Generic placeholder image

Current Molecular Pharmacology

Editor-in-Chief

ISSN (Print): 1874-4672
ISSN (Online): 1874-4702

Review Article

Exercise and Nutraceuticals: Eminent Approach for Diabetic Neuropathy

Author(s): Mayur Bhimrao Kale, Komal Bajaj, Mohit Umare, Nitu L. Wankhede, Brijesh Gulabrao Taksande, Milind Janrao Umekar and Aman Upaganlawar*

Volume 15, Issue 1, 2022

Published on: 29 June, 2021

Article ID: e290621194364 Pages: 21

DOI: 10.2174/1874467214666210629123010

Price: $65

Abstract

Diabetic neuropathy is an incapacitating chronic pathological condition that encompasses a large group of diseases and manifestations of nerve damage. It affects approximately 50% of patients with diabetes mellitus. Autonomic, sensory, and motor neurons are affected. Disabilities are severe, along with poor recovery and diverse pathophysiology. Physical exercise and herbal- based therapies have the potential to decrease the disabilities associated with diabetic neuropathy. Aerobic exercises like walking, weight lifting, the use of nutraceuticals and herbal extracts are found to be effective. Literature from the public domain was studied emphasizing various beneficial effects of different exercises, herbal and nutraceuticals for their therapeutic action in diabetic neuropathy. Routine exercises and administration of herbal and nutraceuticals, either the extract of plant material containing the active phytoconstituent or isolated phytoconstituent at safe concentration, have been shown to have promising positive action in the treatment of diabetic neuropathy. Exercise has shown promising effects on vascular and neuronal health. It has proven to be well effective in the treatment as well as prevention of diabetic neuropathy by various novel mechanisms, including Herbal and nutraceuticals therapy. They primarily show the anti-oxidant effect, secretagogue, anti-inflammatory, analgesic, and neuroprotective action. Severe adverse events are rare with these therapies. The current review investigates the benefits of exercise and nutraceutical therapies in the treatment of diabetic neuropathy.

Keywords: Diabetes Mellitus, diabetic neuropathy, physical exercise, nutraceuticals, diabetic ketoacidosis, nonketotic hyperosmolar state.

Graphical Abstract
[1]
Amos, A.F.; McCarty, D.J.; Zimmet, P. The rising global burden of diabetes and its complications: Estimates and projections to the year 2010. Diabet. Med., 1997, 14(Suppl. 5), S1-S85.
[http://dx.doi.org/10.1002/(SICI)1096-9136(199712)14:5+<S7::AID-DIA522>3.0.CO;2-R] [PMID: 9450510]
[2]
Feldman, E.L.; Callaghan, B.C.; Pop-Busui, R.; Zochodne, D.W.; Wright, D.E.; Bennett, D.L.; Bril, V.; Russell, J.W.; Viswanathan, V. Diabetic neuropathy. Nat. Rev. Dis. Primers, 2019, 5(1), 41.
[http://dx.doi.org/10.1038/s41572-019-0092-1] [PMID: 31197153]
[3]
King, H.; Aubert, R.E.; Herman, W.H. Global burden of diabetes, 1995-2025: Prevalence, numerical estimates, and projections. Diabetes Care, 1998, 21(9), 1414-1431.
[http://dx.doi.org/10.2337/diacare.21.9.1414] [PMID: 9727886]
[4]
Çakici, N.; Fakkel, T.M.; van Neck, J.W.; Verhagen, A.P.; Coert, J.H. Systematic review of treatments for diabetic peripheral neuropathy. Diabet. Med., 2016, 33(11), 1466-1476.
[http://dx.doi.org/10.1111/dme.13083] [PMID: 26822889]
[5]
World Health Organization. Definition, diagnosis and classification of diabetes mellitus and its complications: report of a WHO consultation. Part 1, Diagnosis and classification of diabetes mellitus. World Health Organization, 1999.
[6]
Fasanmade, O.A.; Odeniyi, I.A.; Ogbera, A.O. Diabetic ketoacidosis: Diagnosis and management. Afr. J. Med. Med. Sci., 2008, 37(2), 99-105.
[PMID: 18939392]
[7]
Kitabchi, A.E.; Nyenwe, E.A. Hyperglycemic crises in diabetes mellitus: Diabetic ketoacidosis and hyperglycemic hyperosmolar state. Endocrinol. Metab. Clin. North Am., 2006, 35(4), 725-751, viii.
[http://dx.doi.org/10.1016/j.ecl.2006.09.006] [PMID: 17127143]
[8]
Fong, D.S.; Aiello, L.P.; Ferris, F.L., III; Klein, R. Diabetic retinopathy. Diabetes Care, 2004, 27(10), 2540-2553.
[http://dx.doi.org/10.2337/diacare.27.10.2540] [PMID: 15451934]
[9]
Huang, D.; Refaat, M.; Mohammedi, K.; Jayyousi, A.; Al Suwaidi, J.; Abi Khalil, C. Macrovascular complications in patients with diabetes and prediabetes. BioMed Res. Int., 2017, 2017, 7839101.
[http://dx.doi.org/10.1155/2017/7839101] [PMID: 29238721]
[10]
Cole, J.B.; Florez, J.C. Genetics of diabetes mellitus and diabetes complications. Nat. Rev. Nephrol., 2020, 16(7), 377-390.
[http://dx.doi.org/10.1038/s41581-020-0278-5] [PMID: 32398868]
[11]
Agashe, S.; Petak, S. Cardiac autonomic neuropathy in diabetes mellitus. Methodist DeBakey Cardiovasc. J., 2018, 14(4), 251-256.
[PMID: 30788010]
[12]
Moheet, A.; Mangia, S.; Seaquist, E.R. Impact of diabetes on cognitive function and brain structure. Ann. N. Y. Acad. Sci., 2015, 1353, 60-71.
[http://dx.doi.org/10.1111/nyas.12807] [PMID: 26132277]
[13]
Ljubimov, A.V. Diabetic complications in the cornea. Vision Res., 2017, 139, 138-152.
[http://dx.doi.org/10.1016/j.visres.2017.03.002] [PMID: 28404521]
[14]
Ritz, E.; Orth, S.R. Nephropathy in patients with type 2 diabetes mellitus. N. Engl. J. Med., 1999, 341(15), 1127-1133.
[http://dx.doi.org/10.1056/NEJM199910073411506] [PMID: 10511612]
[15]
Grundy, S.M.; Benjamin, I.J.; Burke, G.L.; Chait, A.; Eckel, R.H.; Howard, B.V.; Mitch, W.; Smith, S.C., Jr; Sowers, J.R. Diabetes and cardiovascular disease: A statement for healthcare professionals from the American Heart Association. Circulation, 1999, 100(10), 1134-1146.
[http://dx.doi.org/10.1161/01.CIR.100.10.1134] [PMID: 10477542]
[16]
American Diabetes Association. Consensus Development Conference on Diabetic Foot Wound Care: 7-8 April 1999, Boston, Massachusetts. American Diabetes Association. Diabetes Care, 1999, 22(8), 1354-1360.
[http://dx.doi.org/10.2337/diacare.22.8.1354] [PMID: 10480782]
[17]
New concepts in diabetes and its treatment; Belfiore, F.; Mogensen, C.E Eds.; Karger: Basel, 2000.
[18]
National Diabetes Information Clearinghouse. Diabetic neuropathies: The nerve damage of diabetes. 2009. Available from: https://static1.squarespace.com/static/54f8bdc9e4b05ef254a56822/t/58751662cd0f68e66cafc11f/1484068452930/Neuropathies_508.pdf (Accessed on December 1, 2021).
[19]
Boulton, A.J.M.; Gries, F.A.; Jervell, J.A. Guidelines for the diagnosis and outpatient management of diabetic peripheral neuropathy. Diabet. Med., 1998, 15(6), 508-514.
[http://dx.doi.org/10.1002/(SICI)1096-9136(199806)15:6<508::AID-DIA613>3.0.CO;2-L] [PMID: 9632127]
[20]
Talbot, S.; Couture, R. Emerging role of microglial kinin B1 receptor in diabetic pain neuropathy. Exp. Neurol., 2012, 234(2), 373-381.
[http://dx.doi.org/10.1016/j.expneurol.2011.11.032] [PMID: 22154922]
[21]
Tavakoli, M.; Asghar, O.; Alam, U.; Petropoulos, I.N.; Fadavi, H.; Malik, R.A. Novel insights on diagnosis, cause and treatment of diabetic neuropathy: Focus on painful diabetic neuropathy. Ther. Adv. Endocrinol. Metab., 2010, 1(2), 69-88.
[http://dx.doi.org/10.1177/2042018810370954] [PMID: 23148152]
[22]
Azhary, H.; Farooq, M.U.; Bhanushali, M.; Majid, A.; Kassab, M.Y. Peripheral neuropathy: Differential diagnosis and management. Am. Fam. Physician, 2010, 81(7), 887-892.
[PMID: 20353146]
[23]
Gordon Smith, A.; Robinson Singleton, J. Idiopathic neuropathy, prediabetes and the metabolic syndrome. J. Neurol. Sci., 2006, 242(1-2), 9-14.
[http://dx.doi.org/10.1016/j.jns.2005.11.020] [PMID: 16448668]
[24]
Max, M.B.; Culnane, M.; Schafer, S.C.; Gracely, R.H.; Walther, D.J.; Smoller, B.; Dubner, R. Amitriptyline relieves diabetic neuropathy pain in patients with normal or depressed mood. Neurology, 1987, 37(4), 589-596.
[http://dx.doi.org/10.1212/WNL.37.4.589] [PMID: 2436092]
[25]
Max, M.B.; Lynch, S.A.; Muir, J.; Shoaf, S.E.; Smoller, B.; Dubner, R. Effects of desipramine, amitriptyline, and fluoxetine on pain in diabetic neuropathy. N. Engl. J. Med., 1992, 326(19), 1250-1256.
[http://dx.doi.org/10.1056/NEJM199205073261904] [PMID: 1560801]
[26]
Sindrup, S.H.; Gram, L.F.; Skjold, T.; Frøland, A.; Beck-Nielsen, H. Concentration-response relationship in imipramine treatment of diabetic neuropathy symptoms. Clin. Pharmacol. Ther., 1990, 47(4), 509-515.
[http://dx.doi.org/10.1038/clpt.1990.65] [PMID: 2328559]
[27]
Sindrup, S.H.; Gram, L.F.; Skjold, T.; Grodum, E.; Brøsen, K.; Beck-Nielsen, H. Clomipramine vs desipramine vs placebo in the treatment of diabetic neuropathy symptoms. A double-blind cross-over study. Br. J. Clin. Pharmacol., 1990, 30(5), 683-691.
[http://dx.doi.org/10.1111/j.1365-2125.1990.tb03836.x] [PMID: 2271367]
[28]
Sindrup, S.H.; Bjerre, U.; Dejgaard, A.; Brøsen, K.; Aaes-Jørgensen, T.; Gram, L.F. The selective serotonin reuptake inhibitor citalopram relieves the symptoms of diabetic neuropathy. Clin. Pharmacol. Ther., 1992, 52(5), 547-552.
[http://dx.doi.org/10.1038/clpt.1992.183] [PMID: 1424428]
[29]
Rowbotham, M.C.; Goli, V.; Kunz, N.R.; Lei, D. Venlafaxine extended release in the treatment of painful diabetic neuropathy: A double-blind, placebo-controlled study. Pain, 2004, 110(3), 697-706.
[http://dx.doi.org/10.1016/j.pain.2004.05.010] [PMID: 15288411]
[30]
Goldstein, D.J.; Lu, Y.; Detke, M.J.; Lee, T.C.; Iyengar, S. Duloxetine vs. placebo in patients with painful diabetic neuropathy. Pain, 2005, 116(1-2), 109-118.
[http://dx.doi.org/10.1016/j.pain.2005.03.029] [PMID: 15927394]
[31]
Backonja, M.; Beydoun, A.; Edwards, K.R.; Schwartz, S.L.; Fonseca, V.; Hes, M.; LaMoreaux, L.; Garofalo, E. Gabapentin for the symptomatic treatment of painful neuropathy in patients with diabetes mellitus: A randomized controlled trial. JAMA, 1998, 280(21), 1831-1836.
[http://dx.doi.org/10.1001/jama.280.21.1831] [PMID: 9846777]
[32]
Rosenstock, J.; Tuchman, M.; LaMoreaux, L.; Sharma, U. Pregabalin for the treatment of painful diabetic peripheral neuropathy: A double-blind, placebo-controlled trial. Pain, 2004, 110(3), 628-638.
[http://dx.doi.org/10.1016/j.pain.2004.05.001] [PMID: 15288403]
[33]
Eisenberg, E.; Lurie, Y.; Braker, C.; Daoud, D.; Ishay, A. Lamotrigine reduces painful diabetic neuropathy: A randomized, controlled study. Neurology, 2001, 57(3), 505-509.
[http://dx.doi.org/10.1212/WNL.57.3.505] [PMID: 11502921]
[34]
Rull, J.A.; Quibrera, R.; González-Millán, H.; Lozano Castañeda, O. Symptomatic treatment of peripheral diabetic neuropathy with carbamazepine (Tegretol): Double blind crossover trial. Diabetologia, 1969, 5(4), 215-218.
[http://dx.doi.org/10.1007/BF01212087] [PMID: 4902717]
[35]
Raskin, P.; Donofrio, P.D.; Rosenthal, N.R.; Hewitt, D.J.; Jordan, D.M.; Xiang, J.; Vinik, A.I. Topiramate vs placebo in painful diabetic neuropathy: Analgesic and metabolic effects. Neurology, 2004, 63(5), 865-873.
[http://dx.doi.org/10.1212/01.WNL.0000137341.89781.14] [PMID: 15365138]
[36]
Harati, Y.; Gooch, C.; Swenson, M.; Edelman, S.; Greene, D.; Raskin, P.; Donofrio, P.; Cornblath, D.; Sachdeo, R.; Siu, C.O.; Kamin, M. Double-blind randomized trial of tramadol for the treatment of the pain of diabetic neuropathy. Neurology, 1998, 50(6), 1842-1846.
[http://dx.doi.org/10.1212/WNL.50.6.1842] [PMID: 9633738]
[37]
Gimbel, J.S.; Richards, P.; Portenoy, R.K. Controlled-release oxycodone for pain in diabetic neuropathy: A randomized controlled trial. Neurology, 2003, 60(6), 927-934.
[http://dx.doi.org/10.1212/01.WNL.0000057720.36503.2C] [PMID: 12654955]
[38]
Sang, C.N.; Booher, S.; Gilron, I.; Parada, S.; Max, M.B. Dextromethorphan and memantine in painful diabetic neuropathy and postherpetic neuralgia: Efficacy and dose-response trials. Anesthesiology, 2002, 96(5), 1053-1061.
[http://dx.doi.org/10.1097/00000542-200205000-00005] [PMID: 11981142]
[39]
Dailey, G.E.; Muchmore, D.P.; Springer, J.W.; Donofrio, P.D.; Walker, F.O.; Hunt, V.P.; Tandan, R.; Fries, T.J.; Lewis, G.; Ramamurthy, S.; Walsh, N.; Hoffmann, J.; Scheffler, N.M.; Sheitel, P.L.; Wendt, J.; Thomas, J.C.; Kurent, J.E.; Whitehouse, F.W.; Basha, K.M. Effect of treatment with capsaicin on daily activities of patients with painful diabetic neuropathy. Diabetes Care, 1992, 15(2), 159-165.
[http://dx.doi.org/10.2337/diacare.15.2.159] [PMID: 1547671]
[40]
Prakash, S.; Gosai, F.; Brahmbhatt, J.; Shah, C. Serotonin syndrome in patients with peripheral neuropathy: A diagnostic challenge. Gen. Hosp. Psychiatry, 2014, 36(4), 450.e9-450.e11.
[http://dx.doi.org/10.1016/j.genhosppsych.2014.03.012] [PMID: 24768426]
[41]
de Abajo, F.J.; García-Rodríguez, L.A. Risk of upper gastrointestinal tract bleeding associated with selective serotonin reuptake inhibitors and venlafaxine therapy: Interaction with nonsteroidal anti-inflammatory drugs and effect of acid-suppressing agents. Arch. Gen. Psychiatry, 2008, 65(7), 795-803.
[http://dx.doi.org/10.1001/archpsyc.65.7.795] [PMID: 18606952]
[42]
Zychowska, M.; Rojewska, E.; Przewlocka, B.; Mika, J. Mechanisms and pharmacology of diabetic neuropathy - experimental and clinical studies. Pharmacol. Rep., 2013, 65(6), 1601-1610.
[http://dx.doi.org/10.1016/S1734-1140(13)71521-4] [PMID: 24553008]
[43]
Colberg, S.R.; Vinik, A.I. Exercising with peripheral or autonomic neuropathy: What health care providers and diabetic patients need to know. Phys. Sportsmed., 2014, 42(1), 15-23.
[http://dx.doi.org/10.3810/psm.2014.02.2043] [PMID: 24565817]
[44]
Rajasekaran, a.; Sivagnanam, G.; Xavier, R. Nutraceuticals as therapeutic agents : A review. Res. J. Pharm. Tech, 2008, 1(4), 328-40.
[45]
Zilliox, L.A.; Russell, J.W. Physical activity and dietary interventions in diabetic neuropathy: A systematic review. Clin. Auton. Res., 2019, 29(4), 443-455.
[http://dx.doi.org/10.1007/s10286-019-00607-x] [PMID: 31076938]
[46]
Kong, M.F.; Horowitz, M.; Jones, K.L.; Wishart, J.M.; Harding, P.E. Natural history of diabetic gastroparesis. Diabetes Care, 1999, 22(3), 503-507.
[http://dx.doi.org/10.2337/diacare.22.3.503] [PMID: 10097936]
[47]
Maser, R.E.; Mitchell, B.D.; Vinik, A.I.; Freeman, R. The association between cardiovascular autonomic neuropathy and mortality in individuals with diabetes: A meta-analysis. Diabetes Care, 2003, 26(6), 1895-1901.
[http://dx.doi.org/10.2337/diacare.26.6.1895] [PMID: 12766130]
[48]
Dewanjee, S.; Das, S.; Das, A.K.; Bhattacharjee, N.; Dihingia, A.; Dua, T.K.; Kalita, J.; Manna, P. Molecular mechanism of diabetic neuropathy and its pharmacotherapeutic targets. Eur. J. Pharmacol., 2018, 833, 472-523.
[http://dx.doi.org/10.1016/j.ejphar.2018.06.034] [PMID: 29966615]
[49]
Feldman, E.L.; Nave, K.A.; Jensen, T.S.; Bennett, D.L.H. New horizons in diabetic neuropathy: Mechanisms, bioenergetics, and pain. Neuron, 2017, 93(6), 1296-1313.
[http://dx.doi.org/10.1016/j.neuron.2017.02.005] [PMID: 28334605]
[50]
Nakamura, J.; Kato, K.; Hamada, Y.; Nakayama, M.; Chaya, S.; Nakashima, E.; Naruse, K.; Kasuya, Y.; Mizubayashi, R.; Miwa, K.; Yasuda, Y.; Kamiya, H.; Ienaga, K.; Sakakibara, F.; Koh, N.; Hotta, N. A protein kinase C-beta-selective inhibitor ameliorates neural dysfunction in streptozotocin-induced diabetic rats. Diabetes, 1999, 48(10), 2090-2095.
[http://dx.doi.org/10.2337/diabetes.48.10.2090] [PMID: 10512378]
[51]
Vincent, A.M.; Russell, J.W.; Low, P.; Feldman, E.L. Oxidative stress in the pathogenesis of diabetic neuropathy. Endocr. Rev., 2004, 25(4), 612-628.
[http://dx.doi.org/10.1210/er.2003-0019] [PMID: 15294884]
[52]
Brownlee, M. The pathobiology of diabetic complications: A unifying mechanism. Diabetes, 2005, 54(6), 1615-1625.
[http://dx.doi.org/10.2337/diabetes.54.6.1615] [PMID: 15919781]
[53]
Jermendy, G.; Tóth, L.; Vörös, P.; Koltai, M.Z.; Pogátsa, G. QT interval in diabetic autonomic neuropathy. Diabet. Med., 1990, 7(8), 750.
[http://dx.doi.org/10.1111/j.1464-5491.1990.tb01482.x] [PMID: 2147640]
[54]
Stevens, M.J.; Feldman, E.L.; Thomas, T.; Greene, D.A. Pathogenesis of diabetic neuropathy. In: Clinical Management of Diabetic Neuropathy; Veves, A., Ed.; , 1998; 7, pp. 13-48.
[http://dx.doi.org/10.1007/978-1-4612-1816-6_2]
[55]
Uehara, K.; Yamagishi, S.; Otsuki, S.; Chin, S.; Yagihashi, S. Effects of polyol pathway hyperactivity on protein kinase C activity, nociceptive peptide expression, and neuronal structure in dorsal root ganglia in diabetic mice. Diabetes, 2004, 53(12), 3239-3247.
[http://dx.doi.org/10.2337/diabetes.53.12.3239] [PMID: 15561956]
[56]
Yamagishi, S.; Uehara, K.; Otsuki, S.; Yagihashi, S. Differential influence of increased polyol pathway on protein kinase C expressions between endoneurial and epineurial tissues in diabetic mice. J. Neurochem., 2003, 87(2), 497-507.
[http://dx.doi.org/10.1046/j.1471-4159.2003.02011.x] [PMID: 14511127]
[57]
Thornalley, P.J. The potential role of thiamine (vitamin B1) in diabetic complications. Curr. Diabetes Rev., 2005, 1(3), 287-298.
[http://dx.doi.org/10.2174/157339905774574383] [PMID: 18220605]
[58]
Brownlee, M. Biochemistry and molecular cell biology of diabetic complications. Nature, 2001, 414(6865), 813-820.
[http://dx.doi.org/10.1038/414813a] [PMID: 11742414]
[59]
Kolm-Litty, V.; Sauer, U.; Nerlich, A.; Lehmann, R.; Schleicher, E.D. High glucose-induced transforming growth factor beta1 production is mediated by the hexosamine pathway in porcine glomerular mesangial cells. J. Clin. Invest., 1998, 101(1), 160-169.
[http://dx.doi.org/10.1172/JCI119875] [PMID: 9421478]
[60]
Sayeski, P.P.; Kudlow, J.E. Glucose metabolism to glucosamine is necessary for glucose stimulation of transforming growth factor-α gene transcription. J. Biol. Chem., 1996, 271(25), 15237-15243.
[http://dx.doi.org/10.1074/jbc.271.25.15237] [PMID: 8663078]
[61]
Du, X.L.; Edelstein, D.; Rossetti, L.; Fantus, I.G.; Goldberg, H.; Ziyadeh, F.; Wu, J.; Brownlee, M. Hyperglycemia-induced mitochondrial superoxide overproduction activates the hexosamine pathway and induces plasminogen activator inhibitor-1 expression by increasing Sp1 glycosylation. Proc. Natl. Acad. Sci. USA, 2000, 97(22), 12222-12226.
[http://dx.doi.org/10.1073/pnas.97.22.12222] [PMID: 11050244]
[62]
Hirakata, Y.; Kitamura, S. Elevated serum transforming growth factor beta 1 level in primary lung cancer patients with finger clubbing. Eur. J. Clin. Invest., 1996, 26(9), 820-823.
[http://dx.doi.org/10.1046/j.1365-2362.1996.2260560.x] [PMID: 8889446]
[63]
Kaneto, H.; Xu, G.; Song, K-H.; Suzuma, K.; Bonner-Weir, S.; Sharma, A.; Weir, G.C. Activation of the hexosamine pathway leads to deterioration of pancreatic β-cell function through the induction of oxidative stress. J. Biol. Chem., 2001, 276(33), 31099-31104.
[http://dx.doi.org/10.1074/jbc.M104115200] [PMID: 11390407]
[64]
Arikawa, E.; Ma, R.C.W.; Isshiki, K.; Luptak, I.; He, Z.; Yasuda, Y.; Maeno, Y.; Patti, M.E.; Weir, G.C.; Harris, R.A.; Zammit, V.A.; Tian, R.; King, G.L. Effects of insulin replacements, inhibitors of angiotensin, and PKCbeta’s actions to normalize cardiac gene expression and fuel metabolism in diabetic rats. Diabetes, 2007, 56(5), 1410-1420.
[http://dx.doi.org/10.2337/db06-0655] [PMID: 17363743]
[65]
Das Evcimen, N.; King, G.L. The role of protein kinase C activation and the vascular complications of diabetes. Pharmacol. Res., 2007, 55(6), 498-510.
[http://dx.doi.org/10.1016/j.phrs.2007.04.016] [PMID: 17574431]
[66]
Veves, A.; King, G.L. Can VEGF reverse diabetic neuropathy in human subjects? J. Clin. Invest., 2001, 107(10), 1215-1218.
[http://dx.doi.org/10.1172/JCI13038] [PMID: 11375408]
[67]
Edwards, A.S.; Faux, M.C.; Scott, J.D.; Newton, A.C. Carboxyl-terminal phosphorylation regulates the function and subcellular localization of protein kinase C betaII. J. Biol. Chem., 1999, 274(10), 6461-6468.
[http://dx.doi.org/10.1074/jbc.274.10.6461] [PMID: 10037738]
[68]
Williams, B.; Gallacher, B.; Patel, H.; Orme, C. Glucose-induced protein kinase C activation regulates vascular permeability factor mRNA expression and peptide production by human vascular smooth muscle cells in vitro. Diabetes, 1997, 46(9), 1497-1503.
[http://dx.doi.org/10.2337/diab.46.9.1497] [PMID: 9287052]
[69]
Xia, P.; Kramer, R.M.; King, G.L. Identification of the mechanism for the inhibition of Na+,K(+)-adenosine triphosphatase by hyperglycemia involving activation of protein kinase C and cytosolic phospholipase A2. J. Clin. Invest., 1995, 96(2), 733-740.
[http://dx.doi.org/10.1172/JCI118117] [PMID: 7635966]
[70]
Cortright, R.N.; Azevedo, J.L., Jr; Zhou, Q.; Sinha, M.; Pories, W.J.; Itani, S.I.; Dohm, G.L. Protein kinase C modulates insulin action in human skeletal muscle. Am. J. Physiol. Endocrinol. Metab., 2000, 278(3), E553-E562.
[http://dx.doi.org/10.1152/ajpendo.2000.278.3.E553] [PMID: 10710511]
[71]
Ahmed, N. Advanced glycation endproducts-role in pathology of diabetic complications. Diabetes Res. Clin. Pract., 2005, 67(1), 3-21.
[http://dx.doi.org/10.1016/j.diabres.2004.09.004] [PMID: 15620429]
[72]
Toth, C.; Rong, L.L.; Yang, C.; Martinez, J.; Song, F.; Ramji, N.; Brussee, V.; Liu, W.; Durand, J.; Nguyen, M.D.; Schmidt, A.M.; Zochodne, D.W. Receptor for advanced glycation end products (RAGEs) and experimental diabetic neuropathy. Diabetes, 2008, 57(4), 1002-1017.
[http://dx.doi.org/10.2337/db07-0339] [PMID: 18039814]
[73]
Yao, D.; Taguchi, T.; Matsumura, T.; Pestell, R.; Edelstein, D.; Giardino, I.; Suske, G.; Rabbani, N.; Thornalley, P.J.; Sarthy, V.P.; Hammes, H.P.; Brownlee, M. High glucose increases angiopoietin-2 transcription in microvascular endothelial cells through methylglyoxal modification of mSin3A. J. Biol. Chem., 2007, 282(42), 31038-31045.
[http://dx.doi.org/10.1074/jbc.M704703200] [PMID: 17670746]
[74]
Ramasamy, R.; Vannucci, S.J.; Yan, S.S.; Herold, K.; Yan, S.F.; Schmidt, A.M. Advanced glycation end products and RAGE: A common thread in aging, diabetes, neurodegeneration, and inflammation. Glycobiology, 2005, 15(7), 16R-28R.
[http://dx.doi.org/10.1093/glycob/cwi053] [PMID: 15764591]
[75]
Vincent, A.M.; Perrone, L.; Sullivan, K.A.; Backus, C.; Sastry, A.M.; Lastoskie, C.; Feldman, E.L. Receptor for advanced glycation end products activation injures primary sensory neurons via oxidative stress. Endocrinology, 2007, 148(2), 548-558.
[http://dx.doi.org/10.1210/en.2006-0073] [PMID: 17095586]
[76]
Kislinger, T.; Tanji, N.; Wendt, T.; Qu, W.; Lu, Y.; Ferran, L.J., Jr; Taguchi, A.; Olson, K.; Bucciarelli, L.; Goova, M.; Hofmann, M.A.; Cataldegirmen, G.; D’Agati, V.; Pischetsrieder, M.; Stern, D.M.; Schmidt, A.M. Receptor for advanced glycation end products mediates inflammation and enhanced expression of tissue factor in vasculature of diabetic apolipoprotein E-null mice. Arterioscler. Thromb. Vasc. Biol., 2001, 21(6), 905-910.
[http://dx.doi.org/10.1161/01.ATV.21.6.905] [PMID: 11397695]
[77]
Wada, R.; Yagihashi, S. Role of advanced glycation end products and their receptors in development of diabetic neuropathy. Ann. N. Y. Acad. Sci., 2005, 1043, 598-604.
[http://dx.doi.org/10.1196/annals.1338.067] [PMID: 16037282]
[78]
Obrosova, I.G.; Drel, V.R.; Pacher, P.; Ilnytska, O.; Wang, Z.Q.; Stevens, M.J.; Yorek, M.A. Oxidative-nitrosative stress and poly(ADP-ribose) polymerase (PARP) activation in experimental diabetic neuropathy: The relation is revisited. Diabetes, 2005, 54(12), 3435-3441.
[http://dx.doi.org/10.2337/diabetes.54.12.3435] [PMID: 16306359]
[79]
Du, X.; Matsumura, T.; Edelstein, D.; Rossetti, L.; Zsengellér, Z.; Szabó, C.; Brownlee, M. Inhibition of GAPDH activity by poly(ADP-ribose) polymerase activates three major pathways of hyperglycemic damage in endothelial cells. J. Clin. Invest., 2003, 112(7), 1049-1057.
[http://dx.doi.org/10.1172/JCI18127] [PMID: 14523042]
[80]
Virág, L.; Jagtap, P.; Szabó, E.; Mabley, J.G.; Liaudet, L.; Marton, A.; Hoyt, D.G.; Murthy, K.G.; Salzman, A.L.; Southan, G.J.; Szabó, C.; Szabó, C. Diabetic endothelial dysfunction: The role of poly(ADP-ribose) polymerase activation. Nat. Med., 2001, 7(1), 108-113.
[http://dx.doi.org/10.1038/83241] [PMID: 11135624]
[81]
Ha, H.C.; Hester, L.D.; Snyder, S.H. Poly(ADP-ribose) polymerase-1 dependence of stress-induced transcription factors and associated gene expression in glia. Proc. Natl. Acad. Sci. USA, 2002, 99(5), 3270-3275.
[http://dx.doi.org/10.1073/pnas.052712399] [PMID: 11854472]
[82]
Ilnytska, O.; Lyzogubov, V.V.; Stevens, M.J.; Drel, V.R.; Mashtalir, N.; Pacher, P.; Yorek, M.A.; Obrosova, I.G. Poly(ADP-ribose) polymerase inhibition alleviates experimental diabetic sensory neuropathy. Diabetes, 2006, 55(6), 1686-1694.
[http://dx.doi.org/10.2337/db06-0067] [PMID: 16731831]
[83]
Li, F.; Drel, V.R.; Szabó, C.; Stevens, M.J.; Obrosova, I.G. Low- dose poly(ADP-ribose) polymerase inhibitor-containing combination therapies reverse early peripheral diabetic neuropathy. Diabetes, 2005, 54(5), 1514-1522.
[http://dx.doi.org/10.2337/diabetes.54.5.1514] [PMID: 15855340]
[84]
Obrosova, I.G.; Li, F.; Abatan, O.I.; Forsell, M.A.; Komjáti, K.; Pacher, P.; Szabó, C.; Stevens, M.J. Role of poly(ADP-ribose) polymerase activation in diabetic neuropathy. Diabetes, 2004, 53(3), 711-720.
[http://dx.doi.org/10.2337/diabetes.53.3.711] [PMID: 14988256]
[85]
Pacher, P.; Liaudet, L.; Soriano, F.G.; Mabley, J.G.; Szabó, E.; Szabó, C. The role of poly(ADP-ribose) polymerase activation in the development of myocardial and endothelial dysfunction in diabetes. Diabetes, 2002, 51(2), 514-521.
[http://dx.doi.org/10.2337/diabetes.51.2.514] [PMID: 11812763]
[86]
Zheng, L.; Szabó, C.; Kern, T.S. Poly(ADP-ribose) polymerase is involved in the development of diabetic retinopathy via regulation of nuclear factor-kappaB. Diabetes, 2004, 53(11), 2960-2967.
[http://dx.doi.org/10.2337/diabetes.53.11.2960] [PMID: 15504977]
[87]
Gomes, M.B.; Piccirillo, L.J.; Nogueira, V.G.; Matos, H.J. Acute-phase proteins among patients with type 1 diabetes. Diabetes Metab., 2003, 29(4 Pt 1), 405-411.
[http://dx.doi.org/10.1016/S1262-3636(07)70051-4] [PMID: 14526268]
[88]
González-Clemente, J.M.; Mauricio, D.; Richart, C.; Broch, M.; Caixàs, A.; Megia, A.; Giménez-Palop, O.; Simón, I.; Martínez-Riquelme, A.; Giménez-Pérez, G.; Vendrell, J. Diabetic neuropathy is associated with activation of the TNF-α system in subjects with type 1 diabetes mellitus. Clin. Endocrinol. (Oxf.), 2005, 63(5), 525-529.
[http://dx.doi.org/10.1111/j.1365-2265.2005.02376.x] [PMID: 16268804]
[89]
Vincent, A.M.; Feldman, E.L. New insights into the mechanisms of diabetic neuropathy. Rev. Endocr. Metab. Disord., 2004, 5(3), 227-236.
[http://dx.doi.org/10.1023/B:REMD.0000032411.11422.e0] [PMID: 15211094]
[90]
Coppey, L.J.; Davidson, E.P.; Rinehart, T.W.; Gellett, J.S.; Oltman, C.L.; Lund, D.D.; Yorek, M.A. ACE inhibitor or angiotensin II receptor antagonist attenuates diabetic neuropathy in streptozotocin-induced diabetic rats. Diabetes, 2006, 55(2), 341-348.
[http://dx.doi.org/10.2337/diabetes.55.02.06.db05-0885] [PMID: 16443766]
[91]
Hasnis, E.; Bar-Shai, M.; Burbea, Z.; Reznick, A.Z. Mechanisms underlying cigarette smoke-induced nf-kb activation in human lymphocytes: The role of reactive nitrogen species. J. Physiol. Pharmacol., 2007, 58(Suppl. 5; Pt 1), 275-287.
[92]
Kim, Y.W.; Zhao, R.J.; Park, S.J.; Lee, J.R.; Cho, I.J.; Yang, C.H.; Kim, S.G.; Kim, S.C. Anti-inflammatory effects of liquiritigenin as a consequence of the inhibition of nf-kb-dependent inos and proinflammatory cytokines production. Br. J. Pharmacol., 2008, 154(1), 165-73.
[http://dx.doi.org/10.1038/bjp.2008.79]
[93]
Kellogg, A.P.; Wiggin, T.D.; Larkin, D.D.; Hayes, J.M.; Stevens, M.J.; Pop-Busui, R. Protective effects of cyclooxygenase-2 gene inactivation against peripheral nerve dysfunction and intraepidermal nerve fiber loss in experimental diabetes. Diabetes, 2007, 56(12), 2997-3005.
[http://dx.doi.org/10.2337/db07-0740] [PMID: 17720896]
[94]
Matsunaga, A.; Kawamoto, M.; Shiraishi, S.; Yasuda, T.; Kajiyama, S.; Kurita, S.; Yuge, O. Intrathecally administered COX-2 but not COX-1 or COX-3 inhibitors attenuate streptozotocin-induced mechanical hyperalgesia in rats. Eur. J. Pharmacol., 2007, 554(1), 12-17.
[http://dx.doi.org/10.1016/j.ejphar.2006.09.072] [PMID: 17112505]
[95]
Levy, D.; Zochodne, D.W.N.O. NO pain: Potential roles of nitric oxide in neuropathic pain. Pain Pract., 2004, 4(1), 11-18.
[http://dx.doi.org/10.1111/j.1533-2500.2004.04002.x] [PMID: 17129298]
[96]
Zochodne, D.W.; Levy, D. Nitric oxide in damage, disease and repair of the peripheral nervous system. Cell. Mol. Biol., 2005, 51(3), 255-267.
[PMID: 16191393]
[97]
McDonald, D.S.; Cheng, C.; Martinez, J.A.; Zochodne, D.W. Regenerative arrest of inflamed peripheral nerves: Role of nitric oxide. Neuroreport, 2007, 18(16), 1635-1640.
[http://dx.doi.org/10.1097/WNR.0b013e3282f03fff] [PMID: 17921859]
[98]
Nishikawa, T.; Edelstein, D.; Du, X.L.; Yamagishi, S.; Matsumura, T.; Kaneda, Y.; Yorek, M.A.; Beebe, D.; Oates, P.J.; Hammes, H-P.; Giardino, I.; Brownlee, M. Normalizing mitochondrial superoxide production blocks three pathways of hyperglycaemic damage. Nature, 2000, 404(6779), 787-790.
[http://dx.doi.org/10.1038/35008121] [PMID: 10783895]
[99]
Obrosova, I.G.; Drel, V.R.; Oltman, C.L.; Mashtalir, N.; Tibrewala, J.; Groves, J.T.; Yorek, M.A. Role of nitrosative stress in early neuropathy and vascular dysfunction in streptozotocin-diabetic rats. Am. J. Physiol. Endocrinol. Metab., 2007, 293(6), E1645-E1655.
[http://dx.doi.org/10.1152/ajpendo.00479.2007] [PMID: 17911342]
[100]
Obrosova, I.G.; Mabley, J.G.; Zsengellér, Z.; Charniauskaya, T.; Abatan, O.I.; Groves, J.T.; Szabó, C. Role for nitrosative stress in diabetic neuropathy: Evidence from studies with a peroxynitrite decomposition catalyst. FASEB J., 2005, 19(3), 401-403.
[http://dx.doi.org/10.1096/fj.04-1913fje] [PMID: 15611153]
[101]
Leinninger, G.M.; Edwards, J.L.; Lipshaw, M.J.; Feldman, E.L. Mechanisms of disease: Mitochondria as new therapeutic targets in diabetic neuropathy. Nat. Clin. Pract. Neurol., 2006, 2(11), 620-628.
[http://dx.doi.org/10.1038/ncpneuro0320] [PMID: 17057749]
[102]
Obrosova, I.G.; Julius, U.A. Role for poly(ADP-ribose) polymerase activation in diabetic nephropathy, neuropathy and retinopathy. Curr. Vasc. Pharmacol., 2005, 3(3), 267-283.
[http://dx.doi.org/10.2174/1570161054368634] [PMID: 16026323]
[103]
Obrosova, I.G.; Van Huysen, C.; Fathallah, L.; Cao, X.C.; Greene, D.A.; Stevens, M.J. An aldose reductase inhibitor reverses early diabetes-induced changes in peripheral nerve function, metabolism, and antioxidative defense. FASEB J., 2002, 16(1), 123-125.
[http://dx.doi.org/10.1096/fj.01-0603fje] [PMID: 11709499]
[104]
PKC-DRS Study Group. The effect of ruboxistaurin on visual loss in patients with moderately severe to very severe nonproliferative diabetic retinopathy: Initial results of the Protein Kinase C beta Inhibitor Diabetic Retinopathy Study (PKC-DRS) multicenter randomized clinical trial. Diabetes, 2005, 54(7), 2188-2197.
[http://dx.doi.org/10.2337/diabetes.54.7.2188] [PMID: 15983221]
[105]
Wada, R.; Nishizawa, Y.; Yagihashi, N.; Takeuchi, M.; Ishikawa, Y.; Yasumura, K.; Nakano, M.; Yagihashi, S. Effects of OPB-9195, anti-glycation agent, on experimental diabetic neuropathy. Eur. J. Clin. Invest., 2001, 31(6), 513-520.
[http://dx.doi.org/10.1046/j.1365-2362.2001.00826.x] [PMID: 11422401]
[106]
Frank, S.; Gaume, B.; Bergmann-Leitner, E.S.; Leitner, W.W.; Robert, E.G.; Catez, F.; Smith, C.L.; Youle, R.J. The role of dynamin-related protein 1, a mediator of mitochondrial fission, in apoptosis. Dev. Cell, 2001, 1(4), 515-525.
[http://dx.doi.org/10.1016/S1534-5807(01)00055-7] [PMID: 11703942]
[107]
Lee, Y.J.; Jeong, S-Y.; Karbowski, M.; Smith, C.L.; Youle, R.J. Roles of the mammalian mitochondrial fission and fusion mediators Fis1, Drp1, and Opa1 in apoptosis. Mol. Biol. Cell, 2004, 15(11), 5001-5011.
[http://dx.doi.org/10.1091/mbc.e04-04-0294] [PMID: 15356267]
[108]
Balducci, S.; Iacobellis, G.; Parisi, L.; Di Biase, N.; Calandriello, E.; Leonetti, F.; Fallucca, F. Exercise training can modify the natural history of diabetic peripheral neuropathy. J. Diabetes Complications, 2006, 20(4), 216-223.
[http://dx.doi.org/10.1016/j.jdiacomp.2005.07.005] [PMID: 16798472]
[109]
Ilha, J.; Araujo, R.T.; Malysz, T.; Hermel, E.E.S.; Rigon, P.; Xavier, L.L.; Achaval, M. Endurance and resistance exercise training programs elicit specific effects on sciatic nerve regeneration after experimental traumatic lesion in rats. Neurorehabil. Neural Repair, 2008, 22(4), 355-366.
[http://dx.doi.org/10.1177/1545968307313502] [PMID: 18326889]
[110]
Malysz, T.; Ilha, J.; Nascimento, P.S.; De Angelis, K.; Schaan, B.D.; Achaval, M. Beneficial effects of treadmill training in experimental diabetic nerve regeneration. Clinics (São Paulo), 2010, 65(12), 1329-1337.
[http://dx.doi.org/10.1590/S1807-59322010001200017] [PMID: 21340223]
[111]
O’Donnell, J.; Zeppenfeld, D.; McConnell, E.; Pena, S.; Nedergaard, M. Norepinephrine: A neuromodulator that boosts the function of multiple cell types to optimize CNS performance. Neurochem. Res., 2012, 37(11), 2496-2512.
[http://dx.doi.org/10.1007/s11064-012-0818-x] [PMID: 22717696]
[112]
Li, L.; Manor, B. Long term Tai Chi exercise improves physical performance among people with peripheral neuropathy. Am. J. Chin. Med., 2010, 38(3), 449-459.
[http://dx.doi.org/10.1142/S0192415X1000797X] [PMID: 20503464]
[113]
Li, L.; Hondzinski, J.M. Select exercise modalities may reverse movement dysfunction because of peripheral neuropathy. Exerc. Sport Sci. Rev., 2012, 40(3), 133-137.
[http://dx.doi.org/10.1097/JES.0b013e31825f7483] [PMID: 22653276]
[114]
Huang, H-H.; Farmer, K.; Windscheffel, J.; Yost, K.; Power, M.; Wright, D.E.; Stehno-Bittel, L. Exercise increases insulin content and basal secretion in pancreatic islets in type 1 diabetic mice. Exp. Diabetes Res., 2011, 2011, 481427.
[http://dx.doi.org/10.1155/2011/481427] [PMID: 21912535]
[115]
Chen, Y-W.; Li, Y-T.; Chen, Y.C.; Li, Z-Y.; Hung, C-H. Exercise training attenuates neuropathic pain and cytokine expression after chronic constriction injury of rat sciatic nerve. Anesth. Analg., 2012, 114(6), 1330-1337.
[http://dx.doi.org/10.1213/ANE.0b013e31824c4ed4] [PMID: 22415536]
[116]
Sharma, N.K.; Ryals, J.M.; Gajewski, B.J.; Wright, D.E. Aerobic exercise alters analgesia and neurotrophin-3 synthesis in an animal model of chronic widespread pain. Phys. Ther., 2010, 90(5), 714-725.
[http://dx.doi.org/10.2522/ptj.20090168] [PMID: 20338916]
[117]
Selagzi, H.; Buyukakilli, B.; Cimen, B.; Yilmaz, N.; Erdogan, S. Protective and therapeutic effects of swimming exercise training on diabetic peripheral neuropathy of streptozotocin-induced diabetic rats. J. Endocrinol. Invest., 2008, 31(11), 971-978.
[http://dx.doi.org/10.1007/BF03345634] [PMID: 19169052]
[118]
Király, M.A.; Bates, H.E.; Yue, J.T.Y.; Goche-Montes, D.; Fediuc, S.; Park, E.; Matthews, S.G.; Vranic, M.; Riddell, M.C. Attenuation of type 2 diabetes mellitus in the male Zucker diabetic fatty rat: The effects of stress and non-volitional exercise. Metabolism, 2007, 56(6), 732-744.
[http://dx.doi.org/10.1016/j.metabol.2006.12.022] [PMID: 17512304]
[119]
Kluding, P.M.; Pasnoor, M.; Singh, R.; D’Silva, L.J.; Yoo, M.; Billinger, S.A.; LeMaster, J.W.; Dimachkie, M.M.; Herbelin, L.; Wright, D.E. Safety of aerobic exercise in people with diabetic peripheral neuropathy: Single-group clinical trial. Phys. Ther., 2015, 95(2), 223-234.
[http://dx.doi.org/10.2522/ptj.20140108] [PMID: 25278335]
[120]
Lemaster, J.W.; Mueller, M.J.; Reiber, G.E.; Mehr, D.R.; Madsen, R.W.; Conn, V.S. Effect of weight-bearing activity on foot ulcer incidence in people with diabetic peripheral neuropathy: Feet first randomized controlled trial. Phys. Ther., 2008, 88(11), 1385-1398.
[http://dx.doi.org/10.2522/ptj.20080019] [PMID: 18801859]
[121]
Armstrong, D.G.; Lavery, L.A.; Holtz-Neiderer, K.; Mohler, M.J.; Wendel, C.S.; Nixon, B.P.; Boulton, A.J.M. Variability in activity may precede diabetic foot ulceration. Diabetes Care, 2004, 27(8), 1980-1984.
[http://dx.doi.org/10.2337/diacare.27.8.1980] [PMID: 15277427]
[122]
Kruse, R.L.; Lemaster, J.W.; Madsen, R.W. Fall and balance outcomes after an intervention to promote leg strength, balance, and walking in people with diabetic peripheral neuropathy: “Feet first” randomized controlled trial. Phys. Ther., 2010, 90(11), 1568-1579.
[http://dx.doi.org/10.2522/ptj.20090362] [PMID: 20798179]
[123]
Boor, P.; Celec, P.; Behuliak, M.; Grančič, P.; Kebis, A.; Kukan, M.; Pronayová, N.; Liptaj, T.; Ostendorf, T.; Sebeková, K. Regular moderate exercise reduces advanced glycation and ameliorates early diabetic nephropathy in obese Zucker rats. Metabolism, 2009, 58(11), 1669-1677.
[http://dx.doi.org/10.1016/j.metabol.2009.05.025] [PMID: 19608208]
[124]
Yoshikawa, T.; Miyazaki, A.; Fujimoto, S. Decrease in serum levels of advanced glycation end-products by short-term lifestyle modification in non-diabetic middle-aged females. Med. Sci. Monit., 2009, 15(6), PH65-PH73.
[PMID: 19478714]
[125]
Kotani, K.; Caccavello, R.; Sakane, N.; Yamada, T.; Taniguchi, N.; Gugliucci, A. Influence of physical activity intervention on circulating soluble receptor for advanced glycation end products in elderly subjects. J. Clin. Med. Res., 2011, 3(5), 252-257.
[http://dx.doi.org/10.4021/jocmr704w] [PMID: 22383913]
[126]
Balducci, S.; Zanuso, S.; Nicolucci, A.; Fernando, F.; Cavallo, S.; Cardelli, P.; Fallucca, S.; Alessi, E.; Letizia, C.; Jimenez, A.; Fallucca, F.; Pugliese, G. Anti-inflammatory effect of exercise training in subjects with type 2 diabetes and the metabolic syndrome is dependent on exercise modalities and independent of weight loss. Nutr. Metab. Cardiovasc. Dis., 2010, 20(8), 608-617.
[http://dx.doi.org/10.1016/j.numecd.2009.04.015] [PMID: 19695853]
[127]
Ahn, S.; Song, R. Effects of Tai Chi Exercise on glucose control, neuropathy scores, balance, and quality of life in patients with type 2 diabetes and neuropathy. J. Altern. Complement. Med., 2012, 18(12), 1172-1178.
[http://dx.doi.org/10.1089/acm.2011.0690] [PMID: 22985218]
[128]
Thompson, W. R.; Gordon, N. F.; Gordon, L.S. ACSM’s guidelines for exercise testing and prescriptionacsm’s guidelines for exercise testing and prescription. Philadelphia, USA: Lippincott Williams & Wilkins. 2010.
[129]
Hung, J.W.; Liou, C.W.; Wang, P.W.; Yeh, S.H.; Lin, L.W.; Lo, S.K.; Tsai, F.M. Effect of 12-week tai chi chuan exercise on peripheral nerve modulation in patients with type 2 diabetes mellitus. J. Rehabil. Med., 2009, 41(11), 924-929.
[http://dx.doi.org/10.2340/16501977-0445] [PMID: 19841845]
[130]
A Report of the Surgeon General.. Physical Activity and Health: A Report of the Surgeon General, 1996. Available from: https://profiles.nlm.nih.gov/spotlight/nn/catalog/nlm:nlmuid-101584932X107-doc (Accessed on Dec 1, 2020).
[131]
Johnson, C.E.; Takemoto, J.K. A review of beneficial low-intensity exercises in diabetic peripheral neuropathy patients. J. Pharm. Pharm. Sci., 2019, 22(1), 22-27.
[http://dx.doi.org/10.18433/jpps30151] [PMID: 30599819]
[132]
Yoo, M.; D’Silva, L.J.; Martin, K.; Sharma, N.K.; Pasnoor, M.; LeMaster, J.W.; Kluding, P.M. Pilot study of exercise therapy on painful diabetic peripheral neuropathy. Pain Med., 2015, 16(8), 1482-1489.
[http://dx.doi.org/10.1111/pme.12743] [PMID: 25800666]
[133]
Kanchanasamut, W.; Pensri, P. Effects of weight-bearing exercise on a mini-trampoline on foot mobility, plantar pressure and sensation of diabetic neuropathic feet; a preliminary study. Diabet. Foot Ankle, 2017, 8(1), 1287239.
[http://dx.doi.org/10.1080/2000625X.2017.1287239] [PMID: 28326159]
[134]
Manor, B.; Lipsitz, L.A.; Wayne, P.M.; Peng, C-K.; Li, L. Complexity-based measures inform Tai Chi’s impact on standing postural control in older adults with peripheral neuropathy. BMC Complement. Altern. Med., 2013, 13, 87.
[http://dx.doi.org/10.1186/1472-6882-13-87] [PMID: 23587193]
[135]
Herman, W.H.; Pop-Busui, R.; Braffett, B.H.; Martin, C.L.; Cleary, P.A.; Albers, J.W.; Feldman, E.L.; Group, D.R. Use of the michigan neuropathy screening instrument as a measure of distal symmetrical peripheral neuropathy in type 1 diabetes: Results from the diabetes control and complications trial/epidemiology of diabetes interventions and complications. Diabet. Med., 2012, 29(7), 937-944.
[http://dx.doi.org/10.1111/j.1464-5491.2012.03644.x] [PMID: 22417277]
[136]
Singleton, J.R.; Marcus, R.L.; Jackson, J.E.; K Lessard, M.; Graham, T.E.; Smith, A.G. Exercise increases cutaneous nerve density in diabetic patients without neuropathy. Ann. Clin. Transl. Neurol., 2014, 1(10), 844-849.
[http://dx.doi.org/10.1002/acn3.125] [PMID: 25493275]
[137]
Smith, A.G.; Russell, J.; Feldman, E.L.; Goldstein, J.; Peltier, A.; Smith, S.; Hamwi, J.; Pollari, D.; Bixby, B.; Howard, J.; Singleton, J.R. Lifestyle intervention for pre-diabetic neuropathy. Diabetes Care, 2006, 29(6), 1294-1299.
[http://dx.doi.org/10.2337/dc06-0224] [PMID: 16732011]
[138]
Kluding, P.M.; Pasnoor, M.; Singh, R.; Jernigan, S.; Farmer, K.; Rucker, J.; Sharma, N.K.; Wright, D.E. The effect of exercise on neuropathic symptoms, nerve function, and cutaneous innervation in people with diabetic peripheral neuropathy. J. Diabetes Complications, 2012, 26(5), 424-429.
[http://dx.doi.org/10.1016/j.jdiacomp.2012.05.007] [PMID: 22717465]
[139]
Gómez-Pinilla, F.; Ying, Z.; Opazo, P.; Roy, R.R.; Edgerton, V.R. Differential regulation by exercise of BDNF and NT-3 in rat spinal cord and skeletal muscle. Eur. J. Neurosci., 2001, 13(6), 1078-1084.
[http://dx.doi.org/10.1046/j.0953-816x.2001.01484.x] [PMID: 11285004]
[140]
Li, H.; Shen, Z.; Lu, Y.; Lin, F.; Wu, Y.; Jiang, Z. Muscle NT-3 levels increased by exercise training contribute to the improvement in caudal nerve conduction velocity in diabetic rats. Mol. Med. Rep., 2012, 6(1), 69-74.
[PMID: 22552353]
[141]
Shankarappa, S.A.; Piedras-Rentería, E.S.; Stubbs, E.B., Jr Forced-exercise delays neuropathic pain in experimental diabetes: Effects on voltage-activated calcium channels. J. Neurochem., 2011, 118(2), 224-236.
[http://dx.doi.org/10.1111/j.1471-4159.2011.07302.x] [PMID: 21554321]
[142]
Bement, M.K.H.; Sluka, K.A. Low-intensity exercise reverses chronic muscle pain in the rat in a naloxone-dependent manner. Arch. Phys. Med. Rehabil., 2005, 86(9), 1736-1740.
[http://dx.doi.org/10.1016/j.apmr.2005.03.029] [PMID: 16181935]
[143]
Sluka, K.A.; O’Donnell, J.M.; Danielson, J.; Rasmussen, L.A. Regular physical activity prevents development of chronic pain and activation of central neurons. J Appl Physiol (1985), 2013, 114(6), 725-733.
[http://dx.doi.org/10.1152/japplphysiol.01317.2012] [PMID: 23271699]
[144]
Atalay, M.; Oksala, N.K.J.; Laaksonen, D.E.; Khanna, S.; Nakao, C.; Lappalainen, J.; Roy, S.; Hänninen, O.; Sen, C.K. Exercise training modulates heat shock protein response in diabetic rats. J Appl Physiol (1985), 2004, 97(2), 605-611.
[http://dx.doi.org/10.1152/japplphysiol.01183.2003] [PMID: 15075301]
[145]
Chen, Y-W.; Hsieh, P-L.; Chen, Y-C.; Hung, C-H.; Cheng, J-T. Physical exercise induces excess hsp72 expression and delays the development of hyperalgesia and allodynia in painful diabetic neuropathy rats. Anesth. Analg., 2013, 116(2), 482-490.
[http://dx.doi.org/10.1213/ANE.0b013e318274e4a0] [PMID: 23302966]
[146]
Ogata, T.; Oishi, Y.; Higashida, K.; Higuchi, M.; Muraoka, I. Prolonged exercise training induces long-term enhancement of HSP70 expression in rat plantaris muscle. Am. J. Physiol. Regul. Integr. Comp. Physiol., 2009, 296(5), R1557-R1563.
[http://dx.doi.org/10.1152/ajpregu.90911.2008] [PMID: 19244585]
[147]
Lee, S.J.; Zhang, G.F.; Sung, N.J. Hypolipidemic and hypoglycemic effects of Orostachys japonicus A. Berger extracts in streptozotocin-induced diabetic rats. Nutr. Res. Pract., 2011, 5(4), 301-307.
[http://dx.doi.org/10.4162/nrp.2011.5.4.301] [PMID: 21994524]
[148]
Grover, J.K.; Vats, V.; Rathi, S.S.; Dawar, R. Traditional Indian anti-diabetic plants attenuate progression of renal damage in streptozotocin induced diabetic mice. J. Ethnopharmacol., 2001, 76(3), 233-238.
[http://dx.doi.org/10.1016/S0378-8741(01)00246-X] [PMID: 11448544]
[149]
Wang, J.; van der Heijden, R.; Spruit, S.; Hankermeier, T.; Chan, K.; van der Greef, J.; Xu, G.; Wang, M. Quality and safety of Chinese herbal medicines guided by a systems biology perspective. J. Ethnopharmacol., 2009, 126(1), 31-41.
[http://dx.doi.org/10.1016/j.jep.2009.07.040] [PMID: 19683045]
[150]
Ferreira, P.E.B.; Lopes, C.R.P.; Alves, A.M.P.; Alves, É.P.B.; Linden, D.R.; Zanoni, J.N.; Buttow, N.C. Diabetic neuropathy: An evaluation of the use of quercetin in the cecum of rats. World J. Gastroenterol., 2013, 19(38), 6416-6426.
[http://dx.doi.org/10.3748/wjg.v19.i38.6416] [PMID: 24151360]
[151]
D’Andrea, G. Quercetin: A flavonol with multifaceted therapeutic applications? Fitoterapia, 2015, 106, 256-271.
[http://dx.doi.org/10.1016/j.fitote.2015.09.018] [PMID: 26393898]
[152]
Bravo, L. Polyphenols: Chemistry, dietary sources, metabolism, and nutritional significance. Nutr. Rev., 1998, 56(11), 317-333.
[http://dx.doi.org/10.1111/j.1753-4887.1998.tb01670.x] [PMID: 9838798]
[153]
Ganeshpurkar, A.; Saluja, A.K. The pharmacological potential of rutin. Saudi Pharm. J., 2017, 25(2), 149-164.
[http://dx.doi.org/10.1016/j.jsps.2016.04.025] [PMID: 28344465]
[154]
Hosseinzadeh, H.; Nassiri-Asl, M. Review of the protective effects of rutin on the metabolic function as an important dietary flavonoid. J. Endocrinol. Invest., 2014, 37(9), 783-788.
[http://dx.doi.org/10.1007/s40618-014-0096-3] [PMID: 24879037]
[155]
Tian, R.; Yang, W.; Xue, Q.; Gao, L.; Huo, J.; Ren, D.; Chen, X. Rutin ameliorates diabetic neuropathy by lowering plasma glucose and decreasing oxidative stress via Nrf2 signaling pathway in rats. Eur. J. Pharmacol., 2016, 771, 84-92.
[http://dx.doi.org/10.1016/j.ejphar.2015.12.021] [PMID: 26688570]
[156]
Al-Enazi, M.M. Protective effects of combined therapy of rutin with silymarin on experimentally-induced diabetic neuropathy in rats. pharmacol. &amp Pharm., 2014, 05, 876-889.
[157]
Sato, Y.; Itagaki, S.; Kurokawa, T.; Ogura, J.; Kobayashi, M.; Hirano, T.; Sugawara, M.; Iseki, K. In vitro and in vivo antioxidant properties of chlorogenic acid and caffeic acid. Int. J. Pharm., 2011, 403(1-2), 136-138.
[http://dx.doi.org/10.1016/j.ijpharm.2010.09.035] [PMID: 20933071]
[158]
dos Santos, M.D.; Almeida, M.C.; Lopes, N.P.; de Souza, G.E.P. Evaluation of the anti-inflammatory, analgesic and antipyretic activities of the natural polyphenol chlorogenic acid. Biol. Pharm. Bull., 2006, 29(11), 2236-2240.
[http://dx.doi.org/10.1248/bpb.29.2236] [PMID: 17077520]
[159]
Abraham, S.K.; Schupp, N.; Schmid, U.; Stopper, H. Antigenotoxic effects of the phytoestrogen pelargonidin chloride and the polyphenol chlorogenic acid. Mol. Nutr. Food Res., 2007, 51(7), 880-887.
[http://dx.doi.org/10.1002/mnfr.200600214] [PMID: 17579891]
[160]
Weng, C-J.; Yen, G-C. Chemopreventive effects of dietary phytochemicals against cancer invasion and metastasis: Phenolic acids, monophenol, polyphenol, and their derivatives. Cancer Treat. Rev., 2012, 38(1), 76-87.
[http://dx.doi.org/10.1016/j.ctrv.2011.03.001] [PMID: 21481535]
[161]
Bagdas, D.; Cinkilic, N.; Ozboluk, H.Y.; Ozyigit, M.O.; Gurun, M.S. Antihyperalgesic activity of chlorogenic acid in experimental neuropathic pain. J. Nat. Med., 2013, 67(4), 698-704.
[http://dx.doi.org/10.1007/s11418-012-0726-z] [PMID: 23203628]
[162]
Naveed, M.; Hejazi, V.; Abbas, M.; Kamboh, A.A.; Khan, G.J.; Shumzaid, M.; Ahmad, F.; Babazadeh, D.; FangFang, X.; Modarresi-Ghazani, F.; WenHua, L.; XiaoHui, Z. Chlorogenic acid (CGA): A pharmacological review and call for further research. Biomed. Pharmacother., 2018, 97, 67-74.
[http://dx.doi.org/10.1016/j.biopha.2017.10.064] [PMID: 29080460]
[163]
Nangle, M.R.; Gibson, T.M.; Cotter, M.A.; Cameron, N.E. Effects of eugenol on nerve and vascular dysfunction in streptozotocin-diabetic rats. Planta Med., 2006, 72(6), 494-500.
[http://dx.doi.org/10.1055/s-2005-916262] [PMID: 16773532]
[164]
Mohammadi Nejad, S.; Özgüneş, H.; Başaran, N. Öjenolün Farmakolojik Ve Toksikolojik Özellikleri. Turkish J. Pharm. Sci., 2017, 14, 201-206.
[http://dx.doi.org/10.4274/tjps.62207]
[165]
Lopresti, A.L.; Hood, S.D.; Drummond, P.D. Multiple antidepressant potential modes of action of curcumin: A review of its anti-inflammatory, monoaminergic, antioxidant, immune-modulating and neuroprotective effects. J. Psychopharmacol., 2012, 26(12), 1512-1524.
[http://dx.doi.org/10.1177/0269881112458732] [PMID: 23035031]
[166]
Banafshe, H.R.; Hamidi, G.A.; Noureddini, M.; Mirhashemi, S.M.; Mokhtari, R.; Shoferpour, M. Effect of curcumin on diabetic peripheral neuropathic pain: Possible involvement of opioid system. Eur. J. Pharmacol., 2014, 723, 202-206.
[http://dx.doi.org/10.1016/j.ejphar.2013.11.033] [PMID: 24315931]
[167]
Kocaadam, B.; Şanlier, N. Curcumin, an active component of turmeric (Curcuma longa), and its effects on health. Crit. Rev. Food Sci. Nutr., 2017, 57(13), 2889-2895.
[http://dx.doi.org/10.1080/10408398.2015.1077195] [PMID: 26528921]
[168]
Biesbroeck, R.; Bril, V.; Hollander, P.; Kabadi, U.; Schwartz, S.; Singh, S.P.; Ward, W.K.; Bernstein, J.E. A double-blind comparison of topical capsaicin and oral amitriptyline in painful diabetic neuropathy. Adv. Ther., 1995, 12(2), 111-120.
[PMID: 10150323]
[169]
The Capsaicin Study Group. Treatment of painful diabetic neuropathy with topical capsaicin. A multicenter, double-blind, vehicle- controlled study. Arch. Intern. Med., 1991, 151(11), 2225-2229.
[http://dx.doi.org/10.1001/archinte.1991.00400110079017] [PMID: 1953227]
[170]
Srinivasan, K. Biological activities of red pepper (capsicum annuum) and its pungent principle capsaicin: A review. Crit. Rev. Food Sci. Nutr., 2016, 56(9), 1488-1500.
[http://dx.doi.org/10.1080/10408398.2013.772090] [PMID: 25675368]
[171]
Uzar, E.; Alp, H.; Cevik, M.U.; Fırat, U.; Evliyaoglu, O.; Tufek, A.; Altun, Y. Ellagic acid attenuates oxidative stress on brain and sciatic nerve and improves histopathology of brain in streptozotocin-induced diabetic rats. Neurol. Sci., 2012, 33(3), 567-574.
[http://dx.doi.org/10.1007/s10072-011-0775-1] [PMID: 21922312]
[172]
Kandhare, A.D.; Raygude, K.S.; Ghosh, P.; Ghule, A.E.; Bodhankar, S.L. Neuroprotective effect of naringin by modulation of endogenous biomarkers in streptozotocin induced painful diabetic neuropathy. Fitoterapia, 2012, 83(4), 650-659.
[http://dx.doi.org/10.1016/j.fitote.2012.01.010] [PMID: 22343014]
[173]
Wu, J.; Zhang, X.; Zhang, B. Efficacy and safety of puerarin injection in treatment of diabetic peripheral neuropathy: A systematic review and meta-analysis of randomized controlled trials. J. Tradit. Chin. Med., 2014, 34(4), 401-410.
[http://dx.doi.org/10.1016/S0254-6272(15)30039-X] [PMID: 25185357]
[174]
Visnagri, A.; Kandhare, A.D.; Chakravarty, S.; Ghosh, P.; Bodhankar, S.L. Hesperidin, a flavanoglycone attenuates experimental diabetic neuropathy via modulation of cellular and biochemical marker to improve nerve functions. Pharm. Biol., 2014, 52(7), 814-828.
[http://dx.doi.org/10.3109/13880209.2013.870584] [PMID: 24559476]
[175]
Ibrahimpasic, K. Alpha lipoic acid and glycaemic control in diabetic neuropathies at type 2 diabetes treatment. Med. Arh., 2013, 67(1), 7-9.
[http://dx.doi.org/10.5455/medarh.2013.67.7-9] [PMID: 23678828]
[176]
Horrobin, D.F. The use of gamma-linolenic acid in diabetic neuropathy. Agents Actions Suppl., 1992, 37, 120-144.
[http://dx.doi.org/10.1007/978-3-0348-7262-1_18] [PMID: 1321553]
[177]
Ghatak, S.B.; Panchal, S.S. Protective effect of oryzanol isolated from crude rice bran oil in experimental model of diabetic neuropathy. Rev. Bras. Farmacogn., 2012, 22, 1092-1103.
[http://dx.doi.org/10.1590/S0102-695X2012005000104]
[178]
Liu, Y.; Wang, L.; Li, X.; Lv, C.; Feng, D.; Luo, Z. Tanshinone IIA improves impaired nerve functions in experimental diabetic rats. Biochem. Biophys. Res. Commun., 2010, 399(1), 49-54.
[http://dx.doi.org/10.1016/j.bbrc.2010.07.037] [PMID: 20637731]
[179]
Packer, L.; Witt, E.H.; Tritschler, H.J. alpha-Lipoic acid as a biological antioxidant. Free Radic. Biol. Med., 1995, 19(2), 227-250.
[http://dx.doi.org/10.1016/0891-5849(95)00017-R] [PMID: 7649494]
[180]
Nagamatsu, M.; Nickander, K.K.; Schmelzer, J.D.; Raya, A.; Wittrock, D.A.; Tritschler, H.; Low, P.A. Lipoic acid improves nerve blood flow, reduces oxidative stress, and improves distal nerve conduction in experimental diabetic neuropathy. Diabetes Care, 1995, 18(8), 1160-1167.
[http://dx.doi.org/10.2337/diacare.18.8.1160] [PMID: 7587852]
[181]
Low, P.A.; Nickander, K.K.; Tritschler, H.J. The roles of oxidative stress and antioxidant treatment in experimental diabetic neuropathy. Diabetes, 1997, 46(Suppl. 2), S38-S42.
[http://dx.doi.org/10.2337/diab.46.2.S38] [PMID: 9285497]
[182]
Papanas, N.; Ziegler, D. Efficacy of α-lipoic acid in diabetic neuropathy. Expert Opin. Pharmacother., 2014, 15(18), 2721-2731.
[http://dx.doi.org/10.1517/14656566.2014.972935] [PMID: 25381809]
[183]
Inan, S. The potential role of nutraceuticals in inflammation and oxidative stress. In: Nutraceuticals - past, present and future; María Chávarri, Hueda, Ed.; IntechOpen, 2020.
[http://dx.doi.org/10.5772/intechopen.83797]
[184]
Shahidi, F.; Ambigaipalan, P. Omega-3 polyunsaturated fatty acids and their health benefits. Annu. Rev. Food Sci. Technol., 2018, 9, 345-381.
[http://dx.doi.org/10.1146/annurev-food-111317-095850] [PMID: 29350557]
[185]
Mittal, J.; Sharma, M.M.; Batra, A. Tinospora cordifolia: A multipurpose medicinal plant-a review. J. Med. Plants Stud., 2014, 2(2), 32-47.
[186]
Nadig, P.D.; Revankar, R.R.; Dethe, S.M.; Narayanswamy, S.B.; Aliyar, M.A. Effect of Tinospora cordifolia on experimental diabetic neuropathy. Indian J. Pharmacol., 2012, 44(5), 580-583.
[http://dx.doi.org/10.4103/0253-7613.100380] [PMID: 23112417]
[187]
Comelli, F.; Bettoni, I.; Colleoni, M.; Giagnoni, G.; Costa, B. Beneficial effects of a Cannabis sativa extract treatment on diabetes-induced neuropathy and oxidative stress. Phytother. Res., 2009, 23(12), 1678-1684.
[http://dx.doi.org/10.1002/ptr.2806] [PMID: 19441010]
[188]
Andreae, M.H.; Carter, G.M.; Shaparin, N.; Suslov, K.; Ellis, R.J.; Ware, M.A.; Abrams, D.I.; Prasad, H.; Wilsey, B.; Indyk, D.; Johnson, M.; Sacks, H.S. Inhaled cannabis for chronic neuropathic pain: A meta-analysis of individual patient data. J. Pain, 2015, 16(12), 1221-1232.
[http://dx.doi.org/10.1016/j.jpain.2015.07.009] [PMID: 26362106]
[189]
Modesto-Lowe, V.; Bojka, R.; Alvarado, C. Cannabis for peripheral neuropathy: The good, the bad, and the unknown. Cleve. Clin. J. Med., 2018, 85(12), 943-949.
[http://dx.doi.org/10.3949/ccjm.85a.17115] [PMID: 30526755]
[190]
Vos, T.; Abajobir, A.A.; Abbafati, C.; Abbas, K.M.; Abate, K.H.; Abd-Allah, F.; Abdulle, A.M.; Abebo, T.A.; Abera, S.F.; Aboyans, V.; Abu-Raddad, L.J.; Ackerman, I.N.; Adamu, A.A.; Adetokunboh, O.; Afarideh, M.; Afshin, A.; Agarwal, S.K.; Aggarwal, R.; Agrawal, A.; Agrawal, S.; Ahmad Kiadaliri, A.; Ahmadieh, H.; Ahmed, M.B.; Aichour, A.N.; Aichour, I.; Aichour, M.T.E.; Aiyar, S.; Akinyemi, R.O.; Akseer, N.; Al Lami, F.H.; Alahdab, F.; Al-Aly, Z.; Alam, K.; Alam, N.; Alam, T.; Alasfoor, D.; Alene, K.A.; Ali, R.; Alizadeh-Navaei, R.; Alkerwi, A.; Alla, F.; Allebeck, P.; Allen, C.; Al-Maskari, F.; Al-Raddadi, R.; Alsharif, U.; Alsowaidi, S.; Altirkawi, K.A.; Amare, A.T.; Amini, E.; Ammar, W.; Amoako, Y.A.; Andersen, H.H.; Antonio, C.A.T.; Anwari, P.; Ärnlöv, J.; Artaman, A.; Aryal, K.K.; Asayesh, H.; Asgedom, S.W.; Assadi, R.; Atey, T.M.; Atnafu, N.T.; Atre, S.R.; Avila-Burgos, L.; Avokpaho, E.F.G.A.; Awasthi, A.; Ayala Quintanilla, B.P.; Ba Saleem, H.O.; Bacha, U.; Badawi, A.; Balakrishnan, K.; Banerjee, A.; Bannick, M.S.; Barac, A.; Barber, R.M.; Barker- Collo, S.L.; Bärnighausen, T.; Barquera, S.; Barregard, L.; Barrero, L.H.; Basu, S.; Battista, B.; Battle, K.E.; Baune, B.T.; Bazargan-Hejazi, S.; Beardsley, J.; Bedi, N.; Beghi, E.; Béjot, Y.; Bekele, B.B.; Bell, M.L.; Bennett, D.A.; Bensenor, I.M.; Benson, J.; Berhane, A.; Berhe, D.F.; Bernabé, E.; Betsu, B.D.; Beuran, M.; Beyene, A.S.; Bhala, N.; Bhansali, A.; Bhatt, S.; Bhutta, Z.A.; Biadgilign, S.; Bienhoff, K.; Bikbov, B.; Birungi, C.; Biryukov, S.; Bisanzio, D.; Bizuayehu, H.M.; Boneya, D.J.; Boufous, S.; Bourne, R.R.A.; Brazinova, A.; Brugha, T.S.; Buchbinder, R.; Bulto, L.N.B.; Bumgarner, B.R.; Butt, Z.A.; Cahuana-Hurtado, L.; Cameron, E.; Car, M.; Carabin, H.; Carapetis, J.R.; Cárdenas, R.; Carpenter, D.O.; Carrero, J.J.; Carter, A.; Carvalho, F.; Casey, D.C.; Caso, V.; Castañeda-Orjuela, C.A.; Castle, C.D.; Catalá-López, F.; Chang, H.Y.; Chang, J.C.; Charlson, F.J.; Chen, H.; Chibalabala, M.; Chibueze, C.E.; Chisumpa, V.H.; Chitheer, A.A.; Christopher, D.J.; Ciobanu, L.G.; Cirillo, M.; Colombara, D.; Cooper, C.; Cortesi, P.A.; Criqui, M.H.; Crump, J.A.; Dadi, A.F.; Dalal, K.; Dandona, L.; Dandona, R.; Das Neves, J.; Davitoiu, D.V.; De Courten, B.; De Leo, D.; Degenhardt, L.; Deiparine, S.; Dellavalle, R.P.; Deribe, K.; Des Jarlais, D.C.; Dey, S.; Dharmaratne, S.D.; Dhillon, P.K.; Dicker, D.; Ding, E.L.; Djalalinia, S.; Do, H.P.; Dorsey, E.R.; Dos Santos, K.P.B.; Douwes-Schultz, D.; Doyle, K.E.; Driscoll, T.R.; Dubey, M.; Duncan, B.B.; El-Khatib, Z.Z.; Ellerstrand, J.; Enayati, A.; Endries, A.Y.; Ermakov, S.P.; Erskine, H.E.; Eshrati, B.; Eskandarieh, S.; Esteghamati, A.; Estep, K.; Fanuel, F.B.B.; Farinha, C.S.E.S.; Faro, A.; Farzadfar, F.; Fazeli, M.S.; Feigin, V.L.; Fereshtehnejad, S.M.; Fernandes, J.C.; Ferrari, A.J.; Feyissa, T.R.; Filip, I.; Fischer, F.; Fitzmaurice, C.; Flaxman, A.D.; Flor, L.S.; Foigt, N.; Foreman, K.J.; Franklin, R.C.; Fullman, N.; Fürst, T.; Furtado, J.M.; Futran, N.D.; Gakidou, E.; Ganji, M.; Garcia-Basteiro, A.L.; Gebre, T.; Gebrehiwot, T.T.; Geleto, A.; Gemechu, B.L.; Gesesew, H.A.; Gething, P.W.; Ghajar, A.; Gibney, K.B.; Gill, P.S.; Gillum, R.F.; Ginawi, I.A.M.; Giref, A.Z.; Gishu, M.D.; Giussani, G.; Godwin, W.W.; Gold, A.L.; Goldberg, E.M.; Gona, P.N.; Goodridge, A.; Gopalani, S.V.; Goto, A.; Goulart, A.C.; Griswold, M.; Gugnani, H.C.; Gupta, R.; Gupta, R.; Gupta, T.; Gupta, V.; Hafezi-Nejad, N.; Hailu, A.D.; Hailu, G.B.; Hamadeh, R.R.; Hamidi, S.; Handal, A.J.; Hankey, G.J.; Hao, Y.; Harb, H.L.; Hareri, H.A.; Haro, J.M.; Harvey, J.; Hassanvand, M.S.; Havmoeller, R.; Hawley, C.; Hay, R.J.; Hay, S.I.; Henry, N.J.; Heredia-Pi, I.B.; Heydarpour, P.; Hoek, H.W.; Hoffman, H.J.; Horita, N.; Hosgood, H.D.; Hostiuc, S.; Hotez, P.J.; Hoy, D.G.; Htet, A.S.; Hu, G.; Huang, H.; Huynh, C.; Iburg, K.M.; Igumbor, E.U.; Ikeda, C.; Irvine, C.M.S.; Jacobsen, K.H.; Jahanmehr, N.; Jakovljevic, M.B.; Jassal, S.K.; Javanbakht, M.; Jayaraman, S.P.; Jeemon, P.; Jensen, P.N.; Jha, V.; Jiang, G.; John, D.; Johnson, C.O.; Johnson, S.C.; Jonas, J.B.; Jürisson, M.; Kabir, Z.; Kadel, R.; Kahsay, A.; Kamal, R.; Kan, H.; Karam, N.E.; Karch, A.; Karema, C.K.; Kasaeian, A.; Kassa, G.M.; Kassaw, N.A.; Kassebaum, N.J.; Kastor, A.; Katikireddi, S.V.; Kaul, A.; Kawakami, N.; Keiyoro, P.N.; Kengne, A.P.; Keren, A.; Khader, Y.S.; Khalil, I.A.; Khan, E.A.; Khang, Y.H.; Khosravi, A.; Khubchandani, J.; Kieling, C.; Kim, D.; Kim, P.; Kim, Y.J.; Kimokoti, R.W.; Kinfu, Y.; Kisa, A.; Kissimova-Skarbek, K.A.; Kivimaki, M.; Knudsen, A.K.; Kokubo, Y.; Kolte, D.; Kopec, J.A.; Kosen, S.; Koul, P.A.; Koyanagi, A.; Kravchenko, M.; Krishnaswami, S.; Krohn, K.J.; Defo, K. Global, regional, and national incidence, prevalence, and years lived with disability for 328 diseases and injuries for 195 countries, 1990-2016: A systematic analysis for the global burden of disease study 2016. Lancet, 2017, 390, 1211-1259.
[http://dx.doi.org/10.1016/S0140-6736(17)32154-2]
[191]
Kim, J.; Yokoyama, K.; Araki, S. The effects of Ginkgo biloba extract (GBe) on axonal transport microvasculature and morphology of sciatic nerve in streptozotocin-induced diabetic rats. Environ. Health Prev. Med., 2000, 5(2), 53-59.
[http://dx.doi.org/10.1007/BF02932004] [PMID: 21432198]
[192]
Bhanot, A.; Shri, R. A comparative profile of methanol extracts of Allium cepa and Allium sativum in diabetic neuropathy in mice. Pharmacognosy Res., 2010, 2(6), 374-384.
[http://dx.doi.org/10.4103/0974-8490.75460] [PMID: 21713142]
[193]
Rocha-González, H.I.; Ramírez-Aguilar, M.; Granados-Soto, V.; Reyes-García, J.G.; Torres-López, J.E.; Huerta-Cruz, J.C.; Navarrete, A. Antineuropathic effect of 7-hydroxy-3,4-dihydrocadalin in streptozotocin-induced diabetic rodents. BMC Complement. Altern. Med., 2014, 14, 129.
[http://dx.doi.org/10.1186/1472-6882-14-129] [PMID: 24708659]
[194]
Yadav, S.K.; Nagori, B.P.; Desai, P.K. Pharmacological characterization of different fractions of Calotropis procera (Asclepiadaceae) in streptozotocin induced experimental model of diabetic neuropathy. J. Ethnopharmacol., 2014, 152(2), 349-357.
[http://dx.doi.org/10.1016/j.jep.2014.01.020] [PMID: 24486599]
[195]
Moghadam, F.H.; Vakili-Zarch, B.; Shafiee, M.; Mirjalili, A. Fenugreek seed extract treats peripheral neuropathy in pyridoxine induced neuropathic mice. EXCLI J., 2013, 12, 282-290.
[PMID: 26417231]
[196]
Raafat, K.; Samy, W. Amelioration of diabetes and painful diabetic neuropathy by punica granatum l. extract and its spray dried biopolymeric dispersions. Evid. Based Complement. Alternat. Med., 2014, 2014, 180495.
[http://dx.doi.org/10.1155/2014/180495] [PMID: 24982685]
[197]
Tiwari, V.; Kuhad, A.; Chopra, K. Emblica officinalis corrects functional, biochemical and molecular deficits in experimental diabetic neuropathy by targeting the oxido-nitrosative stress mediated inflammatory cascade. Phytother. Res., 2011, 25(10), 1527-1536.
[http://dx.doi.org/10.1002/ptr.3440] [PMID: 21394805]
[198]
Ravi, K.; Ramachandran, B.; Subramanian, S. Effect of Eugenia Jambolana seed kernel on antioxidant defense system in streptozotocin-induced diabetes in rats. Life Sci., 2004, 75(22), 2717-2731.
[http://dx.doi.org/10.1016/j.lfs.2004.08.005] [PMID: 15369706]
[199]
Kedar, P.; Chakrabarti, C.H. Effects of jambolan seed treatment on blood sugar, lipids and urea in streptozotocin induced diabetes in rabbits. Indian J. Physiol. Pharmacol., 1983, 27(2), 135-140.
[PMID: 6885126]
[200]
Li, X.L.; Li, B.Y.; Gao, H.Q.; Cheng, M.; Xu, L.; Li, X.H.; Ma, Y.B. Effects of grape seed proanthocyanidin extracts on aortic pulse wave velocity in streptozocin induced diabetic rats. Biosci. Biotechnol. Biochem., 2009, 73(6), 1348-1354.
[http://dx.doi.org/10.1271/bbb.90008] [PMID: 19502731]
[201]
Sindrup, S.H.; Madsen, C.; Bach, F.W.; Gram, L.F.; Jensen, T.S.St. St. John’s wort has no effect on pain in polyneuropathy. Pain, 2001, 91(3), 361-365.
[http://dx.doi.org/10.1016/S0304-3959(00)00457-7] [PMID: 11275394]
[202]
Zhang, Q.; Ji, L.; Zheng, H.; Li, Q.; Xiong, Q.; Sun, W.; Zhu, X.; Li, Y.; Lu, B.; Liu, X.; Zhang, S. Low serum phosphate and magnesium levels are associated with peripheral neuropathy in patients with type 2 diabetes mellitus. Diabetes Res. Clin. Pract., 2018, 146, 1-7.
[http://dx.doi.org/10.1016/j.diabres.2018.09.015] [PMID: 30273706]
[203]
De Leeuw, I.; Engelen, W.; De Block, C.; Van Gaal, L. Long term magnesium supplementation influences favourably the natural evolution of neuropathy in Mg-depleted type 1 diabetic patients (T1dm). Magnes. Res., 2004, 17(2), 109-114.
[PMID: 15319143]
[204]
Tütüncü, N.B.; Bayraktar, M.; Varli, K. Reversal of defective nerve conduction with vitamin E supplementation in type 2 diabetes: A preliminary study. Diabetes Care, 1998, 21(11), 1915-1918.
[http://dx.doi.org/10.2337/diacare.21.11.1915] [PMID: 9802743]
[205]
Niafar, M.; Hai, F.; Porhomayon, J.; Nader, N.D. The role of metformin on vitamin b12 deficiency: A meta-analysis review. Intern. Emerg. Med., 2015, 10(1), 93-102.
[PMID: 25502588]
[206]
Sil, A.; Kumar, H.; Mondal, R.D.; Anand, S.S.; Ghosal, A.; Datta, A.; Sawant, S.V.; Kapatkar, V.; Kadhe, G.; Rao, S. A randomized, open labeled study comparing the serum levels of cobalamin after three doses of 500 mcg vs. a single dose methylcobalamin of 1500 mcg in patients with peripheral neuropathy. Korean J. Pain, 2018, 31(3), 183-190.
[http://dx.doi.org/10.3344/kjp.2018.31.3.183] [PMID: 30013732]
[207]
Jayabalan, B.; Low, L.L.; Vitamin, B. Vitamin B supplementation for diabetic peripheral neuropathy. Singapore Med. J., 2016, 57(2), 55-59.
[http://dx.doi.org/10.11622/smedj.2016027] [PMID: 26892473]
[208]
Jiang, D.Q.; Li, M.X.; Wang, Y.; Wang, Y. Effects of prostaglandin E1 plus methylcobalamin alone and in combination with lipoic acid on nerve conduction velocity in patients with diabetic peripheral neuropathy: A meta-analysis. Neurosci. Lett., 2015, 594, 23-29.
[http://dx.doi.org/10.1016/j.neulet.2015.03.037] [PMID: 25800109]
[209]
Xu, Q.; Pan, J.; Yu, J.; Liu, X.; Liu, L.; Zuo, X.; Wu, P.; Deng, H.; Zhang, J.; Ji, A. Meta-analysis of methylcobalamin alone and in combination with lipoic acid in patients with diabetic peripheral neuropathy. Diabetes Res. Clin. Pract., 2013, 101(2), 99-105.
[http://dx.doi.org/10.1016/j.diabres.2013.03.033] [PMID: 23664235]
[210]
Fonseca, V.A.; Lavery, L.A.; Thethi, T.K.; Daoud, Y.; DeSouza, C.; Ovalle, F.; Denham, D.S.; Bottiglieri, T.; Sheehan, P.; Rosenstock, J. Metanx in type 2 diabetes with peripheral neuropathy: A randomized trial. Am. J. Med., 2013, 126(2), 141-149.
[http://dx.doi.org/10.1016/j.amjmed.2012.06.022] [PMID: 23218892]
[211]
Mottaghi, T.; Khorvash, F.; Maracy, M.; Bellissimo, N.; Askari, G. Effect of folic acid supplementation on nerve conduction velocity in diabetic polyneuropathy patients. Neurol. Res., 2019, 41(4), 364-368.
[http://dx.doi.org/10.1080/01616412.2019.1565180] [PMID: 30730785]
[212]
Lee, P.; Chen, R. Vitamin D as an analgesic for patients with type 2 diabetes and neuropathic pain. Arch. Intern. Med., 2008, 168(7), 771-772.
[http://dx.doi.org/10.1001/archinte.168.7.771] [PMID: 18413561]
[213]
Shehab, D.; Al-Jarallah, K.; Abdella, N.; Mojiminiyi, O.A.; Al Mohamedy, H. Prospective evaluation of the effect of short-term oral vitamin d supplementation on peripheral neuropathy in type 2 diabetes mellitus. Med. Princ. Pract., 2015, 24(3), 250-256.
[http://dx.doi.org/10.1159/000375304] [PMID: 25720672]
[214]
Baute, V.; Zelnik, D.; Curtis, J.; Sadeghifar, F. Complementary and alternative medicine for painful peripheral neuropathy. Curr. Treat. Options Neurol., 2019, 21(9), 44.
[http://dx.doi.org/10.1007/s11940-019-0584-z] [PMID: 31478093]
[215]
Ghadiri-Anari, A.; Mozafari, Z.; Gholami, S.; Khodaei, S.A.; Aboutorabi-Zarchi, M.; Sepehri, F.; Nadjarzade, A.; Rahmanian, M.; Namiranian, N. Dose vitamin D supplementations improve peripheral diabetic neuropathy? A before-after clinical trial. Diabetes Metab. Syndr., 2019, 13(1), 890-893.
[http://dx.doi.org/10.1016/j.dsx.2018.12.014] [PMID: 30641826]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy