Generic placeholder image

Anti-Cancer Agents in Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 1871-5206
ISSN (Online): 1875-5992

Research Article

Synthesis, Antiproliferative Activity, and Apoptotic Profile of New Derivatives from the Meta Stable Benzoxazinone Scaffold

Author(s): Amira A. El-Sayed, Maher A. El-Hashash and Wael M. El-Sayed*

Volume 22, Issue 6, 2022

Published on: 06 July, 2021

Page: [1226 - 1237] Pages: 12

DOI: 10.2174/1871520621666210706152632

Price: $65

Abstract

Background: Cancer exerts a huge strain on the health system. The emerging resistance to the current chemotherapies demands the continuous development of new anticancer agents with lower cost, higher efficacy, and greater specificity.

Objective: This study aimed at developing selective small molecules as targeted anticancer agents.

Methods: The behavior of benzoxazinone 2 towards nitrogen nucleophiles, such as hydrazine hydrate, formamide, ethanolamine, aromatic amines, and thiosemicarbazide, was described. The behavior of the amino quinazolinone 3 towards carbon electrophiles and P2S5 was also investigated. The antiproliferative activity of 17 new benzoxazinone derivatives was examined against the growth of three human cancer cell lines; liver HepG2, breast MCF-7, and colon HCT-29, in addition to the normal human fibroblasts WI-38, and the selectivity index was calculated. The possible molecular pathways, such as the cell cycle and apoptosis, were investigated.

Results: Derivatives 3, 7, 8, 10, 13, and 15 had a significant (less than 10 μM) antiproliferative activity against the three cancer cell lines investigated. Derivative 7 showed the best antiproliferative profile comparable to that of doxorubicin. The selectivity index for all the effective derivatives ranged from ~5-12 folds, indicating high selectivity against the cancer cells. Derivative 15 caused ~ 7-fold and 8-fold inductions in the expression of p53 and caspase3, respectively. It also caused a ~ 60% reduction in the expression of both topoisomerase II (topoII) and cyclin-dependent kinase 1 (cdk1). Derivatives 3, 7, and 8 had a similar profile; ~ 6-8-fold increased in the expression of p53 and caspase3 but these compounds were devoid of any significant effect on the expression of topoII and cdk1. Derivatives 10 and 13 were also similar and resulted in a ~6-fold elevation in the expression ofcaspase3, and more than 60% downregulation in the expression of topoII. The results of the gene expression of topoII and caspase3 were confirmed by the measurement of the topoII concentration and caspase3 activity in the HepG2 cells.

Conclusion: Six derivatives exerted their antiproliferative activity by arresting the cell cycle (decreasing cdk1), preventing the DNA duplication (downregulating topo II), and inducing apoptosis (inducing p53 and caspase3). One common feature in all the six active derivatives is the presence of a free amino group. These compounds have merit for further investigations.

Keywords: Quinazolinone, regiospecificity, cell cycle, p53, apoptosis, caspase, topoisomerase.

« Previous
Graphical Abstract
[1]
Bray, F; Ferlay, J; Soerjomataram, I; Siegel, R.L.; Torre, L.A.; Jemal, A. Global cancer statistics: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. A Cancer Journal for Clinicians, 2018, 68, 394-424.
[2]
Ismail, M.A.; Abdel-Rhman, M.H.; Abdelwahab, G.A.; Hamama, W.S.; El-Shafeai, H.M.; El-Sayed, W.M. Synthesis of new thienylpicolinamidine derivatives and possible mechanisms of antiproliferative activity. RSC Advances, 2020, 10, 41165-41176.
[http://dx.doi.org/10.1039/D0RA08796C]
[3]
Yousef, M.A.; Ali, A.M.; El-Sayed, W.M.; Qayed, W.S.; Farag, H.H.A.; Aboul-Fadl, T. Design and synthesis of novel isatin-based derivatives targeting cell cycle checkpoint pathways as potential anticancer agents. Bioorg. Chem., 2020, 105, 104366.
[http://dx.doi.org/10.1016/j.bioorg.2020.104366] [PMID: 33212312]
[4]
Hekal, M.H.; El-Naggar, A.M.; Abu El-Azm, F.S.M.; El-Sayed, W.M. Synthesis of new oxadiazol-phthalazin derivatives with anti-proliferative activity; molecular docking, pro-Apoptotic, and enzyme inhibition profile. RSC Advances, 2020, 10, 3675-3688.
[http://dx.doi.org/10.1039/C9RA09016A]
[5]
El-Metwally, S.A.; Khalil, A.K.; El-Sayed, W.M. Design, molecular modeling and anticancer evaluation of thieno[2,3-d]pyrimidine derivatives as inhibitors of topoisomerase II. Bioorg. Chem., 2020, 94, 103492.
[http://dx.doi.org/10.1016/j.bioorg.2019.103492] [PMID: 31864673]
[6]
Salem, M.S.; Hussein, R.A.; El-Sayed, W.M. Substitution at phenyl rings of chalcone and schiff base moieties accounts for their antiproliferative activity. Anticancer. Agents Med. Chem., 2019, 19(5), 620-626.
[http://dx.doi.org/10.2174/1871520619666190225122338] [PMID: 30799796]
[7]
Ismail, M.A.; Negm, A.; Arafa, R.K.; Abdel-Latif, E.; El-Sayed, W.M. Anticancer activity, dual prooxidant/antioxidant effect and apoptosis induction profile of new bichalcophene-5-carboxamidines. Eur. J. Med. Chem., 2019, 169, 76-88.
[http://dx.doi.org/10.1016/j.ejmech.2019.02.062] [PMID: 30856408]
[8]
El-Metwally, S.A.; Khalil, A.K.; El-Naggar, A.M.; El-Sayed, W.M. Novel tetrahydrobenzo [b] thiophene analogues exhibit anticancer activity through enhancing apoptosis and inhibiting tyrosine kinase. Anticancer. Agents Med. Chem., 2018, 18(12), 1761-1769.
[http://dx.doi.org/10.2174/1871520618666180813120558] [PMID: 30101717]
[9]
El-Hashash, M.A.; El-Bordany, E.A.; Marzouk, M.I.; El-Naggar, A.M.; Nawar, T.M.S.; El-Sayed, W.M. Novel nicotinonitrile derivatives bearing imino moieties enhance apoptosis and inhibit tyrosine kinase. Anticancer. Agents Med. Chem., 2018, 18(11), 1589-1598.
[http://dx.doi.org/10.2174/1871520618666180510112614] [PMID: 29745342]
[10]
El-Hashash, M.A.; Ali, A.T.; Hussein, R.A.; El-Sayed, W.M. Synthesis and reactivity of 6,8-Dibromo-2-ethyl-4H-benzo[d][1,3]oxazin-4-one towards nucleophiles and electrophiles and their anticancer activity. Anticancer. Agents Med. Chem., 2019, 19(4), 538-545.
[http://dx.doi.org/10.2174/1871520619666190201145221] [PMID: 30714530]
[11]
El-Naggar, A.M.; Khalil, A.K.; Zeidan, H.M.; El-Sayed, W.M. Eco-friendly synthesis of pyrido[2,3-d]pyrimidine analogs and their anticancer and tyrosine kinase inhibition activities. Anticancer. Agents Med. Chem., 2017, 17(12), 1644-1651.
[PMID: 28403776]
[12]
Ismail, M.A.; Youssef, M.M.; Arafa, R.K.; Al-Shihry, S.S.; El-Sayed, W.M. Synthesis and antiproliferative activity of monocationic arylthiophene derivatives. Eur. J. Med. Chem., 2017, 126, 789-798.
[http://dx.doi.org/10.1016/j.ejmech.2016.12.007] [PMID: 27951487]
[13]
Ismail, M.A.; Arafa, R.K.; Youssef, M.M.; El-Sayed, W.M. Anticancer, antioxidant activities, and DNA affinity of novel monocationic bithiophenes and analogues. Drug Des. Devel. Ther., 2014, 8, 1659-1672.
[http://dx.doi.org/10.2147/DDDT.S68016] [PMID: 25302019]
[14]
Hsieh, P.W.; Hwang, T.L.; Wu, C.C.; Chang, F.R.; Wang, T.W.; Wu, Y.C. The evaluation of 2,8-disubstituted benzoxazinone derivatives as anti-inflammatory and anti-platelet aggregation agents. Bioorg. Med. Chem. Lett., 2005, 15(11), 2786-2789.
[http://dx.doi.org/10.1016/j.bmcl.2005.03.104] [PMID: 15878278]
[15]
Abood, N.A.; Schretzman, L.A.; Flynn, D.L.; Houseman, K.A.; Wittwer, A.J.; Dilworth, V.M.; Hippenmeyer, P.J.; Holwerda, B.C. Inhibition of human cytomegalovirus protease by benzoxazinones and evidence of antiviral activity in cell culture. Bioorg. Med. Chem. Lett., 1997, 7(16), 2105-2108.
[http://dx.doi.org/10.1016/S0960-894X(97)00368-5]
[16]
Jiang, S.; Awadasseid, A.; Narva, S.; Cao, S.; Tanaka, Y.; Wu, Y.; Fu, W.; Zhao, X.; Wei, C.; Zhang, W. Anti-cancer activity of benzoxazinone derivatives via targeting c-Myc G-quadruplex structure. Life Sci., 2020, 258, 118252.
[http://dx.doi.org/10.1016/j.lfs.2020.118252] [PMID: 32791149]
[17]
El-Bordany, E.A.; Ali, R.S. Synthesis of new benzoxazinone, quinazolinone, and pyrazoloquinazolinone derivatives and evaluation of their cytotoxic activity against human breast cancer cells. J. Heterocycl. Chem., 2018, 55(5), 1223-1231.
[http://dx.doi.org/10.1002/jhet.3158]
[18]
Carella, A.; Roviello, V.; Iannitti, R.; Palumbo, R.; La Manna, S.; Marasco, D.; Trifuoggi, M.; Diana, R.; Roviello, G.N. Evaluating the biological properties of synthetic 4-nitrophenyl functionalized benzofuran derivatives with telomeric DNA binding and antiproliferative activities. Int. J. Biol. Macromol., 2019, 121, 77-88.
[http://dx.doi.org/10.1016/j.ijbiomac.2018.09.153] [PMID: 30261256]
[19]
Radwan, T.M.; Elhashash, M.A.; Wasfy, A.A.F.; Abdallah, S.A. Synthesis and characteristics of metastable 2-Benzyl-4H-3,1-benzoxazin-4-one as anticancer agent and its comparison with other heterocyclic compounds. ChemistrySelect, 2019, 4(48), 14056-14062.
[http://dx.doi.org/10.1002/slct.201902773]
[20]
Radwan, T.M.; Elhashash, M.A.; Wasfy, A.A.F.; Abdallah, S.A. Antitumor, cytotoxic, and antioxidant evaluation of six heterocyclic compounds containing different heterocycle moieties. J. Heterocycl. Chem., 2020, 57(3), 1-12.
[http://dx.doi.org/10.1002/jhet.3847]
[21]
Salem, M.S.; Al-Mabrook, S.A.M.; El-Hashash, M.A. Design, synthesis and antiproliferative activity of novel heterocycles from 6-iodo-2-phenyl-4Hbenzo[d][1,3]thiazine-4-thione. J. Sulfur Chem., 2020.
[http://dx.doi.org/10.1080/17415993.2020.1847287]
[22]
Marzouk, M.I.; Shaker, S.A.; Farghaly, T.A.; El-Hashash, M.A.; Hussein, S.M. Synthesis of some novel quinazolinone derivatives with anticipated biological activity. J Heterocyclic chem., 2017, 54(6), 3331-3341.
[23]
El-Hashsh, M.A.; El-Badry, Y.A. Synthesis of a novel series of 2,3-disubstituted quinazolin-4(3H)-ones as a product of a nucleophilic attack at C(2) of the corresponding 4H-3,1- benzoxazin-4-one. Helv. Chim. Acta, 2011, 94, 389-396.
[http://dx.doi.org/10.1002/hlca.201000230]
[24]
Youssef, M.Y.; El-Sayed, A.A.; Azab, M.E. Utility of benzoxazin4-one and 3-aminoquinazolin-4-one derivatives as precursors for construction of potent insecticidal heterocycles. J Heterocyclic chem., 2019, 56(6), 2889-2901.
[25]
El-Sayed, A.A.; Ismail, M.F.; Amr, A.E.E.; Naglah, A.M. Synthesis, antiproliferative, and antioxidant evaluation of 2-Pentylquinazolin-4(3H)-one(thione) derivatives with DFT study. Molecules, 2019, 24(20), 3787-3795.
[http://dx.doi.org/10.3390/molecules24203787] [PMID: 31640238]
[26]
El-hashash, M.A.; El-Naggar, A.M.; El-Bordany, E.A.; Marzouk, M.I.; Nawar, T.M.S. Regioselectivity and regiospecificity of benzoxazinone (2-Isopropyl4H-3,1-Benzoxazinone) derivatives toward nitrogen nucleophiles and evaluation of antimicrobial activity. Synth. Commun., 2016, 46(14), 1230-1241.
[http://dx.doi.org/10.1080/00397911.2016.1194998]
[27]
El-hashash, M.A.; El-Naggar, A.M.; El-Bordany, E.A.; Marzouk, M.I.; Nawar, T.M.S. 6-iodo-2-isopropyl-4H-3,1-benzoxazin-4-one as building block in heterocyclic synthesis. Synth. Commun., 2016, 46(24), 2009-2021.
[http://dx.doi.org/10.1080/00397911.2016.1244272]
[28]
El-Hashash, M.A.; Rizk, S.A.; El-Naggar, A.M.; El-Bana, M.G. Regiospecific isomerization of 2-Benzoxazinon-2-yl benzoic acid toward some nitrogen nucleophiles as environmental insecticide. J. Heterocycl. Chem., 2017, 54(6), 3716-3724.
[http://dx.doi.org/10.1002/jhet.2991]
[29]
Skehan, P.; Storeng, R.; Scudiero, D.; Monks, A.; McMahon, J.; Vistica, D.; Warren, J.T.; Bokesch, H.; Kenney, S.; Boyd, M.R. New colorimetric cytotoxicity assay for anticancer-drug screening. J. Natl. Cancer Inst., 1990, 82(13), 1107-1112.
[http://dx.doi.org/10.1093/jnci/82.13.1107] [PMID: 2359136]
[30]
Livak, K.J.; Schmittgen, T.D. Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)). Method. Methods, 2001, 25(4), 402-408.
[http://dx.doi.org/10.1006/meth.2001.1262] [PMID: 11846609]
[31]
Jänicke, R.U. MCF-7 breast carcinoma cells do not express caspase-3. Breast Cancer Res. Treat., 2009, 117(1), 219-221.
[http://dx.doi.org/10.1007/s10549-008-0217-9] [PMID: 18853248]
[32]
Nikolaou, N.; Green, C.J.; Gunn, P.J.; Hodson, L.; Tomlinson, J.W. Optimizing human hepatocyte models for metabolic phenotype and function: Effects of treatment with dimethyl sulfoxide (DMSO). Physiol. Rep., 2016, 4(21), e12944.
[http://dx.doi.org/10.14814/phy2.12944] [PMID: 27803313]
[33]
Ozaki, T.; Nakagawara, A. p53: The attractive tumor suppressor in the cancer research field. J. Biomed. Biotechnol., 2011, 2011, 603925.
[http://dx.doi.org/10.1155/2011/603925] [PMID: 21188172]
[34]
Senturk, E.; Manfredi, J.J. p53 and cell cycle effects after DNA damage. Methods Mol. Biol., 2013, 962, 49-61.
[http://dx.doi.org/10.1007/978-1-62703-236-0_4] [PMID: 23150436]
[35]
Olsson, M.; Zhivotovsky, B. Caspases and cancer. Cell Death Differ., 2011, 18(9), 1441-1449.
[http://dx.doi.org/10.1038/cdd.2011.30] [PMID: 21455218]
[36]
Acikgoz, E.; Guven, U.; Duzagac, F.; Uslu, R.; Kara, M.; Soner, B.C.; Oktem, G. Enhanced G2/M arrest, caspase related apoptosis and reduced e-cadherin dependent intercellular adhesion by trabectedin in prostate cancer stem cells. PLoS One, 2015, 10(10), e0141090.
[http://dx.doi.org/10.1371/journal.pone.0141090] [PMID: 26485709]
[37]
Marchini, S.; Ciro’, M.; Broggini, M. P53-independent caspase-mediated apoptosis in human leukaemic cells is induced by a DNA minor groove binder with antineoplastic activity. Apoptosis, 1999, 4(1), 39-45.
[http://dx.doi.org/10.1023/A:1009630132087] [PMID: 14634294]
[38]
Pfeffer, C.M.; Singh, A.T.K. ApoptosissA target for anticancer therapy. Int. J. Mol. Sci., 2018, 19(2), 1-10.
[PMID: 29393886]
[39]
Putt, K.S.; Chen, G.W.; Pearson, J.M.; Sandhorst, J.S.; Hoagland, M.S.; Kwon, J.T.; Hwang, S.K.; Jin, H.; Churchwell, M.I.; Cho, M.H.; Doerge, D.R.; Helferich, W.G.; Hergenrother, P.J. Small-molecule activation of procaspase-3 to caspase-3 as a personalized anticancer strategy. Nat. Chem. Biol., 2006, 2(10), 543-550.
[http://dx.doi.org/10.1038/nchembio814] [PMID: 16936720]
[40]
Enserink, J.M.; Kolodner, R.D. An overview of Cdk1-controlled targets and processes. Cell Div., 2010, 5, 11.
[http://dx.doi.org/10.1186/1747-1028-5-11] [PMID: 20465793]
[41]
Arora, A.; Scholar, E.M. Role of tyrosine kinase inhibitors in cancer therapy. J. Pharmacol. Exp. Ther., 2005, 315(3), 971-979.
[http://dx.doi.org/10.1124/jpet.105.084145] [PMID: 16002463]
[42]
Nitiss, J.L. Targeting DNA topoisomerase II in cancer chemotherapy. Nat. Rev. Cancer, 2009, 9(5), 338-350.
[http://dx.doi.org/10.1038/nrc2607] [PMID: 19377506]
[43]
Willmore, E.; de Caux, S.; Sunter, N.J.; Tilby, M.J.; Jackson, G.H.; Austin, C.A.; Durkacz, B.W. A novel DNA-dependent protein kinase inhibitor, NU7026, potentiates the cytotoxicity of topoisomerase II poisons used in the treatment of leukemia. Blood, 2004, 103(12), 4659-4665.
[http://dx.doi.org/10.1182/blood-2003-07-2527] [PMID: 15010369]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy