General Review Article

天然产物作为靶向癌症干细胞的有前途的治疗策略

卷 29, 期 4, 2022

发表于: 28 June, 2021

页: [741 - 783] 页: 43

弟呕挨: 10.2174/0929867328666210628131409

价格: $65

摘要

癌症仍然是一种致命的疾病,它的治疗迫切需要通过新的、快速推进的策略进行管理。大多数癌症病例最终会发展为复发,癌症干细胞 (CSC) 被认为是造成复发的原因。这些细胞被认为是所有肿瘤癌细胞的亚群,具有自我更新、不平衡增殖和细胞死亡特性的异常调节。 CSCs 对化学疗法或放射疗法和免疫监视显示出显着程度的抵抗力。为了对抗 CSC,每年都有新药涌入市场,大大增加了治疗成本。天然产物正在成为一个新的研究领域,呈现出多样化的化学库来抑制 CSC,一些天然产物在这方面显示出巨大的前景。在不久的将来,引入天然产物作为新化疗方式的来源可能会导致开发新的抗癌药物,这些药物可以以合理的价格替代目前昂贵的治疗方法。最近的临床前和临床研究集中于天然化合物对靶向表面标志物、信号通路、细胞凋亡和逃避免疫监视的影响。在这篇综述中,我们介绍了天然化合物杀死 CSC 的机制以及天然化合物在抑制 CSC 中的潜在用途的研究。

关键词: 癌症干细胞、天然产物、免疫反应、细胞信号传导、细胞死亡、癌症治疗。

« Previous
[1]
Karakaş, D.; Cevatemre, B.; Ulukaya, E. Cancer stem cells: Emerging actors in both basic and clinical cancer research. Turk. J. Biol., 2014, 38(6), 829-838.
[http://dx.doi.org/10.3906/biy-1406-93]
[2]
Furth, J.; Kahn, M.C. The transmission of leukemia of mice with a single cell. Am. J. Cancer, 1937, 31(2), 276-282.
[3]
Hamburger, A.W.; Salmon, S.E. Primary bioassay of human tumor stem cells. Science, 1977, 197(4302), 461-463.
[http://dx.doi.org/10.1126/science.560061] [PMID: 560061]
[4]
Lapidot, T.; Sirard, C.; Vormoor, J.; Murdoch, B.; Hoang, T.; Caceres-Cortes, J.; Minden, M.; Paterson, B.; Caligiuri, M.A.; Dick, J.E. A cell initiating human acute myeloid leukaemia after transplantation into SCID mice. Nature, 1994, 367(6464), 645-648.
[http://dx.doi.org/10.1038/367645a0] [PMID: 7509044]
[5]
Bonnet, D.; Dick, J.E. Human acute myeloid leukemia is organized as a hierarchy that originates from a primitive hematopoietic cell. Nat. Med., 1997, 3(7), 730-737.
[http://dx.doi.org/10.1038/nm0797-730] [PMID: 9212098]
[6]
Al-Hajj, M.; Wicha, M.S.; Benito-Hernandez, A.; Morrison, S.J.; Clarke, M.F. Prospective identification of tumorigenic breast cancer cells. Proc. Natl. Acad. Sci. USA, 2003, 100(7), 3983-3988.
[http://dx.doi.org/10.1073/pnas.0530291100] [PMID: 12629218]
[7]
Singh, S.K.; Clarke, I.D.; Terasaki, M.; Bonn, V.E.; Hawkins, C.; Squire, J.; Dirks, P.B. Identification of a cancer stem cell in human brain tumors. Cancer Res., 2003, 63(18), 5821-5828.
[PMID: 14522905]
[8]
Collins, A.T.; Berry, P.A.; Hyde, C.; Stower, M.J.; Maitland, N.J. Prospective identification of tumorigenic prostate cancer stem cells. Cancer Res., 2005, 65(23), 10946-10951.
[http://dx.doi.org/10.1158/0008-5472.CAN-05-2018] [PMID: 16322242]
[9]
Ricci-Vitiani, L.; Lombardi, D.G.; Pilozzi, E.; Biffoni, M.; Todaro, M.; Peschle, C.; De Maria, R. Identification and expansion of human colon-cancer-initiating cells. Nature, 2007, 445(7123), 111-115.
[http://dx.doi.org/10.1038/nature05384] [PMID: 17122771]
[10]
Prince, M.E.; Sivanandan, R.; Kaczorowski, A.; Wolf, G.T.; Kaplan, M.J.; Dalerba, P.; Weissman, I.L.; Clarke, M.F.; Ailles, L.E. Identification of a subpopulation of cells with cancer stem cell properties in head and neck squamous cell carcinoma. Proc. Natl. Acad. Sci. USA, 2007, 104(3), 973-978.
[http://dx.doi.org/10.1073/pnas.0610117104] [PMID: 17210912]
[11]
Eramo, A.; Lotti, F.; Sette, G.; Pilozzi, E.; Biffoni, M.; Di Virgilio, A.; Conticello, C.; Ruco, L.; Peschle, C.; De Maria, R. Identification and expansion of the tumorigenic lung cancer stem cell population. Cell Death Differ., 2008, 15(3), 504-514.
[http://dx.doi.org/10.1038/sj.cdd.4402283] [PMID: 18049477]
[12]
Curley, M.D.; Therrien, V.A.; Cummings, C.L.; Sergent, P.A.; Koulouris, C.R.; Friel, A.M.; Roberts, D.J.; Seiden, M.V.; Scadden, D.T.; Rueda, B.R.; Foster, R. CD133 expression defines a tumor initiating cell population in primary human ovarian cancer. Stem Cells, 2009, 27(12), 2875-2883.
[http://dx.doi.org/10.1002/stem.236] [PMID: 19816957]
[13]
Fang, D.; Nguyen, T.K.; Leishear, K.; Finko, R.; Kulp, A.N.; Hotz, S.; Van Belle, P.A.; Xu, X.; Elder, D.E.; Herlyn, M. A tumorigenic subpopulation with stem cell properties in melanomas. Cancer Res., 2005, 65(20), 9328-9337.
[http://dx.doi.org/10.1158/0008-5472.CAN-05-1343] [PMID: 16230395]
[14]
Erkisa, M.; Karakas, D.; Ulukaya, E. Cancer stem cells: Root of the evil. Crit. Rev. Oncog., 2019, 24(1), 69-87.
[http://dx.doi.org/10.1615/CritRevOncog.2019029512] [PMID: 31679222]
[15]
Katz, L.; Baltz, R.H. Natural product discovery: Past, present, and future. J. Ind. Microbiol. Biotechnol., 2016, 43(2-3), 155-176.
[http://dx.doi.org/10.1007/s10295-015-1723-5] [PMID: 26739136]
[16]
Reya, T.; Morrison, S.J.; Clarke, M.F.; Weissman, I.L. Stem cells, cancer, and cancer stem cells. Nature, 2001, 414(6859), 105-111.
[http://dx.doi.org/10.1038/35102167] [PMID: 11689955]
[17]
Marucci, C.; Fumagalli, G.; Calogero, F.; Silvani, A.; Christodoulou, M.S.; Martinet, N.; Passarella, D. Natural products and cancer stem cells. Curr. Pharm. Des., 2015, 21(38), 5547-5557.
[http://dx.doi.org/10.2174/1381612821666151002113114] [PMID: 26429713]
[18]
Dandawate, P.R.; Subramaniam, D.; Jensen, R.A.; Anant, S. Targeting cancer stem cells and signaling pathways by phytochemicals: Novel approach for breast cancer therapy. Seminars in cancer biology; Academic Press, 2016, pp. 192-208.
[19]
Taylor, W.F.; Jabbarzadeh, E. The use of natural products to target cancer stem cells. Am. J. Cancer Res., 2017, 7(7), 1588-1605.
[PMID: 28744407]
[20]
Sandoval, T.A.; Urueña, C.P.; Llano, M.; Gómez-Cadena, A.; Hernández, J.F.; Sequeda, L.G.; Loaiza, A.E.; Barreto, A.; Li, S.; Fiorentino, S. Standardized extract from caesalpinia spinosa is cytotoxic over cancer stem cells and enhance anticancer activity of doxorubicin. Am. J. Chin. Med., 2016, 44(8), 1693-1717.
[http://dx.doi.org/10.1142/S0192415X16500956] [PMID: 27852125]
[21]
Mondal, A.; Gandhi, A.; Fimognari, C.; Atanasov, A.G.; Bishayee, A. Alkaloids for cancer prevention and therapy: Current progress and future perspectives. Eur. J. Pharmacol., 2019, 858172472
[http://dx.doi.org/10.1016/j.ejphar.2019.172472] [PMID: 31228447]
[22]
Wang, M.; Liu, Z.F.; Tang, H.; Chen, B.A. Application of alkaloids in reversing multidrug resistance in human cancers. Chin. J. Nat. Med., 2018, 16(8), 561-571.
[http://dx.doi.org/10.1016/S1875-5364(18)30093-1] [PMID: 30197121]
[23]
Alasvand, M.; Assadollahi, V.; Ambra, R.; Hedayati, E.; Kooti, W.; Peluso, I. Antiangiogenic effect of alkaloids. Oxid. Med. Cell. Longev., 2019, 20199475908
[http://dx.doi.org/10.1155/2019/9475908] [PMID: 31178979 ]
[24]
Macáková, K.; Afonso, R.; Saso, L.; Mladěnka, P. The influence of alkaloids on oxidative stress and related signaling pathways. Free Radic. Biol. Med., 2019, 134, 429-444.
[http://dx.doi.org/10.1016/j.freeradbiomed.2019.01.026] [PMID: 30703480]
[25]
Che, T.; Wang, Y. Q.; Huang, Z. S. Z. L.; Tan, J. H.; Huang, Z. S. Z. L.; Chen, S. Natural alkaloids and heterocycles as g-quadruplex ligands and potential anticancer agents. Molecules. MDPI AG, 2018, (2) 493
[26]
Iqbal, W.; Alkarim, S.; Kamal, T.; Choudhry, H.; Sabir, J.; Bora, R.S.; Saini, K.S. Rhazyaminine from rhazya stricta inhibits metastasis and induces apoptosis by downregulating bcl-2 gene in mcf7 cell line. Integr. Cancer Ther., 2019, 181534735418809901
[http://dx.doi.org/10.1177/1534735418809901] [PMID: 30373413]
[27]
Kishimoto, S.; Sato, M.; Tsunematsu, Y.; Watanabe, K. Evaluation of biosynthetic pathway and engineered biosynthesis of alkaloids. Molecules, 2016, 21(8), 1078.
[http://dx.doi.org/10.3390/molecules21081078] [PMID: 27548127]
[28]
Zheng, X.; Wu, F.; Lin, X.; Shen, L.; Feng, Y. Developments in drug delivery of bioactive alkaloids derived from traditional Chinese medicine. Drug Deliv., 2018, 25(1), 398-416.
[http://dx.doi.org/10.1080/10717544.2018.1431980] [PMID: 29378456]
[29]
Kharat, M.; Du, Z.; Zhang, G.; McClements, D.J. Physical and chemical stability of curcumin in aqueous solutions and emulsions: Impact of ph, temperature, and molecular environment. J. Agric. Food Chem., 2017, 65(8), 1525-1532.
[http://dx.doi.org/10.1021/acs.jafc.6b04815] [PMID: 27935709]
[30]
Nelson, K.M.; Dahlin, J.L.; Bisson, J.; Graham, J.; Pauli, G.F.; Walters, M.A. The essential medicinal chemistry of curcumin. J. Med. Chem., 2017, 60(5), 1620-1637.
[http://dx.doi.org/10.1021/acs.jmedchem.6b00975] [PMID: 28074653]
[31]
Hewlings, S.J.; Kalman, D.S. Curcumin: A review of its effects on human health. Foods, 2017, 6(10), 92.
[http://dx.doi.org/10.3390/foods6100092] [PMID: 29065496]
[32]
Zhang, H.; Chen, B.; Zhu, Y.; Sun, C.; Adu-Frimpong, M.; Deng, W.; Yu, J.; Xu, X. Enhanced oral bioavailability of self-assembling curcumin-vitamin E prodrug-nanoparticles by co-nanoprecipitation with vitamin E TPGS. Drug Dev. Ind. Pharm., 2020, 46(11), 1800-1808.
[http://dx.doi.org/10.1080/03639045.2020.1821049] [PMID: 32969718]
[33]
Mathew, M.S.; Vinod, K.; Jayaram, P.S.; Jayasree, R.S.; Joseph, K. Improved bioavailability of curcumin in gliadin-protected gold quantum cluster for targeted delivery. ACS Omega, 2019, 4(10), 14169-14178.
[http://dx.doi.org/10.1021/acsomega.9b00917] [PMID: 31508538]
[34]
Sato, A.; Kudo, C.; Yamakoshi, H.; Uehara, Y.; Ohori, H.; Ishioka, C.; Iwabuchi, Y.; Shibata, H. Curcumin analog GO-Y030 is a novel inhibitor of IKKβ that suppresses NF-κB signaling and induces apoptosis. Cancer Sci., 2011, 102(5), 1045-1051.
[http://dx.doi.org/10.1111/j.1349-7006.2011.01886.x] [PMID: 21272158]
[35]
Vuataz, L.; Brandenberger, H. Plant phenols: III. Separation of fermented and black tea polyphenols by cellulose column chromatography. J. Chromatogr. A, 1961, 5, 17-31.
[http://dx.doi.org/10.1016/S0021-9673(01)92812-2]
[36]
Tao, W.; Wei, C.; Shen, S.; Wang, M.; Chen, S.; Ye, X.; Cao, Y. Mainly dimers and trimers of chinese bayberry leaves proanthocyanidins (blps) are utilized by gut microbiota: In vitro digestion and fermentation coupled with caco-2 transportation. Molecules, 2020, 25(1), 184.
[http://dx.doi.org/10.3390/molecules25010184] [PMID: 31906397]
[37]
Tholl, D. Biosynthesis and biological functions of terpenoids in plants. Adv. Biochem. Eng. Biotechnol., 2015, 148, 63-106.
[http://dx.doi.org/10.1007/10_2014_295] [PMID: 25583224]
[38]
Hu, Y.; Fu, L. Targeting cancer stem cells: A new therapy to cure cancer patients. Am. J. Cancer Res., 2012, 2(3), 340-356.
[PMID: 22679565]
[39]
Phi, L.T.H.; Sari, I.N.; Yang, Y.G.; Lee, S.H.; Jun, N.; Kim, K.S.; Lee, Y.K.; Kwon, H.Y. Cancer stem cells (cscs) in drug resistance and their therapeutic implications in cancer treatment. Stem Cells Int., 2018, 20185416923
[http://dx.doi.org/10.1155/2018/5416923] [PMID: 29681949]
[40]
Das, P.K.; Zahan, T.; Abdur Rakib, M.; Khanam, J.A.; Pillai, S.; Islam, F. Natural compounds targeting cancer stem cells: A promising resource for chemotherapy. Anticancer. Agents Med. Chem., 2019, 19(15), 1796-1808.
[http://dx.doi.org/10.2174/1871520619666190704111714] [PMID: 31272363]
[41]
Moselhy, J.; Srinivasan, S.; Ankem, M.K.; Damodaran, C. Natural products that target cancer stem cells. Anticancer Res., 2015, 35(11), 5773-5788.
[PMID: 26503998]
[42]
Yu, W.K.; Xu, Z.Y.; Yuan, L.; Mo, S.; Xu, B.; Cheng, X.D.; Qin, J-J. Targeting β-catenin signaling by natural products for cancer prevention and therapy. Front. Pharmacol., 2020, 11, 984.
[http://dx.doi.org/10.3389/fphar.2020.00984] [PMID: 32695004]
[43]
Jung, Y.S.; Park, J.I. Wnt signaling in cancer: Therapeutic targeting of Wnt signaling beyond β-catenin and the destruction complex. Exp. Mol. Med., 2020, 52(2), 183-191.
[http://dx.doi.org/10.1038/s12276-020-0380-6] [PMID: 32037398]
[44]
Chen, Y.; Li, Y.; Wang, X.Q.; Meng, Y.; Zhang, Q.; Zhu, J.Y.; Chen, J.Q.; Cao, W.S.; Wang, X.Q.; Xie, C.F.; Li, X.T.; Geng, S.S.; Wu, J.S.; Zhong, C.Y.; Han, H.Y. Phenethyl isothiocyanate inhibits colorectal cancer stem cells by suppressing Wnt/β-catenin pathway. Phytother. Res., 2018, 32(12), 2447-2455.
[http://dx.doi.org/10.1002/ptr.6183] [PMID: 30159926]
[45]
Chen, Y.; Wang, X-Q.; Zhang, Q.; Zhu, J-Y.; Li, Y.; Xie, C-F.; Li, X-T.; Wu, J-S.; Geng, S-S.; Zhong, C-Y.; Han, H-Y. (-)-Epigallocatechin-3-gallate inhibits colorectal cancer stem cells by suppressing wnt/β-catenin pathway. Nutrients, 2017, 9(6), 572.
[http://dx.doi.org/10.3390/nu9060572] [PMID: 28587207]
[46]
Dong, R.; Chen, P.; Chen, Q. Extract of the medicinal plant pao pereira inhibits pancreatic cancer stem-like cell in vitro and in vivo. Integr. Cancer Ther., 2018, 17(4), 1204-1215.
[http://dx.doi.org/10.1177/1534735418786027] [PMID: 29985062]
[47]
Li, Y.; Zhang, T.; Korkaya, H.; Liu, S.; Lee, H.F.; Newman, B.; Yu, Y.; Clouthier, S.G.; Schwartz, S.J.; Wicha, M.S.; Sun, D. Sulforaphane, a dietary component of broccoli/broccoli sprouts, inhibits breast cancer stem cells. Clin. Cancer Res., 2010, 16(9), 2580-2590.
[http://dx.doi.org/10.1158/1078-0432.CCR-09-2937] [PMID: 20388854]
[48]
Chen, Y.; Wang, M.H.; Zhu, J.Y.; Xie, C.F.; Li, X.T.; Wu, J.S.; Geng, S.S.; Han, H.Y.; Zhong, C.Y. TAp63α targeting of Lgr5 mediates colorectal cancer stem cell properties and sulforaphane inhibition. Oncogenesis, 2020, 9(10), 89.
[http://dx.doi.org/10.1038/s41389-020-00273-z] [PMID: 33040081]
[49]
Pereira, L.P.; Silva, P.; Duarte, M.; Rodrigues, L.; Duarte, C.M.M.; Albuquerque, C.; Serra, A.T. Targeting colorectal cancer proliferation, stemness and metastatic potential using brassicaceae extracts enriched in isothiocyanates: A 3d cell model-based study. Nutrients, 2017, 9(4), 368.
[http://dx.doi.org/10.3390/nu9040368] [PMID: 28394276]
[50]
Wang, N.; Wang, Z.; Wang, Y.; Xie, X.; Shen, J.; Peng, C.; You, J.; Peng, F.; Tang, H.; Guan, X.; Chen, J. Dietary compound isoliquiritigenin prevents mammary carcinogenesis by inhibiting breast cancer stem cells through WIF1 demethylation. Oncotarget, 2015, 6(12), 9854-9876.
[http://dx.doi.org/10.18632/oncotarget.3396] [PMID: 25918249]
[51]
Hermawan, A.; Putri, H. Current report of natural product development against breast cancer stem cells. Int. J. Biochem. Cell Biol., 2018, 104, 114-132.
[http://dx.doi.org/10.1016/j.biocel.2018.09.012] [PMID: 30266524]
[52]
Kakarala, M.; Brenner, D.E.; Korkaya, H.; Cheng, C.; Tazi, K.; Ginestier, C.; Liu, S.; Dontu, G.; Wicha, M.S. Targeting breast stem cells with the cancer preventive compounds curcumin and piperine. Breast Cancer Res. Treat., 2010, 122(3), 777-785.
[http://dx.doi.org/10.1007/s10549-009-0612-x] [PMID: 19898931]
[53]
Maiuthed, A.; Chantarawong, W.; Chanvorachote, P. Lung cancer stem cells and cancer stem cell-targeting natural compounds. Anticancer Res., 2018, 38(7), 3797-3809.
[http://dx.doi.org/10.21873/anticanres.12663] [PMID: 29970499]
[54]
Deng, S.; Wong, C.K.C.; Lai, H.C.; Wong, A.S.T. Ginsenoside-Rb1 targets chemotherapy-resistant ovarian cancer stem cells via simultaneous inhibition of Wnt/β-catenin signaling and epithelial-to-mesenchymal transition. Oncotarget, 2017, 8(16), 25897-25914.
[http://dx.doi.org/10.18632/oncotarget.13071] [PMID: 27825116]
[55]
Zhang, Y.; Chen, S.; Wei, C.; Rankin, G.O.; Ye, X.; Chen, Y.C. Dietary compound proanthocyanidins from Chinese bayberry (Myrica rubra Sieb. et Zucc.) leaves attenuate chemotherapy-resistant ovarian cancer stem cell traits via targeting the Wnt/β-catenin signaling pathway and inducing G1 cell cycle arrest. Food Funct., 2018, 9(1), 525-533.
[http://dx.doi.org/10.1039/C7FO01453H] [PMID: 29256569]
[56]
Zhang, Q.; Li, X.T.; Chen, Y.; Chen, J.Q.; Zhu, J.Y.; Meng, Y.; Wang, X.Q.; Li, Y.; Geng, S.S.; Xie, C.F.; Wu, J.S.; Zhong, C.Y.; Han, H.Y. Wnt/β-catenin signaling mediates the suppressive effects of diallyl trisulfide on colorectal cancer stem cells. Cancer Chemother. Pharmacol., 2018, 81(6), 969-977.
[http://dx.doi.org/10.1007/s00280-018-3565-0] [PMID: 29594332]
[57]
Fiorillo, M.; Peiris-Pagès, M.; Sanchez-Alvarez, R.; Bartella, L.; Di Donna, L.; Dolce, V.; Sindona, G.; Sotgia, F.; Cappello, A.R.; Lisanti, M.P. Bergamot natural products eradicate cancer stem cells (CSCs) by targeting mevalonate, Rho-GDI-signalling and mitochondrial metabolism. Biochim. Biophys. Acta Bioenerg., 2018, 1859(9), 984-996.
[http://dx.doi.org/10.1016/j.bbabio.2018.03.018] [PMID: 29626418]
[58]
Clara, J.A.; Monge, C.; Yang, Y.; Takebe, N. Targeting signalling pathways and the immune microenvironment of cancer stem cells - a clinical update. Nat. Rev. Clin. Oncol., 2020, 17(4), 204-232.
[http://dx.doi.org/10.1038/s41571-019-0293-2] [PMID: 31792354]
[59]
Suman, S.; Das, T.P.; Damodaran, C. Silencing NOTCH signaling causes growth arrest in both breast cancer stem cells and breast cancer cells. Br. J. Cancer, 2013, 109(10), 2587-2596.
[http://dx.doi.org/10.1038/bjc.2013.642] [PMID: 24129237]
[60]
Kaushik, G.; Venugopal, A.; Ramamoorthy, P.; Standing, D.; Subramaniam, D.; Umar, S.; Jensen, R.A.; Anant, S.; Mammen, J.M.V. Honokiol inhibits melanoma stem cells by targeting notch signaling. Mol. Carcinog., 2015, 54(12), 1710-1721.
[http://dx.doi.org/10.1002/mc.22242] [PMID: 25491779]
[61]
Wang, J.; Yan, Z.; Liu, X.; Che, S.; Wang, C.; Yao, W. Alpinetin targets glioma stem cells by suppressing Notch pathway. Tumour Biol., 2016, 37(7), 9243-9248.
[http://dx.doi.org/10.1007/s13277-016-4827-2] [PMID: 26768745]
[62]
Hyun, K.H.; Yoon, C.H.; Kim, R.K.; Lim, E.J.; An, S.; Park, M.J.; Hyun, J.W.; Suh, Y.; Kim, M.J.; Lee, S.J. Eckol suppresses maintenance of stemness and malignancies in glioma stem-like cells. Toxicol. Appl. Pharmacol., 2011, 254(1), 32-40.
[http://dx.doi.org/10.1016/j.taap.2011.04.006] [PMID: 21514314]
[63]
Lee, S.H.; Nam, H.J.; Kang, H.J.; Kwon, H.W.; Lim, Y.C. Epigallocatechin-3-gallate attenuates head and neck cancer stem cell traits through suppression of Notch pathway. Eur. J. Cancer, 2013, 49(15), 3210-3218.
[http://dx.doi.org/10.1016/j.ejca.2013.06.025] [PMID: 23876835]
[64]
Lim, K.J.; Rajan, K.; Eberhart, C.G. Effects of Zeng Sheng Ping/ACAPHA on malignant brain tumor growth and Notch signaling. Anticancer Res., 2012, 32(7), 2689-2696.
[PMID: 22753727]
[65]
Issa, M.E.; Cretton, S.; Cuendet, M. Targeting multiple myeloma cancer stem cells with natural products - lessons from other hematological malignancies. Planta Med., 2017, 83(9), 752-760.
[http://dx.doi.org/10.1055/s-0043-109558] [PMID: 28472843]
[66]
Castro, N.P.; Rangel, M.C.; Merchant, A.S.; MacKinnon, G.; Cuttitta, F.; Salomon, D.S.; Kim, Y.S. Sulforaphane suppresses the growth of triple-negative breast cancer stem-like cells in vitro and in vivo. Cancer Prev. Res. (Phila.), 2019, 12(3), 147-158.
[http://dx.doi.org/10.1158/1940-6207.CAPR-18-0241] [PMID: 30679159]
[67]
Shan, N.L.; Wahler, J.; Lee, H.J.; Bak, M.J.; Gupta, S.D.; Maehr, H.; Suh, N.; Vitamin, D. Vitamin D compounds inhibit cancer stem-like cells and induce differentiation in triple negative breast cancer. J. Steroid Biochem. Mol. Biol., 2017, 173, 122-129.
[http://dx.doi.org/10.1016/j.jsbmb.2016.12.001] [PMID: 27923595]
[68]
Shim, Y.; Song, J.M. Quantum dot nanoprobe-based high-content monitoring of notch pathway inhibition of breast cancer stem cell by capsaicin. Mol. Cell. Probes, 2015, 29(6), 376-381.
[http://dx.doi.org/10.1016/j.mcp.2015.09.004] [PMID: 26384954]
[69]
Hong, M.; Tan, H.Y.; Li, S.; Cheung, F.; Wang, N.; Nagamatsu, T.; Feng, Y. Cancer stem cells: The potential targets of chinese medicines and their active compounds. Int. J. Mol. Sci., 2016, 17(6), 893.
[http://dx.doi.org/10.3390/ijms17060893] [PMID: 27338343]
[70]
Bao, C.; Kramata, P.; Lee, H.J.; Suh, N. Regulation of hedgehog signaling in cancer by natural and dietary compounds. Mol. Nutr. Food Res., 2018, 62(1) mnfr.201700621.
[http://dx.doi.org/10.1002/mnfr.201700621] [PMID: 29164817]
[71]
Dierks, C.; Beigi, R.; Guo, G-R.; Zirlik, K.; Stegert, M.R.; Manley, P.; Trussell, C.; Schmitt-Graeff, A.; Landwerlin, K.; Veelken, H.; Warmuth, M. Expansion of Bcr-Abl-positive leukemic stem cells is dependent on Hedgehog pathway activation. Cancer Cell, 2008, 14(3), 238-249.
[http://dx.doi.org/10.1016/j.ccr.2008.08.003] [PMID: 18772113]
[72]
Siveen, K.S.; Uddin, S.; Mohammad, R.M. Targeting acute myeloid leukemia stem cell signaling by natural products. Mol. Cancer, 2017, 16(1), 13.
[http://dx.doi.org/10.1186/s12943-016-0571-x] [PMID: 28137265]
[73]
Huang, Y.C.; Chao, K.S.C.; Liao, H.F.; Chen, Y.J. Targeting sonic hedgehog signaling by compounds and derivatives from natural products. Evid. Based Complement. Alternat. Med., 2013, 2013748587
[http://dx.doi.org/10.1155/2013/748587] [PMID: 23762158]
[74]
Fan, P.; Fan, S.; Wang, H.; Mao, J.; Shi, Y.; Ibrahim, M.M.; Ma, W.; Yu, X.; Hou, Z.; Wang, B.; Li, L. Genistein decreases the breast cancer stem-like cell population through Hedgehog pathway. Stem Cell Res. Ther., 2013, 4(6), 146.
[http://dx.doi.org/10.1186/scrt357] [PMID: 24331293]
[75]
Yu, D.; Shin, H.S.; Lee, Y.S.; Lee, D.; Kim, S.; Lee, Y.C. Genistein attenuates cancer stem cell characteristics in gastric cancer through the downregulation of Gli1. Oncol. Rep., 2014, 31(2), 673-678.
[http://dx.doi.org/10.3892/or.2013.2893] [PMID: 24297371]
[76]
Sur, S.; Pal, D.; Mandal, S.; Roy, A.; Panda, C.K. Tea polyphenols epigallocatechin gallete and theaflavin restrict mouse liver carcinogenesis through modulation of self-renewal Wnt and hedgehog pathways. J. Nutr. Biochem., 2016, 27, 32-42.
[http://dx.doi.org/10.1016/j.jnutbio.2015.08.016] [PMID: 26386739]
[77]
Sun, M.; Zhang, N.; Wang, X.; Li, Y.; Qi, W.; Zhang, H.; Li, Z.; Yang, Q. Hedgehog pathway is involved in nitidine chloride induced inhibition of epithelial-mesenchymal transition and cancer stem cells-like properties in breast cancer cells. Cell Biosci., 2016, 6, 44.
[http://dx.doi.org/10.1186/s13578-016-0104-8] [PMID: 27313840]
[78]
Rodova, M.; Fu, J.; Watkins, D.N.; Srivastava, R.K.; Shankar, S. Sonic hedgehog signaling inhibition provides opportunities for targeted therapy by sulforaphane in regulating pancreatic cancer stem cell self-renewal. PLoS One, 2012, 7(9)e46083
[http://dx.doi.org/10.1371/journal.pone.0046083] [PMID: 23029396]
[79]
Li, S.H.; Fu, J.; Watkins, D.N.; Srivastava, R.K.; Shankar, S. Sulforaphane regulates self-renewal of pancreatic cancer stem cells through the modulation of Sonic hedgehog-GLI pathway. Mol. Cell. Biochem., 2013, 373(1-2), 217-227.
[http://dx.doi.org/10.1007/s11010-012-1493-6] [PMID: 23129257]
[80]
Song, L.; Chen, X.; Wang, P.; Gao, S.; Qu, C.; Liu, L. Effects of baicalein on pancreatic cancer stem cells via modulation of sonic Hedgehog pathway. Acta Biochim. Biophys. Sin. (Shanghai), 2018, 50(6), 586-596.
[http://dx.doi.org/10.1093/abbs/gmy045] [PMID: 29697746]
[81]
Zhu, J.Y.; Yang, X.; Chen, Y.; Jiang, Y.; Wang, S.J.; Li, Y.; Wang, X.Q.; Meng, Y.; Zhu, M.M.; Ma, X.; Huang, C.; Wu, R.; Xie, C.F.; Li, X.T.; Geng, S.S.; Wu, J.S.; Zhong, C.Y.; Han, H.Y. Curcumin suppresses lung cancer stem cells via inhibiting wnt/β-catenin and sonic hedgehog pathways. Phytother. Res., 2017, 31(4), 680-688.
[http://dx.doi.org/10.1002/ptr.5791] [PMID: 28198062]
[82]
Wang, D.; Kong, X.; Li, Y.; Qian, W.; Ma, J.; Wang, D.; Yu, D.; Zhong, C. Curcumin inhibits bladder cancer stem cells by suppressing Sonic Hedgehog pathway. Biochem. Biophys. Res. Commun., 2017, 493(1), 521-527.
[http://dx.doi.org/10.1016/j.bbrc.2017.08.158] [PMID: 28870814]
[83]
Kallifatidis, G.; Rausch, V.; Baumann, B.; Apel, A.; Beckermann, B.M.; Groth, A.; Mattern, J.; Li, Z.; Kolb, A.; Moldenhauer, G.; Altevogt, P.; Wirth, T.; Werner, J.; Schemmer, P.; Büchler, M.W.; Salnikov, A.V.; Herr, I. Sulforaphane targets pancreatic tumour-initiating cells by NF-kappaB-induced antiapoptotic signalling. Gut, 2009, 58(7), 949-963.
[http://dx.doi.org/10.1136/gut.2008.149039] [PMID: 18829980]
[84]
Korkaya, H.; Paulson, A.; Charafe-Jauffret, E.; Ginestier, C.; Brown, M.; Dutcher, J.; Clouthier, S.G.; Wicha, M.S. Regulation of mammary stem/progenitor cells by PTEN/Akt/β-catenin signaling. PLoS Biol., 2009, 7(6)e1000121
[http://dx.doi.org/10.1371/journal.pbio.1000121] [PMID: 19492080]
[85]
Ning, Y.X.; Li, Q.X.; Ren, K.Q.; Quan, M.F.; Cao, J.G. 7-difluoromethoxyl-5,4′-di-n-octyl genistein inhibits ovarian cancer stem cell characteristics through the downregulation of FOXM1. Oncol. Lett., 2014, 8(1), 295-300.
[http://dx.doi.org/10.3892/ol.2014.2080] [PMID: 24959264]
[86]
Montales, M.T.; Rahal, O.M.; Kang, J.; Rogers, T.J.; Prior, R.L.; Wu, X.; Simmen, R.C. Repression of mammosphere formation of human breast cancer cells by soy isoflavone genistein and blueberry polyphenolic acids suggests diet-mediated targeting of cancer stem-like/progenitor cells. Carcinogenesis, 2012, 33(3), 652-660.
[http://dx.doi.org/10.1093/carcin/bgr317] [PMID: 22219179]
[87]
Landis-Piwowar, K.R.; Huo, C.; Chen, D.; Milacic, V.; Shi, G.; Chan, T.H.; Dou, Q.P. A novel prodrug of the green tea polyphenol (-)-epigallocatechin-3-gallate as a potential anticancer agent. Cancer Res., 2007, 67(9), 4303-4310.
[http://dx.doi.org/10.1158/0008-5472.CAN-06-4699] [PMID: 17483343]
[88]
Shimizu, M.; Deguchi, A.; Lim, J.T.; Moriwaki, H.; Kopelovich, L.; Weinstein, I.B. (-)-Epigallocatechin gallate and polyphenon E inhibit growth and activation of the epidermal growth factor receptor and human epidermal growth factor receptor-2 signaling pathways in human colon cancer cells. Clin. Cancer Res., 2005, 11(7), 2735-2746.
[http://dx.doi.org/10.1158/1078-0432.CCR-04-2014] [PMID: 15814656]
[89]
Hellsten, R.; Johansson, M.; Dahlman, A.; Sterner, O.; Bjartell, A. Galiellalactone inhibits stem cell-like ALDH-positive prostate cancer cells. PLoS One, 2011, 6(7)e22118
[http://dx.doi.org/10.1371/journal.pone.0022118] [PMID: 21779382]
[90]
Deng, R.; Wang, X.; Liu, Y.; Yan, M.; Hanada, S.; Xu, Q.; Zhang, J.; Han, Z.; Chen, W.; Zhang, P. A new gamboge derivative compound 2 inhibits cancer stem-like cells via suppressing EGFR tyrosine phosphorylation in head and neck squamous cell carcinoma. J. Cell. Mol. Med., 2013, 17(11), 1422-1433.
[http://dx.doi.org/10.1111/jcmm.12129] [PMID: 24112466]
[91]
Khan, A.Q.; Ahmed, E.I.; Elareer, N.; Fathima, H.; Prabhu, K.S.; Siveen, K.S.; Kulinski, M.; Azizi, F.; Dermime, S.; Ahmad, A.; Steinhoff, M.; Uddin, S. Curcumin-mediated apoptotic cell death in papillary thyroid cancer and cancer stem-like cells through targeting of the jak/stat3 signaling pathway. Int. J. Mol. Sci., 2020, 21(2), 438.
[http://dx.doi.org/10.3390/ijms21020438] [PMID: 31936675]
[92]
Vizetto-Duarte, C.; Branco, P.C.; Custódio, L. Marine natural products as a promising source of therapeutic compounds to target cancer stem cells. Curr. Med. Chem., 2021, 28(22), 4343-4355.
[http://dx.doi.org/10.2174/0929867327666200320155053] [PMID: 32196440]
[93]
Guamán-Ortiz, L.M.; Orellana, M.I.; Ratovitski, E.A. Natural compounds as modulators of non-apoptotic cell death in cancer cells. Curr. Genomics, 2017, 18(2), 132-155.
[http://dx.doi.org/10.2174/1389202917666160803150639] [PMID: 28367073]
[94]
Szotek, P.P.; Pieretti-Vanmarcke, R.; Masiakos, P.T.; Dinulescu, D.M.; Connolly, D.; Foster, R.; Dombkowski, D.; Preffer, F.; Maclaughlin, D.T.; Donahoe, P.K. Ovarian cancer side population defines cells with stem cell-like characteristics and Mullerian Inhibiting Substance responsiveness. Proc. Natl. Acad. Sci. USA, 2006, 103(30), 11154-11159.
[http://dx.doi.org/10.1073/pnas.0603672103] [PMID: 16849428]
[95]
Weng, C.J.; Yen, G.C. Chemopreventive effects of dietary phytochemicals against cancer invasion and metastasis: Phenolic acids, monophenol, polyphenol, and their derivatives. Cancer Treat. Rev., 2012, 38(1), 76-87.
[http://dx.doi.org/10.1016/j.ctrv.2011.03.001] [PMID: 21481535]
[96]
Shankar, S.; Nall, D.; Tang, S.N.N.; Meeker, D.; Passarini, J.; Sharma, J.; Srivastava, R.K. Resveratrol inhibits pancreatic cancer stem cell characteristics in human and KrasG12D transgenic mice by inhibiting pluripotency maintaining factors and epithelial-mesenchymal transition. PLoS One, 2011, 6(1)e16530
[http://dx.doi.org/10.1371/journal.pone.0016530] [PMID: 21304978]
[97]
Pandey, P.R.; Okuda, H.; Watabe, M.; Pai, S.K.; Liu, W.; Kobayashi, A.; Xing, F.; Fukuda, K.; Hirota, S.; Sugai, T.; Wakabayashi, G.; Koeda, K.; Kashiwaba, M.; Suzuki, K.; Chiba, T.; Endo, M.; Fujioka, T.; Tanji, S.; Mo, Y.Y.; Cao, D.; Wilber, A.C.; Watabe, K. Resveratrol suppresses growth of cancer stem-like cells by inhibiting fatty acid synthase. Breast Cancer Res. Treat., 2011, 130(2), 387-398.
[http://dx.doi.org/10.1007/s10549-010-1300-6] [PMID: 21188630]
[98]
Fu, Y.; Chang, H.; Peng, X.; Bai, Q.; Yi, L.; Zhou, Y.; Zhu, J.; Mi, M. Resveratrol inhibits breast cancer stem-like cells and induces autophagy via suppressing Wnt/β-catenin signaling pathway. PLoS One, 2014, 9(7)e102535
[http://dx.doi.org/10.1371/journal.pone.0102535] [PMID: 25068516]
[99]
Kwon, Y.H.; Bishayee, K.; Rahman, A.; Hong, J.S.; Lim, S.S.; Huh, S.O. Morus alba accumulates reactive oxygen species to initiate apoptosis via foxo-caspase 3-dependent pathway in neuroblastoma cells. Mol. Cells, 2015, 38(7), 630-637.
[http://dx.doi.org/10.14348/molcells.2015.0030] [PMID: 25921607]
[100]
Rahman, M.A.; Bishayee, K.; Sadra, A.; Huh, S.O. Oxyresveratrol activates parallel apoptotic and autophagic cell death pathways in neuroblastoma cells. Biochim. Biophys. Acta, Gen. Subj., 2017, 1861(2), 23-36.
[http://dx.doi.org/10.1016/j.bbagen.2016.10.025] [PMID: 27815218]
[101]
Li, Y.; Zhang, T. Targeting cancer stem cells by curcumin and clinical applications. Cancer Lett., 2014, 346(2), 197-205.
[http://dx.doi.org/10.1016/j.canlet.2014.01.012] [PMID: 24463298]
[102]
Mukherjee, S.; Mazumdar, M.; Chakraborty, S.; Manna, A.; Saha, S.; Khan, P.; Bhattacharjee, P.; Guha, D.; Adhikary, A.; Mukhjerjee, S.; Das, T. Curcumin inhibits breast cancer stem cell migration by amplifying the E-cadherin/β-catenin negative feedback loop. Stem Cell Res. Ther., 2014, 5(5), 116.
[http://dx.doi.org/10.1186/scrt506] [PMID: 25315241]
[103]
Lin, L.; Liu, Y.; Li, H.; Li, P.K.; Fuchs, J.; Shibata, H.; Iwabuchi, Y.; Lin, J. Targeting colon cancer stem cells using a new curcumin analogue, GO-Y030. Br. J. Cancer, 2011, 105(2), 212-220.
[http://dx.doi.org/10.1038/bjc.2011.200] [PMID: 21694723]
[104]
Kanwar, S.S.; Yu, Y.; Nautiyal, J.; Patel, B.B.; Padhye, S.; Sarkar, F.H.; Majumdar, A.P. Difluorinated-curcumin (CDF): A novel curcumin analog is a potent inhibitor of colon cancer stem-like cells. Pharm. Res., 2011, 28(4), 827-838.
[http://dx.doi.org/10.1007/s11095-010-0336-y] [PMID: 21161336]
[105]
Yu, Y.; Kanwar, S.S.; Patel, B.B.; Nautiyal, J.; Sarkar, F.H.; Majumdar, A.P. Elimination of colon cancer stem-like cells by the combination of curcumin and folfox. Transl. Oncol., 2009, 2(4), 321-328.
[http://dx.doi.org/10.1593/tlo.09193] [PMID: 19956394]
[106]
Almanaa, T.N.; Geusz, M.E.; Jamasbi, R.J. Effects of curcumin on stem-like cells in human esophageal squamous carcinoma cell lines. BMC Complement. Altern. Med., 2012, 12(1), 195.
[http://dx.doi.org/10.1186/1472-6882-12-195] [PMID: 23095512]
[107]
Ma, X.; Zhou, J.; Zhang, C.X.; Li, X.Y.; Li, N.; Ju, R.J.; Shi, J.F.; Sun, M.G.; Zhao, W.Y.; Mu, L.M.; Yan, Y.; Lu, W.L. Modulation of drug-resistant membrane and apoptosis proteins of breast cancer stem cells by targeting berberine liposomes. Biomaterials, 2013, 34(18), 4452-4465.
[http://dx.doi.org/10.1016/j.biomaterials.2013.02.066] [PMID: 23518403]
[108]
El-Merahbi, R.; Liu, Y.N.; Eid, A.; Daoud, G.; Hosry, L.; Monzer, A.; Mouhieddine, T.H.; Hamade, A.; Najjar, F.; Abou-Kheir, W. Berberis libanotica Ehrenb extract shows anti-neoplastic effects on prostate cancer stem/progenitor cells. PLoS One, 2014, 9(11)e112453
[http://dx.doi.org/10.1371/journal.pone.0112453] [PMID: 25380390]
[109]
Tang, S.N.; Singh, C.; Nall, D.; Meeker, D.; Shankar, S.; Srivastava, R.K. The dietary bioflavonoid quercetin synergizes with epigallocathechin gallate (EGCG) to inhibit prostate cancer stem cell characteristics, invasion, migration and epithelial-mesenchymal transition. J. Mol. Signal., 2010, 5, 14.
[http://dx.doi.org/10.1186/1750-2187-5-14] [PMID: 20718984]
[110]
Atashpour, S.; Fouladdel, S.; Movahhed, T.K.; Barzegar, E.; Ghahremani, M.H.; Ostad, S.N.; Azizi, E. Quercetin induces cell cycle arrest and apoptosis in CD133(+) cancer stem cells of human colorectal HT29 cancer cell line and enhances anticancer effects of doxorubicin. Iran. J. Basic Med. Sci., 2015, 18(7), 635-643.
[PMID: 26351552]
[111]
Tang, S.N.; Fu, J.; Nall, D.; Rodova, M.; Shankar, S.; Srivastava, R.K. Inhibition of sonic hedgehog pathway and pluripotency maintaining factors regulate human pancreatic cancer stem cell characteristics. Int. J. Cancer, 2012, 131(1), 30-40.
[http://dx.doi.org/10.1002/ijc.26323] [PMID: 21796625]
[112]
Li, Y.J.; Wu, S.L.; Lu, S.M.; Chen, F.; Guo, Y.; Gan, S.M.; Shi, Y.L.; Liu, S.; Li, S.L. (-)-Epigallocatechin-3-gallate inhibits nasopharyngeal cancer stem cell self-renewal and migration and reverses the epithelial-mesenchymal transition via NF-κB p65 inactivation. Tumour Biol., 2015, 36(4), 2747-2761.
[http://dx.doi.org/10.1007/s13277-014-2899-4] [PMID: 25487615]
[113]
Sun, X.; Song, J.; Li, E.; Geng, H.; Li, Y.; Yu, D.; Zhong, C. () Epigallocatechin 3 gallate inhibits bladder cancer stem cells via suppression of sonic hedgehog pathway. Oncol. Rep., 2019, 42(1), 425-435.
[http://dx.doi.org/10.3892/or.2019.7170] [PMID: 31180522]
[114]
Arya, R.; Bhutkar, S.; Dhulap, S.; Hirwani, R.R. Patent analysis as a tool for research planning: Study on natural based therapeutics against cancer stem cells. Recent Patents Anticancer Drug Discov., 2015, 10(1), 72-86.
[http://dx.doi.org/10.2174/1574892809666140819153102] [PMID: 25138131]
[115]
Yaffe, P.B.; Power Coombs, M.R.; Doucette, C.D.; Walsh, M.; Hoskin, D.W.; Power Coombs, M.R.; Doucette, C.D.; Walsh, M.; Hoskin, D.W. Piperine, an alkaloid from black pepper, inhibits growth of human colon cancer cells via G1 arrest and apoptosis triggered by endoplasmic reticulum stress. Mol. Carcinog., 2015, 54(10), 1070-1085.
[http://dx.doi.org/10.1002/mc.22176] [PMID: 24819444]
[116]
Tseng, C.N.; Hong, Y.R.; Chang, H.W.; Yu, T.J.; Hung, T.W.; Hou, M.F.; Yuan, S.S.; Cho, C.L.; Liu, C.T.; Chiu, C.C.; Huang, C.J. Brefeldin A reduces anchorage-independent survival, cancer stem cell potential and migration of MDA-MB-231 human breast cancer cells. Molecules, 2014, 19(11), 17464-17477.
[http://dx.doi.org/10.3390/molecules191117464] [PMID: 25356567]
[117]
Tseng, C.N.; Huang, C.F.; Cho, C.L.; Chang, H.W.; Huang, C.W.; Chiu, C.C.; Chang, Y.F. Brefeldin a effectively inhibits cancer stem cell-like properties and MMP-9 activity in human colorectal cancer Colo 205 cells. Molecules, 2013, 18(9), 10242-10253.
[http://dx.doi.org/10.3390/molecules180910242] [PMID: 23973996]
[118]
Yue, W.; Hamaï, A.; Tonelli, G.; Bauvy, C.; Nicolas, V.; Tharinger, H.; Codogno, P.; Mehrpour, M. Inhibition of the autophagic flux by salinomycin in breast cancer stem-like/progenitor cells interferes with their maintenance. Autophagy, 2013, 9(5), 714-729.
[http://dx.doi.org/10.4161/auto.23997] [PMID: 23519090]
[119]
Zhao, Y.; Zhao, W.; Lim, Y.C.; Liu, T. Salinomycin-loaded gold nanoparticles for treating cancer stem cells by ferroptosis-induced cell death. Mol. Pharm., 2019, 16(6), 2532-2539.
[http://dx.doi.org/10.1021/acs.molpharmaceut.9b00132] [PMID: 31009228]
[120]
Kai, M.; Kanaya, N.; Wu, S.V.; Mendez, C.; Nguyen, D.; Luu, T.; Chen, S. Targeting breast cancer stem cells in triple-negative breast cancer using a combination of LBH589 and salinomycin. Breast Cancer Res. Treat., 2015, 151(2), 281-294.
[http://dx.doi.org/10.1007/s10549-015-3376-5] [PMID: 25904215]
[121]
Wang, F.; Dai, W.; Wang, Y.; Shen, M.; Chen, K.; Cheng, P.; Zhang, Y.; Wang, C.; Li, J.; Zheng, Y.; Lu, J.; Yang, J.; Zhu, R.; Zhang, H.; Zhou, Y.; Xu, L.; Guo, C. The synergistic in vitro and in vivo antitumor effect of combination therapy with salinomycin and 5-fluorouracil against hepatocellular carcinoma. PLoS One, 2014, 9(5)e97414
[http://dx.doi.org/10.1371/journal.pone.0097414] [PMID: 24816638]
[122]
Versini, A.; Colombeau, L.; Hienzsch, A.; Gaillet, C.; Retailleau, P.; Debieu, S.; Müller, S.; Cañeque, T.; Rodriguez, R. Salinomycin derivatives kill breast cancer stem cells by lysosomal iron targeting. Chemistry, 2020, 26(33), 7416-7424.
[http://dx.doi.org/10.1002/chem.202000335] [PMID: 32083773]
[123]
Turcu, A.L.; Versini, A.; Khene, N.; Gaillet, C.; Cañeque, T.; Müller, S.; Rodriguez, R. DMT1 inhibitors kill cancer stem cells by blocking lysosomal iron translocation. Chemistry, 2020, 26(33), 7369-7373.
[http://dx.doi.org/10.1002/chem.202000159] [PMID: 32083771]
[124]
Yan, F.; Cao, X.X.; Jiang, H.X.; Zhao, X.L.; Wang, J.Y.; Lin, Y.H.; Liu, Q.L.; Zhang, C.; Jiang, B.; Guo, F. A novel water-soluble gossypol derivative increases chemotherapeutic sensitivity and promotes growth inhibition in colon cancer. J. Med. Chem., 2010, 53(15), 5502-5510.
[http://dx.doi.org/10.1021/jm1001698] [PMID: 20684596]
[125]
Volate, S.R.; Kawasaki, B.T.; Hurt, E.M.; Milner, J.A.; Kim, Y.S.; White, J.; Farrar, W.L. Gossypol induces apoptosis by activating p53 in prostate cancer cells and prostate tumor-initiating cells. Mol. Cancer Ther., 2010, 9(2), 461-470.
[http://dx.doi.org/10.1158/1535-7163.MCT-09-0507] [PMID: 20124455]
[126]
Pang, X.; Wu, Y.; Wu, Y.; Lu, B.; Chen, J.; Wang, J.; Yi, Z.; Qu, W.; Liu, M. (-)-Gossypol suppresses the growth of human prostate cancer xenografts via modulating VEGF signaling-mediated angiogenesis. Mol. Cancer Ther., 2011, 10(5), 795-805.
[http://dx.doi.org/10.1158/1535-7163.MCT-10-0936] [PMID: 21372225]
[127]
Koppaka, V.; Thompson, D.C.; Chen, Y.; Ellermann, M.; Nicolaou, K.C.; Juvonen, R.O.; Petersen, D.; Deitrich, R.A.; Hurley, T.D.; Vasiliou, V. Aldehyde dehydrogenase inhibitors: A comprehensive review of the pharmacology, mechanism of action, substrate specificity, and clinical application. Pharmacol. Rev., 2012, 64(3), 520-539.
[http://dx.doi.org/10.1124/pr.111.005538] [PMID: 22544865]
[128]
Guzman, M.L.; Rossi, R.M.; Neelakantan, S.; Li, X.; Corbett, C.A.; Hassane, D.C.; Becker, M.W.; Bennett, J.M.; Sullivan, E.; Lachowicz, J.L.; Vaughan, A.; Sweeney, C.J.; Matthews, W.; Carroll, M.; Liesveld, J.L.; Crooks, P.A.; Jordan, C.T. An orally bioavailable parthenolide analog selectively eradicates acute myelogenous leukemia stem and progenitor cells. Blood, 2007, 110(13), 4427-4435.
[http://dx.doi.org/10.1182/blood-2007-05-090621] [PMID: 17804695]
[129]
Möhler, H.; Pfirrmann, R.W.; Frei, K. Redox-directed cancer therapeutics: Taurolidine and piperlongumine as broadly effective antineoplastic agents. (review) Int. J. Oncol., 2014, 45(4), 1329-1336.
[http://dx.doi.org/10.3892/ijo.2014.2566] [PMID: 25175943]
[130]
Mai, T.T.; Moon, J.; Song, Y.; Viet, P.Q.; Phuc, P.V.; Lee, J.M.; Yi, T.H.; Cho, M.; Cho, S.K. Ginsenoside F2 induces apoptosis accompanied by protective autophagy in breast cancer stem cells. Cancer Lett., 2012, 321(2), 144-153.
[http://dx.doi.org/10.1016/j.canlet.2012.01.045] [PMID: 22326284]
[131]
Bashmail, H.A.; Alamoudi, A.A.; Noorwali, A.; Hegazy, G.A. AJabnoor, G.; Choudhry, H.; Al-Abd, A.M. Thymoquinone synergizes gemcitabine anti-breast cancer activity via modulating its apoptotic and autophagic activities. Sci. Rep., 2018, 8(1), 11674.
[http://dx.doi.org/10.1038/s41598-018-30046-z] [PMID: 30076320]
[132]
Mu, G.G.; Zhang, L.L.; Li, H.Y.; Liao, Y.; Yu, H.G. Thymoquinone pretreatment overcomes the insensitivity and potentiates the antitumor effect of gemcitabine through abrogation of notch1, pi3k/akt/mtor regulated signaling pathways in pancreatic cancer. Dig. Dis. Sci., 2015, 60(4), 1067-1080.
[http://dx.doi.org/10.1007/s10620-014-3394-x] [PMID: 25344906]
[133]
Ndreshkjana, B.; Çapci, A.; Klein, V.; Chanvorachote, P.; Muenzner, J.K.; Huebner, K.; Steinmann, S.; Erlenbach-Wuensch, K.; Geppert, C.I.; Agaimy, A.; Ballout, F.; El-Baba, C.; Gali-Muhtasib, H.; Roehe, A.V.; Hartmann, A.; Tsogoeva, S.B.; Schneider-Stock, R. Combination of 5-fluorouracil and thymoquinone targets stem cell gene signature in colorectal cancer cells. Cell Death Dis., 2019, 10(6), 379.
[http://dx.doi.org/10.1038/s41419-019-1611-4] [PMID: 31097715]
[134]
Singh, B.N.; Kumar, D.; Shankar, S.; Srivastava, R.K. Rottlerin induces autophagy which leads to apoptotic cell death through inhibition of PI3K/Akt/mTOR pathway in human pancreatic cancer stem cells. Biochem. Pharmacol., 2012, 84(9), 1154-1163.
[http://dx.doi.org/10.1016/j.bcp.2012.08.007] [PMID: 22902833]
[135]
Wu, C.H.; Hong, B.H.; Ho, C.T.; Yen, G.C. Targeting cancer stem cells in breast cancer: Potential anticancer properties of 6-shogaol and pterostilbene. J. Agric. Food Chem., 2015, 63(9), 2432-2441.
[http://dx.doi.org/10.1021/acs.jafc.5b00002] [PMID: 25686711]
[136]
Lin, H.C.; Lin, M.H.; Liao, J.H.; Wu, T.H.; Lee, T.H.; Mi, F.L.; Wu, C.H.; Chen, K.C.; Cheng, C.H.; Lin, C.W. Antroquinonol, a ubiquinone derivative from the mushroom antrodia camphorata, inhibits colon cancer stem cell-like properties: Insights into the molecular mechanism and inhibitory targets. J. Agric. Food Chem., 2017, 65(1), 51-59.
[http://dx.doi.org/10.1021/acs.jafc.6b04101] [PMID: 27997180]
[137]
Kwatra, D.; Subramaniam, D.; Ramamoorthy, P.; Standing, D.; Moran, E.; Velayutham, R.; Mitra, A.; Umar, S.; Anant, S. Methanolic extracts of bitter melon inhibit colon cancer stem cells by affecting energy homeostasis and autophagy. Evid. Based Complement. Alternat. Med., 2013, 2013702869
[http://dx.doi.org/10.1155/2013/702869] [PMID: 23533514]
[138]
Tomic, T.; Botton, T.; Cerezo, M.; Robert, G.; Luciano, F.; Puissant, A.; Gounon, P.; Allegra, M.; Bertolotto, C.; Bereder, J.M.; Tartare-Deckert, S.; Bahadoran, P.; Auberger, P.; Ballotti, R.; Rocchi, S. Metformin inhibits melanoma development through autophagy and apoptosis mechanisms. Cell Death Dis., 2011, 2(9)e199
[http://dx.doi.org/10.1038/cddis.2011.86] [PMID: 21881601]
[139]
Cristofani, R.; Montagnani Marelli, M.; Cicardi, M.E.; Fontana, F.; Marzagalli, M.; Limonta, P.; Poletti, A.; Moretti, R.M. Dual role of autophagy on docetaxel-sensitivity in prostate cancer cells. Cell Death Dis., 2018, 9(9), 889.
[http://dx.doi.org/10.1038/s41419-018-0866-5] [PMID: 30166521]
[140]
Kamalidehghan, B.; Ghafouri-Fard, S.; Motevaseli, E.; Ahmadipour, F. Inhibition of human prostate cancer (PC-3) cells and targeting of PC-3-derived prostate cancer stem cells with koenimbin, a natural dietary compound from Murraya koenigii (L). Spreng. Drug Des. Devel. Ther., 2018, 12, 1119-1133.
[http://dx.doi.org/10.2147/DDDT.S156826] [PMID: 29765202]
[141]
Rahman, M.A.; Kim, N.H.; Yang, H.; Huh, S.O. Angelicin induces apoptosis through intrinsic caspase-dependent pathway in human SH-SY5Y neuroblastoma cells. Mol. Cell. Biochem., 2012, 369(1-2), 95-104.
[http://dx.doi.org/10.1007/s11010-012-1372-1] [PMID: 22766766]
[142]
Rahman, M.A.; Kim, N.H.; Huh, S.O. Cytotoxic effect of gambogic acid on SH-SY5Y neuroblastoma cells is mediated by intrinsic caspase-dependent signaling pathway. Mol. Cell. Biochem., 2013, 377(1-2), 187-196.
[http://dx.doi.org/10.1007/s11010-013-1584-z] [PMID: 23404459]
[143]
Zhou, J.; Zhang, H.; Gu, P.; Bai, J.; Margolick, J.B.; Zhang, Y. NF-kappaB pathway inhibitors preferentially inhibit breast cancer stem-like cells. Breast Cancer Res. Treat., 2008, 111(3), 419-427.
[http://dx.doi.org/10.1007/s10549-007-9798-y] [PMID: 17965935]
[144]
Guzman, M.L.; Swiderski, C.F.; Howard, D.S.; Grimes, B.A.; Rossi, R.M.; Szilvassy, S.J.; Jordan, C.T. Preferential induction of apoptosis for primary human leukemic stem cells. Proc. Natl. Acad. Sci. USA, 2002, 99(25), 16220-16225.
[http://dx.doi.org/10.1073/pnas.252462599] [PMID: 12451177]
[145]
Ali Azouaou, S.; Emhemmed, F.; Idris-Khodja, N.; Lobstein, A.; Schini-Kerth, V.; Muller, C.D.; Fuhrmann, G. Selective ROS-dependent p53-associated anticancer effects of the hypoxoside derivative rooperol on human teratocarcinomal cancer stem-like cells. Invest. New Drugs, 2015, 33(1), 64-74.
[http://dx.doi.org/10.1007/s10637-014-0182-6] [PMID: 25404486]
[146]
Guo, Y.; Zhang, X.; Meng, J.; Wang, Z.Y. An anticancer agent icaritin induces sustained activation of the extracellular signal-regulated kinase (ERK) pathway and inhibits growth of breast cancer cells. Eur. J. Pharmacol., 2011, 658(2-3), 114-122.
[http://dx.doi.org/10.1016/j.ejphar.2011.02.005] [PMID: 21376032]
[147]
Huynh, D.L.; Kwon, T.; Zhang, J.J.; Sharma, N.; Gera, M.; Ghosh, M.; Kim, N.; Kim Cho, S.; Lee, D.S.; Park, Y.H.; Jeong, D.K. Wogonin suppresses stem cell-like traits of CD133 positive osteosarcoma cell via inhibiting matrix metallopeptidase-9 expression. BMC Complement. Altern. Med., 2017, 17(1), 304.
[http://dx.doi.org/10.1186/s12906-017-1788-y] [PMID: 28606135]
[148]
Massey, A.R.; Reddivari, L.; Vanamala, J. The dermal layer of sweet sorghum (sorghum bicolor) stalk, a byproduct of biofuel production and source of unique 3-deoxyanthocyanidins, has more antiproliferative and proapoptotic activity than the pith in p53 variants of hct116 and colon cancer stem cells. J. Agric. Food Chem., 2014, 62(14), 3150-3159.
[http://dx.doi.org/10.1021/jf405415u] [PMID: 24655033]
[149]
Liao, W.Y.; Liaw, C.C.; Huang, Y.C.; Han, H.Y.; Hsu, H.W.; Hwang, S.M.; Kuo, S.C.; Shen, C.N. Cyclohexylmethyl flavonoids suppress propagation of breast cancer stem cells via downregulation of nanog. Evid. Based Complement. Alternat. Med., 2013, 2013170261
[http://dx.doi.org/10.1155/2013/170261] [PMID: 23662114]
[150]
Feng, X.; Zhou, Q.; Liu, C.; Tao, M.L. Drug screening study using glioma stem-like cells. Mol. Med. Rep., 2012, 6(5), 1117-1120.
[http://dx.doi.org/10.3892/mmr.2012.1040] [PMID: 22923060]
[151]
Liu, F.; Cao, X.; Liu, Z.; Guo, H.; Ren, K.; Quan, M.; Zhou, Y.; Xiang, H.; Cao, J. Casticin suppresses self-renewal and invasion of lung cancer stem-like cells from A549 cells through down-regulation of pAkt. Acta Biochim. Biophys. Sin. (Shanghai), 2014, 46(1), 15-21.
[http://dx.doi.org/10.1093/abbs/gmt123] [PMID: 24247269]
[152]
Kumar, S.; Raina, K.; Agarwal, C.; Agarwal, R. Silibinin strongly inhibits the growth kinetics of colon cancer stem cell-enriched spheroids by modulating interleukin 4/6-mediated survival signals. Oncotarget, 2014, 5(13), 4972-4989.
[http://dx.doi.org/10.18632/oncotarget.2068] [PMID: 24970802]
[153]
Liu, H.; Han, D.; Liu, Y.; Hou, X.; Wu, J.; Li, H.; Yang, J.; Shen, C.; Yang, G.; Fu, C.; Li, X.; Che, H.; Ai, J.; Zhao, S. Harmine hydrochloride inhibits Akt phosphorylation and depletes the pool of cancer stem-like cells of glioblastoma. J. Neurooncol., 2013, 112(1), 39-48.
[http://dx.doi.org/10.1007/s11060-012-1034-x] [PMID: 23392846]
[154]
Campos, B.; Wan, F.; Farhadi, M.; Ernst, A.; Zeppernick, F.; Tagscherer, K.E.; Ahmadi, R.; Lohr, J.; Dictus, C.; Gdynia, G.; Combs, S.E.; Goidts, V.; Helmke, B.M.; Eckstein, V.; Roth, W.; Beckhove, P.; Lichter, P.; Unterberg, A.; Radlwimmer, B.; Herold-Mende, C. Differentiation therapy exerts antitumor effects on stem-like glioma cells. Clin. Cancer Res., 2010, 16(10), 2715-2728.
[http://dx.doi.org/10.1158/1078-0432.CCR-09-1800] [PMID: 20442299]
[155]
Lim, Y.C.; Kang, H.J.; Kim, Y.S.; Choi, E.C. All-trans-retinoic acid inhibits growth of head and neck cancer stem cells by suppression of Wnt/β-catenin pathway. Eur. J. Cancer, 2012, 48(17), 3310-3318.
[http://dx.doi.org/10.1016/j.ejca.2012.04.013] [PMID: 22640830]
[156]
Peng, C.Y.; Fong, P.C.; Yu, C.C.; Tsai, W.C.; Tzeng, Y.M.; Chang, W.W. Methyl Antcinate A suppresses the population of cancer stem-like cells in MCF7 human breast cancer cell line. Molecules, 2013, 18(3), 2539-2548.
[http://dx.doi.org/10.3390/molecules18032539] [PMID: 23442930]
[157]
Liu, L.; Salnikov, A.V.; Bauer, N.; Aleksandrowicz, E.; Labsch, S.; Nwaeburu, C.; Mattern, J.; Gladkich, J.; Schemmer, P.; Werner, J.; Herr, I. Triptolide reverses hypoxia-induced epithelial-mesenchymal transition and stem-like features in pancreatic cancer by NF-κB downregulation. Int. J. Cancer, 2014, 134(10), 2489-2503.
[http://dx.doi.org/10.1002/ijc.28583] [PMID: 24615157]
[158]
Kakar, S.S.; Ratajczak, M.Z.; Powell, K.S.; Moghadamfalahi, M.; Miller, D.M.; Batra, S.K.; Singh, S.K. Withaferin a alone and in combination with cisplatin suppresses growth and metastasis of ovarian cancer by targeting putative cancer stem cells. PLoS One, 2014, 9(9)e107596
[http://dx.doi.org/10.1371/journal.pone.0107596] [PMID: 25264898]
[159]
Luk, S.U.; Yap, W.N.; Chiu, Y.T.; Lee, D.T.; Ma, S.; Lee, T.K.; Vasireddy, R.S.; Wong, Y.C.; Ching, Y.P.; Nelson, C.; Yap, Y.L.; Ling, M.T. Gamma-tocotrienol as an effective agent in targeting prostate cancer stem cell-like population. Int. J. Cancer, 2011, 128(9), 2182-2191.
[http://dx.doi.org/10.1002/ijc.25546] [PMID: 20617516]
[160]
Ma, L.; Mao, R.; Shen, K.; Zheng, Y.; Li, Y.; Liu, J.; Ni, L. Atractylenolide i-mediated notch pathway inhibition attenuates gastric cancer stem cell traits. Biochem. Biophys. Res. Commun., 2014, 450(1), 353-359.
[http://dx.doi.org/10.1016/j.bbrc.2014.05.110] [PMID: 24944018]
[161]
Newman, B.; Liu, Y.; Lee, H.F.; Sun, D.; Wang, Y. HSP90 inhibitor 17-AAG selectively eradicates lymphoma stem cells. Cancer Res., 2012, 72(17), 4551-4561.
[http://dx.doi.org/10.1158/0008-5472.CAN-11-3600] [PMID: 22751135]
[162]
Miyazaki, T.; Pan, Y.; Joshi, K.; Purohit, D.; Hu, B.; Demir, H.; Mazumder, S.; Okabe, S.; Yamori, T.; Viapiano, M.; Shin-ya, K.; Seimiya, H.; Nakano, I. Telomestatin impairs glioma stem cell survival and growth through the disruption of telomeric G-quadruplex and inhibition of the proto-oncogene, c-Myb. Clin. Cancer Res., 2012, 18(5), 1268-1280.
[http://dx.doi.org/10.1158/1078-0432.CCR-11-1795] [PMID: 22230766]
[163]
Zhang, M.; Mathur, A.; Zhang, Y.; Xi, S.; Atay, S.; Hong, J.A.; Datrice, N.; Upham, T.; Kemp, C.D.; Ripley, R.T.; Wiegand, G.; Avital, I.; Fetsch, P.; Mani, H.; Zlott, D.; Robey, R.; Bates, S.E.; Li, X.; Rao, M.; Schrump, D.S. Mithramycin represses basal and cigarette smoke-induced expression of ABCG2 and inhibits stem cell signaling in lung and esophageal cancer cells. Cancer Res., 2012, 72(16), 4178-4192.
[http://dx.doi.org/10.1158/0008-5472.CAN-11-3983] [PMID: 22751465]
[164]
Ponnurangam, S.; Mammen, J.M.V.; Ramalingam, S.; He, Z.; Zhang, Y.; Umar, S.; Subramaniam, D.; Anant, S. Honokiol in combination with radiation targets notch signaling to inhibit colon cancer stem cells. Mol. Cancer Ther., 2012, 11(4), 963-972.
[http://dx.doi.org/10.1158/1535-7163.MCT-11-0999] [PMID: 22319203]
[165]
Yao, C.J.; Lai, G.M.; Yeh, C.T.; Lai, M.T.; Shih, P.H.; Chao, W.J.; Whang-Peng, J.; Chuang, S.E.; Lai, T.Y. Honokiol eliminates human oral cancer stem-like cells accompanied with suppression of wnt/β -catenin signaling and apoptosis induction. Evid. Based Complement. Alternat. Med., 2013, 2013146136
[http://dx.doi.org/10.1155/2013/146136] [PMID: 23662112]
[166]
Epifano, F.; Genovese, S.; Miller, R.; Majumdar, A.P. Auraptene and its effects on the re-emergence of colon cancer stem cells. Phytother. Res., 2013, 27(5), 784-786.
[http://dx.doi.org/10.1002/ptr.4773] [PMID: 22761031]
[167]
Callahan, K.P.; Minhajuddin, M.; Corbett, C.; Lagadinou, E.D.; Rossi, R.M.; Grose, V.; Balys, M.M.; Pan, L.; Jacob, S.; Frontier, A.; Grever, M.R.; Lucas, D.M.; Kinghorn, A.D.; Liesveld, J.L.; Becker, M.W.; Jordan, C.T. Flavaglines target primitive leukemia cells and enhance anti-leukemia drug activity. Leukemia, 2014, 28(10), 1960-1968.
[http://dx.doi.org/10.1038/leu.2014.93] [PMID: 24577530]
[168]
Kallifatidis, G.; Labsch, S.; Rausch, V.; Mattern, J.; Gladkich, J.; Moldenhauer, G.; Büchler, M.W.; Salnikov, A.V.; Herr, I. Sulforaphane increases drug-mediated cytotoxicity toward cancer stem-like cells of pancreas and prostate. Mol. Ther., 2011, 19(1), 188-195.
[http://dx.doi.org/10.1038/mt.2010.216] [PMID: 20940707]
[169]
Heng, W.S.; Cheah, S-C. Chelerythrine chloride downregulates β-catenin and inhibits stem cell properties of non-small cell lung carcinoma. Molecules, 2020, 25(1), 224.
[http://dx.doi.org/10.3390/molecules25010224] [PMID: 31935827]
[170]
Reisenauer, K.N.; Tao, Y.; Song, S.; Patel, S.D.; Ingros, A.; Sheesley, P.; Masi, M.; Boari, A.; Evidente, A.; Kornienko, A.V.; Romo, D.; Taube, J. Epithelial-mesenchymal transition sensitizes breast cancer cells to cell death via the fungus-derived sesterterpenoid ophiobolin a. bioRxiv, 2020.
[171]
Felmeden, D.C.; Blann, A.D.; Lip, G.Y. Angiogenesis: Basic pathophysiology and implications for disease. Eur. Heart J., 2003, 24(7), 586-603.
[http://dx.doi.org/10.1016/S0195-668X(02)00635-8] [PMID: 12657217]
[172]
Tímár, J.; Döme, B.; Fazekas, K.; Janovics, A.; Paku, S. Angiogenesis-dependent diseases and angiogenesis therapy. Pathol. Oncol. Res., 2001, 7(2), 85-94.
[http://dx.doi.org/10.1007/BF03032573] [PMID: 11458270]
[173]
Rajabi, M.; Mousa, S.A. The role of angiogenesis in cancer treatment. Biomedicines, 2017, 5(2), 34.
[http://dx.doi.org/10.3390/biomedicines5020034] [PMID: 28635679]
[174]
Nishida, N.; Yano, H.; Nishida, T.; Kamura, T.; Kojiro, M. Angiogenesis in cancer. Vasc. Health Risk Manag., 2006, 2(3), 213-219.
[http://dx.doi.org/10.2147/vhrm.2006.2.3.213] [PMID: 17326328]
[175]
Zuazo-Gaztelu, I.; Casanovas, O. Unraveling the role of angiogenesis in cancer ecosystems. Front. Oncol., 2018, 8(8), 248.
[http://dx.doi.org/10.3389/fonc.2018.00248] [PMID: 30013950]
[176]
Maj, E.; Papiernik, D.; Wietrzyk, J. Antiangiogenic cancer treatment: The great discovery and greater complexity. (review) Int. J. Oncol., 2016, 49(5), 1773-1784.
[http://dx.doi.org/10.3892/ijo.2016.3709] [PMID: 27826619]
[177]
Mangoni, M.; Vozenin, M.C.; Biti, G.; Deutsch, E. Normal tissues toxicities triggered by combined anti-angiogenic and radiation therapies: Hurdles might be ahead. Br. J. Cancer, 2012, 107(2), 308-314.
[http://dx.doi.org/10.1038/bjc.2012.236] [PMID: 22691970]
[178]
Ma, J.; Waxman, D.J. Combination of antiangiogenesis with chemotherapy for more effective cancer treatment. Mol. Cancer Ther., 2008, 7(12), 3670-3684.
[http://dx.doi.org/10.1158/1535-7163.MCT-08-0715] [PMID: 19074844]
[179]
Demain, A.L.; Vaishnav, P. Natural products for cancer chemotherapy; Micro. Biotechnol, 2011, pp. 687-699.
[180]
Kiani, B.H.; Kayani, W.K.; Khayam, A.U.; Dilshad, E.; Ismail, H.; Mirza, B. Artemisinin and its derivatives: A promising cancer therapy. Mol. Biol. Rep., 2020, 47(8), 6321-6336.
[http://dx.doi.org/10.1007/s11033-020-05669-z] [PMID: 32710388]
[181]
Abd Wahab, N.A.; Lajis, N.H.; Abas, F.; Othman, I.; Naidu, R. Mechanism of anti-cancer activity of curcumin on androgen-dependent and androgen-independent prostate cancer. Nutrients, 2020, 12(3), 679.
[http://dx.doi.org/10.3390/nu12030679] [PMID: 32131560]
[182]
Liu, J.J.; Huang, T.S.; Cheng, W.F.; Lu, F.J. Baicalein and baicalin are potent inhibitors of angiogenesis: Inhibition of endothelial cell proliferation, migration and differentiation. Int. J. Cancer, 2003, 106(4), 559-565.
[http://dx.doi.org/10.1002/ijc.11267] [PMID: 12845652]
[183]
DeFeudis, F.V.; Papadopoulos, V.; Drieu, K. Ginkgo biloba extracts and cancer: A research area in its infancy. Fundam. Clin. Pharmacol., 2003, 17(4), 405-417.
[http://dx.doi.org/10.1046/j.1472-8206.2003.00156.x] [PMID: 12914542]
[184]
Ma, Z.S.; Huynh, T.H.; Ng, C.P.; Do, P.T.; Nguyen, T.H.; Huynh, H. Reduction of CWR22 prostate tumor xenograft growth by combined tamoxifen-quercetin treatment is associated with inhibition of angiogenesis and cellular proliferation. Int. J. Oncol., 2004, 24(5), 1297-1304.
[http://dx.doi.org/10.3892/ijo.24.5.1297] [PMID: 15067354]
[185]
Sartippour, M.R.; Shao, Z.M.; Heber, D.; Beatty, P.; Zhang, L.; Liu, C.; Ellis, L.; Liu, W.; Go, V.L.; Brooks, M.N. Green tea inhibits vascular endothelial growth factor (VEGF) induction in human breast cancer cells. J. Nutr., 2002, 132(8), 2307-2311.
[http://dx.doi.org/10.1093/jn/132.8.2307] [PMID: 12163680]
[186]
Jiang, C.; Agarwal, R.; Lü, J. Anti-angiogenic potential of a cancer chemopreventive flavonoid antioxidant, silymarin: Inhibition of key attributes of vascular endothelial cells and angiogenic cytokine secretion by cancer epithelial cells. Biochem. Biophys. Res. Commun., 2000, 276(1), 371-378.
[http://dx.doi.org/10.1006/bbrc.2000.3474] [PMID: 11006131]
[187]
Mercurio, A.M. VEGF/neuropilin signaling in cancer stem cells. Int. J. Mol. Sci., 2019, 20(3), 490.
[http://dx.doi.org/10.3390/ijms20030490] [PMID: 30678134]
[188]
Markowska, A.; Sajdak, S.; Markowska, J.; Huczyński, A. Angiogenesis and cancer stem cells: New perspectives on therapy of ovarian cancer. Eur. J. Med. Chem., 2017, 142, 87-94.
[http://dx.doi.org/10.1016/j.ejmech.2017.06.030] [PMID: 28651817]
[189]
Darvesh, A.S.; Bishayee, A. Chemopreventive and therapeutic potential of tea polyphenols in hepatocellular cancer. Nutr. Cancer, 2013, 65(3), 329-344.
[http://dx.doi.org/10.1080/01635581.2013.767367] [PMID: 23530632]
[190]
Braakhuis, A.J.; Campion, P.; Bishop, K.S. Reducing breast cancer recurrence: The role of dietary polyphenolics. Nutrients, 2016, 8(9), 547.
[http://dx.doi.org/10.3390/nu8090547] [PMID: 27608040]
[191]
Moyle, C.W.A.; Cerezo, A.B.; Winterbone, M.S.; Hollands, W.J.; Alexeev, Y.; Needs, P.W.; Kroon, P.A. Potent inhibition of VEGFR-2 activation by tight binding of green tea epigallocatechin gallate and apple procyanidins to VEGF: Relevance to angiogenesis. Mol. Nutr. Food Res., 2015, 59(3), 401-412.
[http://dx.doi.org/10.1002/mnfr.201400478] [PMID: 25546248]
[192]
Crew, K.D.; Ho, K.A.; Brown, P.; Greenlee, H.; Bevers, T.B.; Arun, B.; Sneige, N.; Hudis, C.; McArthur, H.L.; Chang, J.; Rimawi, M.; Cornelison, T.L.; Cardelli, J.; Santella, R.M.; Wang, A.; Lippman, S.M.; Hershman, D.L. Effects of a green tea extract, Polyphenon E, on systemic biomarkers of growth factor signalling in women with hormone receptor-negative breast cancer. J. Hum. Nutr. Diet., 2015, 28(3), 272-282.
[http://dx.doi.org/10.1111/jhn.12229] [PMID: 24646362]
[193]
Lv, P.; Shi, F.; Chen, X.; Xu, L.; Wang, C.; Tian, S.; Yang, H.; Hou, L. Tea polyphenols inhibit the growth and angiogenesis of breast cancer xenografts in a mouse model. J. Tradit. Chinese Med. Sci, 2020, 7(2), 141-147.
[http://dx.doi.org/10.1016/j.jtcms.2020.05.001]
[194]
Chen, J.C.; Chen, Y.; Lin, J.H.; Wu, J.M.; Tseng, S.H. Resveratrol suppresses angiogenesis in gliomas: Evaluation by color doppler ultrasound. Anticancer Res., 2006, 26(2A), 1237-1245.
[PMID: 16619530]
[195]
Garvin, S.; Öllinger, K.; Dabrosin, C. Resveratrol induces apoptosis and inhibits angiogenesis in human breast cancer xenografts in vivo. Cancer Lett., 2006, 231(1), 113-122.
[http://dx.doi.org/10.1016/j.canlet.2005.01.031] [PMID: 16356836]
[196]
Hu, Y.; Sun, C.Y.; Huang, J.; Hong, L.; Zhang, L.; Chu, Z.B. Antimyeloma effects of resveratrol through inhibition of angiogenesis. Chin. Med. J. (Engl.), 2007, 120(19), 1672-1677.
[http://dx.doi.org/10.1097/00029330-200710010-00006] [PMID: 17935668]
[197]
Vickers, N.J. Animal communication: When i’m calling you, will you answer too? Curr. Biol., 2017, 27(14), R713-R715.
[http://dx.doi.org/10.1016/j.cub.2017.05.064] [PMID: 28743020]
[198]
Cao, Z. -3,4,5textquotesingle-trihydroxystibene inhibits hypoxia-inducible factor 1 and vascular endothelial growth factor expression in human ovarian cancer cells. Clin. Cancer Res., 2004, 10(15), 5253-5263.
[http://dx.doi.org/10.1158/1078-0432.CCR-03-0588] [PMID: 15297429]
[199]
Pouyafar, A.; Rezabakhsh, A.; Rahbarghazi, R.; Heydarabad, M.Z.; Shokrollahi, E.; Sokullu, E.; Khaksar, M.; Nourazarian, A.; Avci, Ç.B. Treatment of cancer stem cells from human colon adenocarcinoma cell line HT-29 with resveratrol and sulindac induced mesenchymal-endothelial transition rate. Cell Tissue Res., 2019, 376(3), 377-388.
[http://dx.doi.org/10.1007/s00441-019-02998-9] [PMID: 30758710]
[200]
Choi, Y.J.; Heo, K.; Park, H.S.; Yang, K.M.; Jeong, M.H. The resveratrol analog HS-1793 enhances radiosensitivity of mouse-derived breast cancer cells under hypoxic conditions. Int. J. Oncol., 2016, 49(4), 1479-1488.
[http://dx.doi.org/10.3892/ijo.2016.3647] [PMID: 27498957]
[201]
Aggarwal, B.B.; Kumar, A.; Bharti, A.C. Anticancer potential of curcumin: Preclinical and clinical studies. Anticancer Res., 2003, 23(1A), 363-398.
[PMID: 12680238]
[202]
Tomeh, M.A.; Hadianamrei, R.; Zhao, X. A review of curcumin and its derivatives as anticancer agents. Int. J. Mol. Sci., 2019, 20(5), 1033.
[http://dx.doi.org/10.3390/ijms20051033] [PMID: 30818786]
[203]
Kunnumakkara, A.B.; Bordoloi, D.; Harsha, C.; Banik, K.; Gupta, S.C.; Aggarwal, B.B. Curcumin mediates anticancer effects by modulating multiple cell signaling pathways. Clin. Sci. (Lond.), 2017, 131(15), 1781-1799.
[http://dx.doi.org/10.1042/CS20160935] [PMID: 28679846]
[204]
Bimonte, S.; Barbieri, A.; Leongito, M.; Piccirillo, M.; Giudice, A.; Pivonello, C.; de Angelis, C.; Granata, V.; Palaia, R.; Izzo, F. Curcumin anticancer studies in pancreatic cancer. Nutrients, 2016, 8(7), 433.
[http://dx.doi.org/10.3390/nu8070433] [PMID: 27438851]
[205]
Bhandarkar, S.S.; Arbiser, J.L. Curcumin as an inhibitor of angiogenesis. Adv. Exp. Med. Biol., 2007, 595, 185-195.
[http://dx.doi.org/10.1007/978-0-387-46401-5_7] [PMID: 17569211]
[206]
Li, X.; Ma, S.; Yang, P.; Sun, B.; Zhang, Y.; Sun, Y.; Hao, M.; Mou, R.; Jia, Y. Anticancer effects of curcumin on nude mice bearing lung cancer A549 cell subsets SP and NSP cells. Oncol. Lett., 2018, 16(5), 6756-6762.
[http://dx.doi.org/10.3892/ol.2018.9488] [PMID: 30405819]
[207]
Dai, C.; Zhang, X.; Zhang, K. New discovery of curcumin combination therapy and action mechanism. Altern. Med.,, 2020, 1-2.
[208]
Huynh, H.; Nguyen, T.T.; Chan, E.; Tran, E. Inhibition of ErbB-2 and ErbB-3 expression by quercetin prevents transforming growth factor alpha (TGF-alpha)- and epidermal growth factor (EGF)-induced human PC-3 prostate cancer cell proliferation. Int. J. Oncol., 2003, 23(3), 821-829.
[http://dx.doi.org/10.3892/ijo.23.3.821] [PMID: 12888923]
[209]
Tan, W.F.; Lin, L.P.; Li, M.H.; Zhang, Y.X.; Tong, Y.G.; Xiao, D.; Ding, J. Quercetin, a dietary-derived flavonoid, possesses antiangiogenic potential. Eur. J. Pharmacol., 2003, 459(2-3), 255-262.
[http://dx.doi.org/10.1016/S0014-2999(02)02848-0] [PMID: 12524154]
[210]
Igura, K.; Ohta, T.; Kuroda, Y.; Kaji, K. Resveratrol and quercetin inhibit angiogenesis in vitro. Cancer Lett., 2001, 171(1), 11-16.
[http://dx.doi.org/10.1016/S0304-3835(01)00443-8] [PMID: 11485823]
[211]
Liang, Z.; Brooks, J.; Willard, M.; Liang, K.; Yoon, Y.; Kang, S.; Shim, H. CXCR4/CXCL12 axis promotes VEGF-mediated tumor angiogenesis through Akt signaling pathway. Biochem. Biophys. Res. Commun., 2007, 359(3), 716-722.
[http://dx.doi.org/10.1016/j.bbrc.2007.05.182] [PMID: 17559806]
[212]
Wang, R.; Yang, L.; Li, S.; Ye, D.; Yang, L.; Liu, Q.; Zhao, Z.; Cai, Q.; Tan, J.; Li, X. Quercetin inhibits breast cancer stem cells via downregulation of aldehyde dehydrogenase 1a1 (aldh1a1), chemokine receptor type 4 (cxcr4), mucin 1 (muc1), and epithelial cell adhesion molecule (epcam). Med. Sci. Monit., 2018, 24, 412-420.
[http://dx.doi.org/10.12659/MSM.908022] [PMID: 29353288]
[213]
Sheng, W.; Jia, R.; Wang, J.; Xia, J. Salinomycin prevents angiogenesis and inhibits glioma growth by interfering with vegf-vegfr2-akt/fak signal axis. Acta Med. Mediter., 2020, 36(1), 47-51.
[214]
Wang, Z.; Dabrosin, C.; Yin, X.; Fuster, M.M.; Arreola, A.; Rathmell, W.K.; Generali, D.; Nagaraju, G.P.; El-Rayes, B.; Ribatti, D.; Chen, Y.C.; Honoki, K.; Fujii, H.; Georgakilas, A.G.; Nowsheen, S.; Amedei, A.; Niccolai, E.; Amin, A.; Ashraf, S.S.; Helferich, B.; Yang, X.; Guha, G.; Bhakta, D.; Ciriolo, M.R.; Aquilano, K.; Chen, S.; Halicka, D.; Mohammed, S.I.; Azmi, A.S.; Bilsland, A.; Keith, W.N.; Jensen, L.D. Broad targeting of angiogenesis for cancer prevention and therapy. Semin. Cancer Biol., 2015, 35(Suppl.), S224-S243.
[http://dx.doi.org/10.1016/j.semcancer.2015.01.001] [PMID: 25600295]
[215]
Li, T.; Liu, X.; Shen, Q.; Yang, W.; Huo, Z.; Liu, Q.; Jiao, H.; Chen, J. Salinomycin exerts anti-angiogenic and anti-tumorigenic activities by inhibiting vascular endothelial growth factor receptor 2-mediated angiogenesis. Oncotarget, 2016, 7(18), 26580-26592.
[http://dx.doi.org/10.18632/oncotarget.8555] [PMID: 27058891]
[216]
Bi, Y.L.; Mi, P.Y.; Zhao, S.J.; Pan, H.M.; Li, H.J.; Liu, F.; Shao, L.R.; Zhang, H.F.; Zhang, P.; Jiang, S.L. Salinomycin exhibits anti-angiogenic activity against human glioma in vitro and in vivo by suppressing the VEGF-VEGFR2-AKT/FAK signaling axis. Int. J. Mol. Med., 2017, 39(5), 1255-1261.
[http://dx.doi.org/10.3892/ijmm.2017.2940] [PMID: 28358414]
[217]
Liang, H.; Yuan, Q.P.; Dong, H.R.; Liu, Y.M. Determination of sulforaphane in broccoli and cabbage by high-performance liquid chromatography. J. Food Compos. Anal., 2006, 19(5), 473-476.
[http://dx.doi.org/10.1016/j.jfca.2005.11.005]
[218]
Kim, D.H.; Sung, B.; Kang, Y.J.; Hwang, S.Y.; Kim, M.J.; Yoon, J.H. Im, E.; Kim, N.D. Sulforaphane inhibits hypoxia-induced HIF-1α and VEGF expression and migration of human colon cancer cells. Int. J. Oncol., 2015, 47(6), 2226-2232.
[http://dx.doi.org/10.3892/ijo.2015.3200] [PMID: 26498863]
[219]
Singh, S.V.; Warin, R.; Xiao, D.; Powolny, A.A.; Stan, S.D.; Arlotti, J.A.; Zeng, Y.; Hahm, E.R.; Marynowski, S.W.; Bommareddy, A.; Desai, D.; Amin, S.; Parise, R.A.; Beumer, J.H.; Chambers, W.H. Sulforaphane inhibits prostate carcinogenesis and pulmonary metastasis in TRAMP mice in association with increased cytotoxicity of natural killer cells. Cancer Res., 2009, 69(5), 2117-2125.
[http://dx.doi.org/10.1158/0008-5472.CAN-08-3502] [PMID: 19223537]
[220]
Gamet-Payrastre, L.; Li, P.; Lumeau, S.; Cassar, G.; Dupont, M.A.; Chevolleau, S.; Gasc, N.; Tulliez, J.; Tercé, F. Sulforaphane, a naturally occurring isothiocyanate, induces cell cycle arrest and apoptosis in HT29 human colon cancer cells. Cancer Res., 2000, 60(5), 1426-1433.
[PMID: 10728709]
[221]
Labsch, S.; Liu, L.; Bauer, N.; Zhang, Y.; Aleksandrowicz, E.; Gladkich, J.; Schönsiegel, F.; Herr, I. Sulforaphane and TRAIL induce a synergistic elimination of advanced prostate cancer stem-like cells. Int. J. Oncol., 2014, 44(5), 1470-1480.
[http://dx.doi.org/10.3892/ijo.2014.2335] [PMID: 24626333]
[222]
Son, M.K.; Jung, K.H.; Lee, H.S.; Lee, H.; Kim, S.J.; Yan, H.H.; Ryu, Y.L.; Hong, S.S. SB365, Pulsatilla saponin D suppresses proliferation and induces apoptosis of pancreatic cancer cells. Oncol. Rep., 2013, 30(2), 801-808.
[http://dx.doi.org/10.3892/or.2013.2517] [PMID: 23733203]
[223]
Peng, C.C.; Chen, K.C.; Peng, R.Y.; Chyau, C.C.; Su, C.H.; Hsieh-Li, H.M. Antrodia camphorata extract induces replicative senescence in superficial TCC, and inhibits the absolute migration capability in invasive bladder carcinoma cells. J. Ethnopharmacol., 2007, 109(1), 93-103.
[http://dx.doi.org/10.1016/j.jep.2006.07.009] [PMID: 16930895]
[224]
Chiang, P.C.; Lin, S.C.; Pan, S.L.; Kuo, C.H.; Tsai, I.L.; Kuo, M.T.; Wen, W.C.; Chen, P.; Guh, J.H. Antroquinonol displays anticancer potential against human hepatocellular carcinoma cells: A crucial role of AMPK and mTOR pathways. Biochem. Pharmacol., 2010, 79(2), 162-171.
[http://dx.doi.org/10.1016/j.bcp.2009.08.022] [PMID: 19723512]
[225]
Gui, M.W.; Wei, P.K.; Lu, Y.; Guo, W.; Qin, Z.F.; Sun, D.Z. Effects of xiaotan sanjie decoction-containing serum on proliferation and apoptosis of human gastric cancer cells mkn-45. J. Chin. Integr. Med., 2010, 8(3), 250-255.
[http://dx.doi.org/10.3736/jcim20100309] [PMID: 20226147]
[226]
Yan, B.; Liu, L.; Zhao, Y.; Xiu, L.J.; Sun, D.Z.; Liu, X.; Lu, Y.; Shi, J.; Zhang, Y.C.; Li, Y.J.; Wang, X.W.; Zhou, Y.Q.; Feng, S.H.; Lv, C.; Wei, P.K.; Qin, Z.F. Xiaotan Sanjie decoction attenuates tumor angiogenesis by manipulating Notch-1-regulated proliferation of gastric cancer stem-like cells. World J. Gastroenterol., 2014, 20(36), 13105-13118.
[http://dx.doi.org/10.3748/wjg.v20.i36.13105] [PMID: 25278704]
[227]
Steeg, P.S. Tumor metastasis: Mechanistic insights and clinical challenges. Nat. Med., 2006, 12(8), 895-904.
[http://dx.doi.org/10.1038/nm1469] [PMID: 16892035]
[228]
Campbell, L.L.; Polyak, K. Breast tumor heterogeneity: Cancer stem cells or clonal evolution? Cell Cycle, 2007, 6(19), 2332-2338.
[http://dx.doi.org/10.4161/cc.6.19.4914] [PMID: 17786053]
[229]
Clarke, M.F.; Hass, A.T. Cancer stem cells. Reviews. Cell Biol. Mol. Med., 2006.
[230]
Liao, W.T.; Ye, Y.P.; Deng, Y.J.; Bian, X.W.; Ding, Y.Q. Metastatic cancer stem cells: From the concept to therapeutics; Am. J. Stem Cell, 2014, pp. 46-62.
[231]
Clevers, H. The cancer stem cell: Premises, promises and challenges. Nat. Med., 2011, 17(3), 313-319.
[http://dx.doi.org/10.1038/nm.2304] [PMID: 21386835]
[232]
Shen, Y.A.; Lin, C.H.; Chi, W.H.; Wang, C.Y.; Hsieh, Y.T.; Wei, Y.H.; Chen, Y.J. Resveratrol impedes the stemness, epithelial-mesenchymal transition, and metabolic reprogramming of cancer stem cells in nasopharyngeal carcinoma through p53 activation. Evidence-based complement. altern. med., 2013, 1-13.
[http://dx.doi.org/10.1155/2013/590393]
[233]
Hu, F.W.; Tsai, L.L.; Yu, C.H.; Chen, P.N.; Chou, M.Y.; Yu, C.C. Impairment of tumor-initiating stem-like property and reversal of epithelial-mesenchymal transdifferentiation in head and neck cancer by resveratrol treatment. Mol. Nutr. Food Res., 2012, 56(8), 1247-1258.
[http://dx.doi.org/10.1002/mnfr.201200150] [PMID: 22692956]
[234]
Cilibrasi, C.; Riva, G.; Romano, G.; Cadamuro, M.; Bazzoni, R.; Butta, V.; Paoletta, L.; Dalprà, L.; Strazzabosco, M.; Lavitrano, M.; Giovannoni, R.; Bentivegna, A. Resveratrol impairs glioma stem cells proliferation and motility by modulating the wnt signaling pathway. PLoS One, 2017, 12(1)e0169854
[http://dx.doi.org/10.1371/journal.pone.0169854] [PMID: 28081224]
[235]
Marquardt, J.U.; Gomez-Quiroz, L.; Arreguin Camacho, L.O.; Pinna, F.; Lee, Y.H.; Kitade, M.; Domínguez, M.P.; Castven, D.; Breuhahn, K.; Conner, E.A.; Galle, P.R.; Andersen, J.B.; Factor, V.M.; Thorgeirsson, S.S. Curcumin effectively inhibits oncogenic NF-κB signaling and restrains stemness features in liver cancer. J. Hepatol., 2015, 63(3), 661-669.
[http://dx.doi.org/10.1016/j.jhep.2015.04.018] [PMID: 25937435]
[236]
James, M.I.; Iwuji, C.; Irving, G.; Karmokar, A.; Higgins, J.A.; Griffin-Teal, N.; Thomas, A.; Greaves, P.; Cai, H.; Patel, S.R.; Morgan, B.; Dennison, A.; Metcalfe, M.; Garcea, G.; Lloyd, D.M.; Berry, D.P.; Steward, W.P.; Howells, L.M.; Brown, K. Curcumin inhibits cancer stem cell phenotypes in ex vivo models of colorectal liver metastases, and is clinically safe and tolerable in combination with FOLFOX chemotherapy. Cancer Lett., 2015, 364(2), 135-141.
[http://dx.doi.org/10.1016/j.canlet.2015.05.005] [PMID: 25979230]
[237]
Hu, C.; Li, M.; Guo, T.; Wang, S.; Huang, W.; Yang, K.; Liao, Z.; Wang, J.; Zhang, F.; Wang, H. Anti-metastasis activity of curcumin against breast cancer via the inhibition of stem cell-like properties and EMT. Phytomedicine, 2019, 58152740
[http://dx.doi.org/10.1016/j.phymed.2018.11.001] [PMID: 31005718]
[238]
Gupta, P.B.; Onder, T.T.; Jiang, G.; Tao, K.; Kuperwasser, C.; Weinberg, R.A.; Lander, E.S. Identification of selective inhibitors of cancer stem cells by high-throughput screening. Cell, 2009, 138(4), 645-659.
[http://dx.doi.org/10.1016/j.cell.2009.06.034] [PMID: 19682730]
[239]
Srivastava, R.K.; Tang, S.N.; Zhu, W.; Meeker, D.; Shankar, S. Sulforaphane synergizes with quercetin to inhibit self-renewal capacity of pancreatic cancer stem cells. Front. Biosci. (Elite Ed.), 2011, 3(2), 515-528.
[http://dx.doi.org/10.2741/e266] [PMID: 21196331]
[240]
Simões, B.M.; Santiago-Gómez, A.; Chiodo, C.; Moreira, T.; Conole, D.; Lovell, S.; Alferez, D.; Eyre, R.; Spence, K.; Sarmiento-Castro, A.; Kohler, B.; Morisset, L.; Lanzino, M.; Andò, S.; Marangoni, E.; Sims, A.H.; Tate, E.W.; Howell, S.J.; Clarke, R.B. Targeting STAT3 signaling using stabilised sulforaphane (SFX-01) inhibits endocrine resistant stem-like cells in ER-positive breast cancer. Oncogene, 2020, 39(25), 4896-4908.
[http://dx.doi.org/10.1038/s41388-020-1335-z] [PMID: 32472077]
[241]
Zhang, L.L.; Li, L.; Wu, D.P.; Fan, J.H.; Li, X.; Wu, K.J.; Wang, X.Y.; He, D.L. A novel anti-cancer effect of genistein: Reversal of epithelial mesenchymal transition in prostate cancer cells. Acta Pharmacol. Sin., 2008, 29(9), 1060-1068.
[http://dx.doi.org/10.1111/j.1745-7254.2008.00831.x] [PMID: 18718175]
[242]
Zhang, L.; Li, L.; Jiao, M.; Wu, D.; Wu, K.; Li, X.; Zhu, G.; Yang, L.; Wang, X.; Hsieh, J.T.; He, D. Genistein inhibits the stemness properties of prostate cancer cells through targeting Hedgehog-Gli1 pathway. Cancer Lett., 2012, 323(1), 48-57.
[http://dx.doi.org/10.1016/j.canlet.2012.03.037] [PMID: 22484470]
[243]
Stojanović-Radić, Z.; Pejčić, M.; Dimitrijević, M.; Aleksić, A.; Anil Kumar, N.V.; Salehi, B.; Cho, W.C.; Sharifi-Rad, J. Piperine-a major principle of black pepper: A review of its bioactivity and studies. Appl. Sci. (Basel), 2019, 9(20), 4270.
[http://dx.doi.org/10.3390/app9204270]
[244]
Pradeep, C.R.; Kuttan, G. Effect of piperine on the inhibition of lung metastasis induced B16F-10 melanoma cells in mice. Clin. Exp. Metastasis, 2002, 19(8), 703-708.
[http://dx.doi.org/10.1023/A:1021398601388] [PMID: 12553376]
[245]
Ouyang, D.Y.; Zeng, L.H.; Pan, H.; Xu, L.H.; Wang, Y.; Liu, K.P.; He, X.H. Piperine inhibits the proliferation of human prostate cancer cells via induction of cell cycle arrest and autophagy. Food Chem. Toxicol., 2013, 60, 424-430.
[http://dx.doi.org/10.1016/j.fct.2013.08.007] [PMID: 23939040]
[246]
Chaffer, C.L.; San Juan, B.P.; Lim, E.; Weinberg, R.A. EMT, cell plasticity and metastasis. Cancer Metastasis Rev., 2016, 35(4), 645-654.
[http://dx.doi.org/10.1007/s10555-016-9648-7] [PMID: 27878502]
[247]
Shibue, T.; Weinberg, R.A. EMT, CSCs, and drug resistance: The mechanistic link and clinical implications. Nat. Rev. Clin. Oncol., 2017, 14(10), 611-629.
[http://dx.doi.org/10.1038/nrclinonc.2017.44] [PMID: 28397828]
[248]
Wu, H.; Xie, J.; Pan, Q.; Wang, B.; Hu, D.; Hu, X. Anticancer agent shikonin is an incompetent inducer of cancer drug resistance. PLoS One, 2013, 8(1)e52706
[http://dx.doi.org/10.1371/journal.pone.0052706] [PMID: 23300986]
[249]
Min, R.; Zun, Z.; Min, Y.; Wenhu, D.; Wenjun, Y.; Chenping, Z. Shikonin inhibits tumor invasion via down-regulation of NF-κB-mediated MMP-9 expression in human ACC-M cells. Oral Dis., 2011, 17(4), 362-369.
[http://dx.doi.org/10.1111/j.1601-0825.2010.01758.x] [PMID: 21029262]
[250]
Jang, S.Y.; Lee, J.K.; Jang, E.H.; Jeong, S.Y.; Kim, J.H. Shikonin blocks migration and invasion of human breast cancer cells through inhibition of matrix metalloproteinase-9 activation. Oncol. Rep., 2014, 31(6), 2827-2833.
[http://dx.doi.org/10.3892/or.2014.3159] [PMID: 24789371]
[251]
Thakur, R.; Trivedi, R.; Rastogi, N.; Singh, M.; Mishra, D.P. Inhibition of STAT3, FAK and Src mediated signaling reduces cancer stem cell load, tumorigenic potential and metastasis in breast cancer. Sci. Rep., 2015, 5(1), 10194.
[http://dx.doi.org/10.1038/srep10194] [PMID: 25973915]
[252]
Fan, Y.; Xue, W.; Schachner, M.; Zhao, W. Honokiol eliminates glioma/glioblastoma stem cell-like cells via jak-stat3 signaling and inhibits tumor progression by targeting epidermal growth factor receptor. Cancer, 2018, 11(1), 22.
[http://dx.doi.org/10.3390/cancers11010022] [PMID: 29301506]
[253]
Adorno-Cruz, V.; Kibria, G.; Liu, X.; Doherty, M.; Junk, D.J.; Guan, D.; Hubert, C.; Venere, M.; Mulkearns-Hubert, E.; Sinyuk, M.; Alvarado, A.; Caplan, A.I.; Rich, J.; Gerson, S.L.; Lathia, J.; Liu, H. Cancer stem cells: Targeting the roots of cancer, seeds of metastasis, and sources of therapy resistance. Cancer Res., 2015, 75(6), 924-929.
[http://dx.doi.org/10.1158/0008-5472.CAN-14-3225] [PMID: 25604264]
[254]
Postow, M.A.; Callahan, M.K.; Wolchok, J.D. Immune checkpoint blockade in cancer therapy. J. Clin. Oncol., 2015, 33(17), 1974-1982.
[http://dx.doi.org/10.1200/JCO.2014.59.4358] [PMID: 25605845]
[255]
Lee, Y.; Shin, J.H.; Longmire, M.; Wang, H.; Kohrt, H.E.; Chang, H.Y.; Sunwoo, J.B. CD44+ cells in head and neck squamous cell carcinoma suppress t-cell-mediated immunity by selective constitutive and inducible expression of pd-l1. Clin. Cancer Res., 2016, 22(14), 3571-3581.
[http://dx.doi.org/10.1158/1078-0432.CCR-15-2665] [PMID: 26864211]
[256]
Wu, Y.; Chen, M.; Wu, P.; Chen, C.; Xu, Z.P.; Gu, W. Increased PD-L1 expression in breast and colon cancer stem cells. Clin. Exp. Pharmacol. Physiol., 2017, 44(5), 602-604.
[http://dx.doi.org/10.1111/1440-1681.12732] [PMID: 28107571]
[257]
Zhi, Y.; Mou, Z.; Chen, J.; He, Y.; Dong, H.; Fu, X.; Wu, Y. B7H1 expression and epithelial-to-mesenchymal transition phenotypes on colorectal cancer stem-like cells. PLoS One, 2015, 10(8)e0135528
[http://dx.doi.org/10.1371/journal.pone.0135528] [PMID: 26284927]
[258]
Volonté, A.; Di Tomaso, T.; Spinelli, M.; Todaro, M.; Sanvito, F.; Albarello, L.; Bissolati, M.; Ghirardelli, L.; Orsenigo, E.; Ferrone, S.; Doglioni, C.; Stassi, G.; Dellabona, P.; Staudacher, C.; Parmiani, G.; Maccalli, C. Cancer-initiating cells from colorectal cancer patients escape from T cell-mediated immunosurveillance in vitro through membrane-bound IL-4. J. Immunol., 2014, 192(1), 523-532.
[http://dx.doi.org/10.4049/jimmunol.1301342] [PMID: 24277698]
[259]
Todaro, M.; Alea, M.P.; Di Stefano, A.B.; Cammareri, P.; Vermeulen, L.; Iovino, F.; Tripodo, C.; Russo, A.; Gulotta, G.; Medema, J.P.; Stassi, G. Colon cancer stem cells dictate tumor growth and resist cell death by production of interleukin-4. Cell Stem Cell, 2007, 1(4), 389-402.
[http://dx.doi.org/10.1016/j.stem.2007.08.001] [PMID: 18371377]
[260]
Pan, J.; Shen, J.; Si, W.; Du, C.; Chen, D.; Xu, L.; Yao, M.; Fu, P.; Fan, W. Resveratrol promotes MICA/B expression and natural killer cell lysis of breast cancer cells by suppressing c-Myc/miR-17 pathway. Oncotarget, 2017, 8(39), 65743-65758.
[http://dx.doi.org/10.18632/oncotarget.19445] [PMID: 29029468]
[261]
Noh, K.T.; Chae, S.H.; Chun, S.H.; Jung, I.D.; Kang, H.K.; Park, Y.M. Resveratrol suppresses tumor progression via the regulation of indoleamine 2,3-dioxygenase. Biochem. Biophys. Res. Commun., 2013, 431(2), 348-353.
[http://dx.doi.org/10.1016/j.bbrc.2012.12.093] [PMID: 23291179]
[262]
Lee-Chang, C.; Bodogai, M.; Martin-Montalvo, A.; Wejksza, K.; Sanghvi, M.; Moaddel, R.; de Cabo, R.; Biragyn, A. Inhibition of breast cancer metastasis by resveratrol-mediated inactivation of tumor-evoked regulatory B cells. J. Immunol., 2013, 191(8), 4141-4151.
[http://dx.doi.org/10.4049/jimmunol.1300606] [PMID: 24043896]
[263]
Bhattacharyya, S.; Md Sakib Hossain, D.; Mohanty, S.; Sankar Sen, G.; Chattopadhyay, S.; Banerjee, S.; Chakraborty, J.; Das, K.; Sarkar, D.; Das, T.; Sa, G. Curcumin reverses T cell-mediated adaptive immune dysfunctions in tumor-bearing hosts. Cell. Mol. Immunol., 2010, 7(4), 306-315.
[http://dx.doi.org/10.1038/cmi.2010.11] [PMID: 20305684]
[264]
Liao, F.; Liu, L.; Luo, E.; Hu, J. Curcumin enhances anti-tumor immune response in tongue squamous cell carcinoma. Arch. Oral Biol., 2018, 92, 32-37.
[http://dx.doi.org/10.1016/j.archoralbio.2018.04.015] [PMID: 29751146]
[265]
Huang, A.C.; Cheng, H.Y.; Lin, T.S.; Chen, W.H.; Lin, J.H.; Lin, J.J.; Lu, C.C.; Chiang, J.H.; Hsu, S.C.; Wu, P.P.; Huang, Y.P.; Chung, J.G. Epigallocatechin gallate (EGCG), influences a murine WEHI-3 leukemia model in vivo through enhancing phagocytosis of macrophages and populations of T- and B-cells. In Vivo, 2013, 27(5), 627-634.
[PMID: 23988898]
[266]
Hsieh, D.S.; Wang, H.; Tan, S.W.; Huang, Y.H.; Tsai, C.Y.; Yeh, M.K.; Wu, C.J. The treatment of bladder cancer in a mouse model by epigallocatechin-3-gallate-gold nanoparticles. Biomaterials, 2011, 32(30), 7633-7640.
[http://dx.doi.org/10.1016/j.biomaterials.2011.06.073] [PMID: 21782236]
[267]
Peng, L.; Jiang, D. Resveratrol eliminates cancer stem cells of osteosarcoma by STAT3 pathway inhibition. PLoS One, 2018, 13(10)e0205918
[http://dx.doi.org/10.1371/journal.pone.0205918] [PMID: 30356255]
[268]
Mak, K.K.; Wu, A.T.H.; Lee, W.H.; Chang, T.C.; Chiou, J.F.; Wang, L.S.; Wu, C.H.; Huang, C.Y.F.; Shieh, Y.S.; Chao, T.Y.; Ho, C.T.; Yen, G.C.; Yeh, C.T. Pterostilbene, a bioactive component of blueberries, suppresses the generation of breast cancer stem cells within tumor microenvironment and metastasis via modulating NF-κB/microRNA 448 circuit. Mol. Nutr. Food Res., 2013, 57(7), 1123-1134.
[http://dx.doi.org/10.1002/mnfr.201200549] [PMID: 23504987]
[269]
Sordillo, P.P.; Helson, L. Curcumin and cancer stem cells: Curcumin has asymmetrical effects on cancer and normal stem cells. Anticancer Res., 2015, 35(2), 599-614.
[PMID: 25667437]
[270]
Shankar, S.; Chen, Q.; Srivastava, R.K. Inhibition of PI3K/AKT and MEK/ERK pathways act synergistically to enhance antiangiogenic effects of EGCG through activation of FOXO transcription factor. J. Mol. Signal., 2008, 3(1), 7.
[http://dx.doi.org/10.1186/1750-2187-3-7] [PMID: 18355401]
[271]
Pae, M.; Wu, D. Immunomodulating effects of epigallocatechin-3-gallate from green tea: Mechanisms and applications. Food Funct., 2013, 4(9), 1287-1303.
[http://dx.doi.org/10.1039/c3fo60076a] [PMID: 23835657]
[272]
Ning, Y.; Feng, W.; Cao, X.; Ren, K.; Quan, M.; Chen, A.; Xu, C.; Qiu, Y.; Cao, J.; Li, X.; Luo, X. Genistein inhibits stemness of SKOV3 cells induced by macrophages co-cultured with ovarian cancer stem-like cells through IL-8/STAT3 axis. J. Exp. Clin. Cancer Res., 2019, 38(1), 19.
[http://dx.doi.org/10.1186/s13046-018-1010-1] [PMID: 30646963]
[273]
Cevatemre, B.; Erkısa, M.; Aztopal, N.; Karakas, D.; Alper, P.; Tsimplouli, C.; Sereti, E.; Dimas, K.; Armutak, E.I.I.; Gurevin, E.G.; Uvez, A.; Mori, M.; Berardozzi, S.; Ingallina, C.; D’Acquarica, I.; Botta, B.; Ozpolat, B.; Ulukaya, E. A promising natural product, pristimerin, results in cytotoxicity against breast cancer stem cells in vitro and xenografts in vivo through apoptosis and an incomplete autopaghy in breast cancer. Pharmacol. Res., 2018, 129, 500-514.
[http://dx.doi.org/10.1016/j.phrs.2017.11.027] [PMID: 29197639]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy