/j.sbsr.2015.04.006]
[88]
Kallapur, B.; Ramalingam, K. Bastian; Mujib, A.; Sarkar, A.; Sethuraman, S. Quantitative estimation of sodium, potassium and total protein in saliva of diabetic smokers and nonsmokers: A novel study. J. Nat. Sci. Biol. Med., 2013, 4(2), 341-345.
[http://dx.doi.org/10.4103/0976-9668.117006] [PMID: 24082729]
[89]
Vairo, D.; Bruzzese, L.; Marlinge, M.; Fuster, L.; Adjriou, N.; Kipson, N.; Brunet, P.; Cautela, J.; Jammes, Y.; Mottola, G.; Burtey, S.; Ruf, J.; Guieu, R.; Fenouillet, E. Towards addressing the body electrolyte environment via sweat analysis:Pilocarpine iontophoresis supports assessment of plasma potassium concentration. Sci. Rep., 2017, 7(1), 11801.
[http://dx.doi.org/10.1038/s41598-017-12211-y] [PMID: 28924220]
[90]
Derbyshire, P.J.; Barr, H.; Davis, F.; Higson, S.P.J. Lactate in human sweat: A critical review of research to the present day. J. Physiol. Sci., 2012, 62(6), 429-440.
[http://dx.doi.org/10.1007/s12576-012-0213-z] [PMID: 22678934]
[91]
Oliveira, S.F. Salivary and blood lactate kinetics in response to maximal workload on cycle ergometer. Rev. Bras. Cineantropom. Desempenho Hum., 2015, 17(5), 565-574.
[http://dx.doi.org/10.5007/1980-0037.2015v17n5p565]
[92]
Green, J.M.; Bishop, P.A.; Muir, I.H.; McLester, J.R., Jr; Heath, H.E. Effects of high and low blood lactate concentrations on sweat lactate response. Int. J. Sports Med., 2000, 21(8), 556-560.
[http://dx.doi.org/10.1055/s-2000-8483] [PMID: 11156274]
[93]
Bruen, D.; Delaney, C.; Florea, L.; Diamond, D. Glucose sensing for diabetes monitoring: Recent developments. Sensors (Basel), 2017, 17(8), 1866.
[http://dx.doi.org/10.3390/s17081866] [PMID: 28805693]
[94]
Jina, A.; Tierney, M.J.; Tamada, J.A.; McGill, S.; Desai, S.; Chua, B.; Chang, A.; Christiansen, M. Design, development, and evaluation of a novel microneedle array-based continuous glucose monitor. J. Diabetes Sci. Technol., 2014, 8(3), 483-487.
[http://dx.doi.org/10.1177/1932296814526191] [PMID: 24876610]
[95]
Mohan, A.M.V.; Windmiller, J.R.; Mishra, R.K.; Wang, J. Continuous minimally-invasive alcohol monitoring using microneedle sensor arrays. Biosens. Bioelectron., 2017, 91, 574-579.
[http://dx.doi.org/10.1016/j.bios.2017.01.016] [PMID: 28088750]
[96]
Choi, J.; Kang, D.; Han, S.S.B.; Kim, J.A.R. Thin, soft, skin‐mounted microfluidic networks with capillary bursting valves for chrono‐sampling of sweat. Adv. Healthc. Mater., 2017, 6, 1601355.
[http://dx.doi.org/10.1002/adhm.201601355]
[97]
Heikenfeld, J. Non‐invasive analyte access and sensing through eccrine sweat: Challenges and outlook circa 2016. Electroanalysis, 2016, 28, 1242-1249.
[http://dx.doi.org/10.1002/elan.201600018]
[98]
Koh, A.; Kang, D.; Xue, Y.; Lee, S.; Pielak, R.M.; Kim, J.; Hwang, T.; Min, S.; Banks, A.; Bastien, P.; Manco, M.C.; Wang, L.; Ammann, K.R.; Jang, K.I.; Won, P.; Han, S.; Ghaffari, R.; Paik, U.; Slepian, M.J.; Balooch, G.; Huang, Y.; Rogers, J.A.A. A soft, wearable microfluidic device for the capture, storage, and colorimetric sensing of sweat. Sci. Transl. Med., 2016, 8(366), 366ra165.
[http://dx.doi.org/10.1126/scitranslmed.aaf2593] [PMID: 27881826]
[99]
Ling, Y.; Lyu, Q.; Zhai, Q.; Zhu, B.; Gong, S.; Zhang, T.; Dyson, J.; Cheng, W. Design of stretchable holey gold biosensing electrode for real-time cell monitoring. ACS Sens., 2020, 5(10), 3165-3171.
[http://dx.doi.org/10.1021/acssensors.0c01297] [PMID: 32957779]
[100]
Lyu, Q.; Zhai, Q.; Dyson, J.; Gong, S.; Zhao, Y.; Ling, Y.; Chandrasekaran, R.; Dong, D.; Cheng, W. Real-time and in-situ monitoring of h2o2 release from living cells by a stretchable electrochemical biosensor based on vertically aligned gold nanowires. Anal. Chem., 2019, 91(21), 13521-13527.
[http://dx.doi.org/10.1021/acs.analchem.9b02610] [PMID: 31549803]
[101]
Li, R.; Qi, H.; Ma, Y.; Deng, Y.; Liu, S.; Jie, Y.; Jing, J.; He, J.; Zhang, X.; Wheatley, L.; Huang, C.; Sheng, X.; Zhang, M.; Yin, L. A flexible and physically transient electrochemical sensor for real-time wireless nitric oxide monitoring. Nat. Commun., 2020, 11(1), 3207.
[http://dx.doi.org/10.1038/s41467-020-17008-8] [PMID: 32587309]
[102]
Liu, Y.L.; Qin, Y.; Jin, Z.H.; Hu, X.B.; Chen, M.M.; Liu, R.; Amatore, C.; Huang, W.H. A stretchable electrochemical sensor for inducing and monitoring cell mechanotransduction in real time. Angew. Chem. Int. Ed. Engl., 2017, 56(32), 9454-9458.
[http://dx.doi.org/10.1002/anie.201705215] [PMID: 28636246]
[103]
Jin, Z.H.; Liu, Y.L.; Fan, W.T.; Huang, W.H. Integrating flexible electrochemical sensor into microfluidic chip for simulating and monitoring vascular mechanotransduction. Small, 2020, 16(9), e1903204.
[http://dx.doi.org/10.1002/smll.201903204] [PMID: 31402582]
[104]
Zhou, M.; Jiang, Y.; Wang, G.; Wu, W.; Chen, W.; Yu, P.; Lin, Y.; Mao, J.; Mao, L. Single-atom Ni-N4 provides a robust cellular NO sensor. Nat. Commun., 2020, 11(1), 3188.
[http://dx.doi.org/10.1038/s41467-020-17018-6] [PMID: 32581225]
[105]
Liu, Y.L.; Chen, Y.; Fan, W.T.; Cao, P.; Yan, J.; Zhao, X.Z.; Dong, W.G.; Huang, W.H. Mechanical distension induces serotonin release from intestine as revealed by stretchable electrochemical sensing. Angew. Chem. Int. Ed. Engl., 2020, 59(10), 4075-4081.
[http://dx.doi.org/10.1002/anie.201913953] [PMID: 31829491]
[106]
Sun, X.; Zhang, H.; Hao, S.; Zhai, J.; Dong, S. A self-powered biosensor with a flake electrochromic display for electrochemical and colorimetric formaldehyde detection. ACS Sens., 2019, 4(10), 2631-2637.
[http://dx.doi.org/10.1021/acssensors.9b00917] [PMID: 31441298]
[107]
Zhao, J.; Lin, Y.; Wu, J.; Nyein, H.Y.Y.; Bariya, M.; Tai, L.C.; Chao, M.; Ji, W.; Zhang, G.; Fan, Z.; Javey, A. A fully integrated and self-powered smartwatch for continuous sweat glucose monitoring. ACS Sens., 2019, 4(7), 1925-1933.
[http://dx.doi.org/10.1021/acssensors.9b00891] [PMID: 31271034]
[108]
Yu, Y.; Nassar, J.; Xu, C.; Min, J.; Yang, Y.; Dai, A.; Doshi, R.; Huang, A.; Song, Y.; Gehlhar, R.; Ames, A.D.; Gao, W. Biofuel-powered soft electronic skin with multiplexed and wireless sensing for human-machine interfaces. Sci. Robot., 2020, 5(41), 1-14.
[http://dx.doi.org/10.1126/scirobotics.aaz7946] [PMID: 32607455]
[109]
Jeerapan, I.; Sempionatto, J.R.; Wang, J. On-body bioelectronics: Wearable biofuel cells for bioenergy harvesting and self-powered biosensing. Adv. Funct. Mater., 2020, 30, 1906243.
[http://dx.doi.org/10.1002/adfm.201906243]
[110]
Lin, H.; Tan, J.; Zhu, J.; Lin, S.; Zhao, Y.; Yu, W.; Hojaiji, H.; Wang, B.; Yang, S.; Cheng, X.; Wang, Z.; Tang, E.; Yeung, C.; Emaminejad, S. A programmable epidermal microfluidic valving system for wearable biofluid management and contextual biomarker analysis. Nat. Commun., 2020, 11(1), 4405.
[http://dx.doi.org/10.1038/s41467-020-18238-6] [PMID: 32879320]
[111]
Lee, H.; Song, C.; Hong, Y.S.; Kim, M.S.; Cho, H.R.; Kang, T.; Shin, K.; Choi, S.H.; Hyeon, T.; Kim, D.H. Wearable/disposable sweat-based glucose monitoring device with multistage transdermal drug delivery module. Sci. Adv., 2017, 3(3), e1601314.
[http://dx.doi.org/10.1126/sciadv.1601314] [PMID: 28345030]
[112]
Teymourian, H.; Parrilla, M.; Sempionatto, J.R.; Montiel, N.F.; Barfidokht, A.; Van Echelpoel, R.; De Wael, K.; Wang, J. Wearable electrochemical sensors for the monitoring and screening of drugs. ACS Sens., 2020, 5(9), 2679-2700.
[http://dx.doi.org/10.1021/acssensors.0c01318] [PMID: 32822166]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy