Generic placeholder image

Current Nanoscience

Editor-in-Chief

ISSN (Print): 1573-4137
ISSN (Online): 1875-6786

Review Article

High-speed Atomic Force Microscope Technology: A Review

Author(s): Ke Xu, Qiang An and Peng Li*

Volume 18, Issue 5, 2022

Published on: 06 July, 2021

Page: [545 - 553] Pages: 9

DOI: 10.2174/1573413717666210706113844

Price: $65

Abstract

The atomic force microscope (AFM) is widely used in many fields such as biology, materials, and physics due to its advantages of simple sample preparation, high-resolution topography measurement and wide range of applications. However, the low scanning speed of traditional AFM limits its dynamics process monitoring and other further application. Therefore, the improvement of AFM scanning speed has become more and more important. In this review, the working principle of AFM is first proposed. Then, we introduce the improvements of cantilever, drive mechanism, and control method of the high-speed atomic force microscope (HS-AFM). Finally, we provide the next developments of HS-AFM.

Keywords: High-speed AFM, cantilever, scanner, feedback control algorithm, AFM, topography.

Next »
Graphical Abstract
[1]
Binnig, G.; Gerber, C.; Stoll, E.; Albrecht, T.R.; Quate, C.F. Atomic resolution with atomic force microscope. Europhys. Lett., 1987, 1281-1286. [EPL].
[http://dx.doi.org/10.1209/0295-5075/3/12/006]
[2]
Hu, Y.; Zhang, J.; Ulstrup, J. Investigation of Streptococcus mutans biofilm growth on modified Au (111)-surfaces using AFM and electrochemistry. J. Electroanal. Chem., 2011, 656, 41-49.
[http://dx.doi.org/10.1016/j.jelechem.2011.01.030]
[3]
Xu, K.; Chen, J. High-resolution scanning probe lithography technology: A review. Appl. Nanosci., 2020, 1-10.
[http://dx.doi.org/10.1007/s13204-019-01229-5]
[4]
Hörber, J.K.; Miles, M.J. Scanning probe evolution in biology. Science, 2003, 302(5647), 1002-1005.
[http://dx.doi.org/10.1126/science.1067410] [PMID: 14605360]
[5]
Senden, T.J.; Drummond, C.J. Surface chemistry and tip-sample interactions in atomic force microscopy. Colloids Surf. A Physicochem. Eng. Asp., 1995, 94, 29-51.
[http://dx.doi.org/10.1016/0927-7757(94)02954-Q]
[6]
Ando, T. High-speed atomic force microscopy and its future prospects. Biophys. Rev., 2018, 10(2), 285-292.
[http://dx.doi.org/10.1007/s12551-017-0356-5] [PMID: 29256119]
[7]
Chen, J.; Xu, K. Applications of atomic force microscopy in materials, semiconductors, polymers, and medicine: A minireview. Instrum. Sci. Technol., 2020, 1-15.
[http://dx.doi.org/10.1080/10739149.2020.1764030]
[8]
Zhou, L.; Cai, M.; Tong, T.; Wang, H. Progress in the Correlative Atomic Force Microscopy and Optical Microscopy. Sensors (Basel), 2017, 17(4), 938.
[http://dx.doi.org/10.3390/s17040938] [PMID: 28441775]
[9]
Ando, T. Directly watching biomolecules in action by high-speed atomic force microscopy. Biophys. Rev., 2017, 9(4), 421-429.
[http://dx.doi.org/10.1007/s12551-017-0281-7] [PMID: 28762198]
[10]
Xu, K.; Huang, X.; Pan, Y. Recent development of high-speed atomic force microscopy in molecular biology. Micro & Nano Lett., 2020, 15, 354-358.
[http://dx.doi.org/10.1049/mnl.2019.0313]
[11]
SADER John E. Spring constant calibration of atomic force microscope cantilevers of arbitrary shape. Rev. Sci. Instrum., 2012, 103705.
[12]
Ando, T. High-speed atomic force microscopy for observing protein molecules in dynamic action. Selected Papers from the 31st International Congress on High-Speed Imaging and Photonics, 2017.
[13]
Lim, K. S.; Mohamed, M. S.; Wang, H.; Hartono, H. M.; Kobayashi, A.; Wong, R. W. Direct visualization of avian influenza H5N1 Hemagglutinin precursor and its conformational change by high-speed atomic force microscopy. Biochimica et Biophysica Acta (BBA) - General Subjects, 2019.
[14]
Gordon, N.J.; Salmond, D.J.; Smith, A.F.M. Novel approach to nonlinear/non-Gaussian Bayesian state estimation. IET Digital Library., 1993, 140(2), 107-113.
[http://dx.doi.org/10.1049/ip-f-2.1993.0015]
[15]
Fang, H.H.; Chan, K.Y.; Xu, L.C. Quantification of bacterial adhesion forces using atomic force microscopy (AFM). J. Microbiol. Methods, 2000, 40(1), 89-97.
[http://dx.doi.org/10.1016/S0167-7012(99)00137-2] [PMID: 10739347]
[16]
STIPP S. L. S.. EGGLESTON, C. M.; NIELSEN, B. S. Calcite surface structure observed at microtopographic and molecular scales with atomic force microscopy (AFM). Geochim. Cosmochim. Acta, 1994, 58(14), 3023-3033.
[http://dx.doi.org/10.1016/0016-7037(94)90176-7]
[17]
Liao, H.S.; Yang, C.W.; Ko, H.C.; Hwu, E.T.; Hwang, I.S. Imaging initial formation processes of nanobubbles at the graphite–water interface through high-speed atomic force microscopy. Appl. Surf. Sci., 2018, 434, 913-917.
[http://dx.doi.org/10.1016/j.apsusc.2017.11.044]
[18]
CLEVELAND. J. P. Energy dissipation in tapping-mode atomic force microscopy. Appl. Phys. Lett., 1998, 72(20), 2613-2615.
[http://dx.doi.org/10.1063/1.121434]
[19]
WEISENHORN. A. L. Forces in atomic force microscopy in air and water. Appl. Phys. Lett., 1989, 54(26), 2651-2653.
[http://dx.doi.org/10.1063/1.101024]
[20]
Rief, M.; Oesterhelt, F.; Heymann, B.; Gaub, H.E. Single molecule force spectroscopy on polysaccharides by atomic force microscopy. Science, 1997, 275(5304), 1295-1297.
[http://dx.doi.org/10.1126/science.275.5304.1295] [PMID: 9036852]
[21]
ZHONG Q. Farctured polymer/silica fiber surface studied by tapping mode atomic force microscopy. Surf. Sci., 1993, 290(1-2), L688-L692.
[http://dx.doi.org/10.1016/0039-6028(93)90582-5]
[22]
Tetard, L.; Passian, A.; Thundat, T. New modes for subsurface atomic force microscopy through nanomechanical coupling. Nat. Nanotechnol., 2010, 5(2), 105-109.
[http://dx.doi.org/10.1038/nnano.2009.454] [PMID: 20023642]
[23]
MOHN F. Different tips for high-resolution atomic force microscopy and scanning tunneling microscopy of single molecules. Appl. Phys. Lett., 2013, 102(7), 073109.
[http://dx.doi.org/10.1063/1.4793200]
[24]
MOLL N. The mechanisms underlying the enhanced resolution of atomic force microscopy with functionalized tips. New J. Phys., 2010, 12(12), 125020.
[http://dx.doi.org/10.1088/1367-2630/12/12/125020]
[25]
SEIEDI O. Atomic force microscopy (AFM) investigation on the surfactant wettability alteration mechanism of aged mica mineral surfaces. Energy Fuels, 2011, 25(1), 183-188.
[http://dx.doi.org/10.1021/ef100699t]
[26]
MEYER E. Comparative study of lithium fluoride and graphite by atomic force microscopy (AFM). J. Microsc., 1988, 152(1), 269-280.
[http://dx.doi.org/10.1111/j.1365-2818.1988.tb01388.x]
[27]
Kolosov, O.; Gruverman, A.; Hatano, J.; Takahashi, K.; Tokumoto, H. Nanoscale visualization and control of ferroelectric domains by atomic force microscopy. Phys. Rev. Lett., 1995, 74(21), 4309-4312.
[http://dx.doi.org/10.1103/PhysRevLett.74.4309] [PMID: 10058468]
[28]
JAGTAP R. N.; AMBRE, A. H.. Overview literature on atomic force microscopy (AFM): Basics and its important applications for polymer characterization. 2006.
[29]
KOYUNCU. A comparison of vertical scanning interferometry (VSI) and atomic force microscopy (AFM) for characterizing membrane surface topography. J. Membr. Sci., 2006, 278(1-2), 410-417.
[http://dx.doi.org/10.1016/j.memsci.2005.11.039]
[30]
FOSTER B. New Atomic Force Microscopy (AFM) Approaches Life Sciences Gently, Quantitatively, and Correctively. Am. Lab., 2012, 44(4), 24-28.
[31]
Fantner, G.E.; Schitter, G.; Kindt, J.H.; Ivanov, T.; Ivanova, K.; Patel, R.; Holten-Andersen, N.; Adams, J.; Thurner, P.J.; Rangelow, I.W.; Hansma, P.K. Components for high speed atomic force microscopy. Ultramicroscopy, 2006, 106(8-9), 881-887.
[http://dx.doi.org/10.1016/j.ultramic.2006.01.015] [PMID: 16730410]
[32]
Ando, T.; Uchihashi, T.; Fukuma, T. High-speed atomic force microscopy for nano-visualization of dynamic biomolecular processes. Prog. Surf. Sci., 2008, 83(7-9), 337-437.
[http://dx.doi.org/10.1016/j.progsurf.2008.09.001]
[33]
Shumov, I.D.; Kanashenko, S.L.; Ziborov, V.S.; Ivanov, Y.D.; Archakov, A.I.; Pleshakova, T.O. The limit of mass determination with an AFM cantilever-based system. IOP Conf. Series Mater. Sci. Eng., 2018, 443, 012032.
[http://dx.doi.org/10.1088/1757-899X/443/1/012032]
[34]
TRANCHIDA. Nanoscale mechanical characterization of polymers by atomic force microscopy (AFM) nanoindentations: Viscoelastic characterization of a model material. Meas. Sci. Technol., 2009, 20(9), 095702.
[http://dx.doi.org/10.1088/0957-0233/20/9/095702]
[35]
Gross, L.; Mohn, F.; Moll, N.; Schuler, B.; Criado, A.; Guitián, E.; Peña, D.; Gourdon, A.; Meyer, G. Bond-order discrimination by atomic force microscopy. Science, 2012, 337(6100), 1326-1329.
[http://dx.doi.org/10.1126/science.1225621] [PMID: 22984067]
[36]
ZHONG Q. Fractured polymer/silica fiber surface studied by tapping mode atomic force microscopy. Surf. Sci., 1993, 290(1-2), L688-L692.
[37]
Wagner, R.; Woehl, T.J.; Keller, R.R.; Killgore, J.P. Detection of atomic force microscopy cantilever displacement with a transmitted electron beam. Appl. Phys. Lett., 2016, 109(4), 043111.
[http://dx.doi.org/10.1063/1.4960192] [PMID: 27746481]
[38]
Li, M.; Tang, H.X.; Roukes, M.L. Ultra-sensitive NEMS-based cantilevers for sensing, scanned probe and very high-frequency applications. Nat. Nanotechnol., 2007, 2(2), 114-120.
[http://dx.doi.org/10.1038/nnano.2006.208] [PMID: 18654230]
[39]
Doll, J.C.; Pruitt, B.L. High bandwidth piezoresistive force probes with integrated thermal actuation. J. Micromech. Microeng., 2012, 22(9), 095012.
[http://dx.doi.org/10.1088/0960-1317/22/9/095012] [PMID: 23175616]
[40]
GEORGIEV. Implementing atomic force microscopy (AFM) for studying kinetics of gold nanoparticle’s growth. Colloids Surf. A Physicochem. Eng. Asp., 2013, 434, 154-163.
[http://dx.doi.org/10.1016/j.colsurfa.2013.05.064]
[41]
PLATZ: Daniel. Intermodulation atomic force microscopy. Applied Physics Letters, 2008, 92.15, 153106.
[42]
Keyvani, A.; Sadeghian, H.; Tamer, M.S.; Goosen, J.F.L.; van Keulen, F. Minimizing tip-sample forces and enhancing sensitivity in atomic force microscopy with dynamically compliant cantilevers. J. Appl. Phys., 2017, 121, 244505.
[http://dx.doi.org/10.1063/1.4990276]
[43]
Sulchek, T.; Hsieh, R.; Adams, J.D.; Yaralioglu, G.G.; Minne, S.C.; Quate, C.F.; Adderton, D.M. High-speed tapping mode imaging with active Q control for atomic force microscopy. Appl. Phys. Lett., 2000, 76, 1473-1475.
[http://dx.doi.org/10.1063/1.126071]
[44]
Adams, J.D.; Erickson, B.W.; Grossenbacher, J.; Brugger, J.; Nievergelt, A.; Fantner, G.E. Harnessing the damping properties of materials for high-speed atomic force microscopy. Nat. Nanotechnol., 2016, 11(2), 147-151.
[http://dx.doi.org/10.1038/nnano.2015.254] [PMID: 26595334]
[45]
MOKABERI Babak; REQUICHA, Aristides AG. Compensation of scanner creep and hysteresis for AFM nanomanipulation. IEEE Trans. Autom. Sci. Eng., 2008, 5(2), 197-206.
[http://dx.doi.org/10.1109/TASE.2007.895008]
[46]
RANA Md Sohel; POTA, Hemanshu R.; PETERSEN, Ian R. A Survey of Methods Used to Control Piezoelectric Tube Scanners in High-Speed AFM Imaging. Asian J. Control, 2018, 20(4), 1379-1399.
[http://dx.doi.org/10.1002/asjc.1728]
[47]
D’COSTA Neill P.. HOH, Jan H. Calibration of optical lever sensitivity for atomic force microscopy. Rev. Sci. Instrum., 1995, 66(10), 5096-5097.
[http://dx.doi.org/10.1063/1.1146135]
[48]
Brown, B.P.; Picco, L.; Miles, M.J.; Faul, C.F. Opportunities in high-speed atomic force microscopy. Small, 2013, 9(19), 3201-3211.
[PMID: 23609982]
[49]
Bozchalooi, I.S.; Youcef-Toumi, K.; Burns, D.J.; Fantner, G.E. Compensator design for improved counterbalancing in high speed atomic force microscopy. Rev. Sci. Instrum., 2011, 82(11), 113712.
[http://dx.doi.org/10.1063/1.3663070] [PMID: 22128989]
[50]
Braunsmann, C.; Schäffer, T.E. High-speed atomic force microscopy for large scan sizes using small cantilevers. Nanotechnology, 2010, 21(22), 225705.
[http://dx.doi.org/10.1088/0957-4484/21/22/225705] [PMID: 20453273]
[51]
SCHITTER. Design and modeling of a high-speed AFM-scanner. IEEE Trans. Control Syst. Technol., 2007, 15(5), 906-915.
[http://dx.doi.org/10.1109/TCST.2007.902953]
[52]
Fukuda, S.; Uchihashi, T.; Iino, R.; Okazaki, Y.; Yoshida, M.; Igarashi, K.; Ando, T. High-speed atomic force microscope combined with single-molecule fluorescence microscope. Rev. Sci. Instrum., 2013, 84(7), 073706.
[http://dx.doi.org/10.1063/1.4813280] [PMID: 23902075]
[53]
Ando, T.; Uchihashi, T.; Kodera, N. High-speed atomic force microscopy coming of age. Nanotechnology, 2012, 23(6), 062001.
[http://dx.doi.org/10.1088/0957-4484/23/6/062001] [PMID: 22248867]
[54]
Alunda, B.O.; Lee, Y.J.; Park, S. A simple way to higher speed atomic force microscopy by retrofitting with a novel high-speed flexure-guided scanner. Jpn. J. Appl. Phys., 2018, 7, 06HJ02.
[http://dx.doi.org/10.7567/JJAP.57.06HJ02]
[55]
Schitter, G.; Rijkee, W.F.; Phan, N. Dual actuation for highbandwidth nanopositioning. 2008 47th IEEE Conference on Decision and Control, 2008.
[56]
Liu, L.; Wu, S.; Pang, H.; Hu, X.; Hu, X. High-speed atomic force microscope with a combined tip-sample scanning architecture. Rev. Sci. Instrum., 2019, 90(6), 063707.
[http://dx.doi.org/10.1063/1.5089534] [PMID: 31255009]
[57]
Tian, Y.; Cai, K.; Zhang, D.; Liu, X.; Wang, F.; Shirinzadeh, B. Development of a XYZ scanner for home-made atomic force microscope based on FPAA control. Mech. Syst. Signal Process., 2019, 131, 222-242.
[http://dx.doi.org/10.1016/j.ymssp.2019.05.057]
[58]
Wang, J-Y.; Mullin, N.; Hobbs, J.K. High-speed large area atomic force microscopy using a quartz resonator. Nanotechnology, 2008, 29, 335502.
[59]
Wang, Y.; Wan, J.; Hu, X.; Xu, L.; Wu, S.; Hu, X. A rate adaptive control method for Improving the imaging speed of atomic force microscopy. Ultramicroscopy, 2015, 155, 49-54.
[http://dx.doi.org/10.1016/j.ultramic.2015.04.004] [PMID: 25942751]
[60]
Xie, S.; Ren, J. High-speed AFM imaging via iterative learning-based model predictive control. Mechatronics, 2019, 57, 86-94.
[http://dx.doi.org/10.1016/j.mechatronics.2018.11.008]
[61]
Humphris, A.D.L.; Miles, M.J.; Hobbs, J.K. A mechanical microscope: High-speed atomic force microscopy. Appl. Phys. Lett., 2005, 86, 034106.
[http://dx.doi.org/10.1063/1.1855407]
[62]
Reza, A.S. M.; Miyata, K.; Asakawa, H.; Fukuma, T. High-speed Z tip scanner with screw cantilever holding mechanism for atomic-resolution atomic force microscopy in liquid. Rev. Sci. Instrum., 2014, 85, 126106.
[http://dx.doi.org/10.1063/1.4904029] [PMID: 25554342]
[63]
Herfst, R.; Dekker, B.; Witvoet, G.; Crowcombe, W.; de Lange, D.; Sadeghian, H. A miniaturized, high frequency mechanical scanner for high speed atomic force microscope using suspension on dynamically determined points. Rev. Sci. Instrum., 2015, 86(11), 113703.
[http://dx.doi.org/10.1063/1.4935584] [PMID: 26628140]
[64]
Cai, K.; He, X.; Tian, Y.; Liu, X.; Zhang, D.; Shirinzadeh, B. Design of a XYZ scanner for home-made high-speed atomic force microscopy. Microsyst. Technol., 2017, 24, 3123-3132.
[http://dx.doi.org/10.1007/s00542-017-3674-4]
[65]
Tusset, A.M.; Balthazar, J.M.; Jose, L.J.; Rocha, R.T.; Janzen, F.C.; Yamaguchi, P.S. On an Optimal Control Applied in Atomic Force Microscopy (AFM) Including Fractional-Order. 22nd Design for Manufacturing and the Life Cycle Conference; 11th International Conference on Micro- and Nanosystems, 2017, 4
[66]
Sun, Y.; Pang, J.H. AFM image reconstruction for deformation measurements by digital image correlation. Nanotechnology, 2006, 17(4), 933-939.
[http://dx.doi.org/10.1088/0957-4484/17/4/016] [PMID: 21727362]
[67]
RANA M. S.. POTA, H. R.; PETERSEN, I. R. Spiral scanning with improved control for faster imaging of AFM. IEEE Trans. Nanotechnol., 2014, 13(3), 541-550.
[http://dx.doi.org/10.1109/TNANO.2014.2309653]
[68]
PARK J. K.. MOON, W. K. Sensorless control for hysteresis compensation of AFM scanner by modified Rayleigh model. J. Cent. South Univ. Technol., 2010, 17(6), 1243-1246.
[http://dx.doi.org/10.1007/s11771-010-0626-x]
[69]
CHOI. A study of AFM-based scratch process on polycarbonate surface and grating application. Appl. Surf. Sci., 2010, 256(24), 7668-7671.
[http://dx.doi.org/10.1016/j.apsusc.2010.06.025]
[70]
XIA F. Bandwidth Based Repetitive Controller Design for a Modular Multi-actuated AFM Scanner. 2019 American Control Conference (ACC), 2019, 3776-3781.
[71]
Li, Y.; Bechhoefer, J. Feedforward control of a closed-loop piezoelectric translation stage for atomic force microscope. Rev. Sci. Instrum., 2007, 78(1), 013702.
[http://dx.doi.org/10.1063/1.2403839] [PMID: 17503923]
[72]
Wu, Y.; Fang, Y. Parameter Self-Turning Fuzzy PID Controller Design for Atomic Force Microscopy in Z-Axis. 2018 IEEE 8th Annual International Conference on CYBER Technology in Automation, Control, and Intelligent Systems (CYBER), 2018.
[73]
Kodera, N.; Sakashita, M.; Ando, T. Dynamic proportional-integral-differential controller for high-speed atomic force microscopy. Rev. Sci. Instrum., 2006, 77(8), 083704. [J].
[http://dx.doi.org/10.1063/1.2336113]
[74]
Wang, Y.; Hu, X.; Xu, L.; Hu, X. Improving the scanning speed of atomic force microscopy at the scanning range of several tens of micrometers. Ultramicroscopy, 2013, 124, 102-107.
[http://dx.doi.org/10.1016/j.ultramic.2012.08.001] [PMID: 23142751]
[75]
Fang, Z. Learning control system suitable for advanced scanning mode of atomic force microscope. Control Theory & Applications., 2010, 27, 2010-2015.
[76]
Schitter, G. Allgö wer F, Stemmer A. A new control strategy for high-speed atomic force microscopy. Nanotechnology, 2004, 15(1), 108-114.
[http://dx.doi.org/10.1088/0957-4484/15/1/021]
[77]
Lu, H.; Fang, Y.; Ren, X.; Zhang, X. Improved direct inverse tracking control of a piezoelectric tube scanner for high-speed AFM imaging. Mechatronics, 2015, 31, 189-195.
[http://dx.doi.org/10.1016/j.mechatronics.2015.08.006]
[78]
Shengwen, X.I.E.; Juan, R.E.N. Recurrent-neural-network-based predictive control of piezo actuators for precision trajectory tracking. 2019 American Control Conference (ACC), 2019, pp. 3795-3800.
[79]
Xie, H.; Wen, Y.; Shen, X.; Zhang, H.; Sun, L. High-Speed AFM Imaging of Nanopositioning Stages Using H∞ and Iterative Learning Control. IEEE Trans. Ind. Electron., 2019, 1, 1-10.
[80]
Schächtele, M.; Hänel, E.; Schäffer, T.E. Resonance compensating chirp mode for mapping the rheology of live cells by high-speed atomic force microscopy. Appl. Phys. Lett., 2018, 113, 093701.
[http://dx.doi.org/10.1063/1.5039911]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy