Generic placeholder image

Current Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 0929-8673
ISSN (Online): 1875-533X

Review Article

Molecular Targets of Cannabinoids Associated with Depression

Author(s): Pradeep Paudel, Samir Ross and Xing-Cong Li*

Volume 29, Issue 11, 2022

Published on: 24 August, 2021

Page: [1827 - 1850] Pages: 24

DOI: 10.2174/0929867328666210623144658

Price: $65

conference banner
Abstract

Novel therapeutic strategies are needed to address depression, a major neurological disorder affecting hundreds of millions of people worldwide. Cannabinoids and their synthetic derivatives have demonstrated numerous neurological activities and may have the potential to be developed into new treatments for depression. This review highlights cannabinoid (CB) receptors, monoamine oxidase (MAO), N-methyl-D-aspartate (NMDA) receptor, gammaaminobutyric acid (GABA) receptor, and cholecystokinin (CCK) receptor as key molecular targets of cannabinoids that are associated with depression. The anti-depressant activity of cannabinoids and their binding modes with cannabinoid receptors are discussed, providing insights into rational design and discovery of new cannabinoids or cannabimimetic agents with improved druggable properties.

Keywords: Cannabinoids, molecular targets, depression, CB receptors, MAO, NMDA receptors, GABA receptors, CCK receptors.

[1]
GBD 2017 Risk Factor Collaborators. Global, regional, and national comparative risk assessment of 84 behavioural, environmental and occupational, and metabolic risks or clusters of risks for 195 countries and territories, 1990-2017: A systematic analysis for the global burden of disease study 2017. Lancet, 2018, 392(10159), 1923-1994.
[http://dx.doi.org/10.1016/S0140-6736(18)32225-6] [PMID: 30496105]
[2]
Nestler, E.J.; Barrot, M.; DiLeone, R.J.; Eisch, A.J.; Gold, S.J.; Monteggia, L.M. Neurobiology of depression. Neuron, 2002, 34(1), 13-25.
[http://dx.doi.org/10.1016/S0896-6273(02)00653-0] [PMID: 11931738]
[3]
Krishnan, V.; Nestler, E.J. The molecular neurobiology of depression. Nature, 2008, 455(7215), 894-902.
[http://dx.doi.org/10.1038/nature07455] [PMID: 18923511]
[4]
Ikeda, M.; Kitajima, T.; Iwata, N.; Ozaki, N. Molecular genetics of mood disorders. Nihon Shinkei Seishin Yakurigaku Zasshi, 2002, 22(5), 137-143.
[PMID: 12451683]
[5]
Fava, M.; Kendler, K.S. Major depressive disorder. Neuron, 2000, 28(2), 335-341.
[http://dx.doi.org/10.1016/S0896-6273(00)00112-4] [PMID: 11144343]
[6]
Association, A.P. Diagnostic and statistical manual of mental disorders (DSM-5®), 5th; American Psychiatric Association: Arlington, VA, 2013.
[http://dx.doi.org/10.1176/appi.books.9780890425596]
[7]
Wang, Q.; Tian, S.; Tang, H.; Liu, X.; Yan, R.; Hua, L.; Shi, J.; Chen, Y.; Zhu, R.; Lu, Q.; Yao, Z. Identification of major depressive disorder and prediction of treatment response using functional connectivity between the prefrontal cortices and subgenual anterior cingulate: A real-world study. J. Affect. Disord., 2019, 252, 365-372.
[http://dx.doi.org/10.1016/j.jad.2019.04.046] [PMID: 30999093]
[8]
de Mello Schier, A.R.; de Oliveira Ribeiro, N.P.; Coutinho, D.S.; Machado, S.; Arias-Carrión, O.; Crippa, J.A.; Zuardi, A.W.; Nardi, A.E.; Silva, A.C. Antidepressant-like and anxiolytic-like effects of cannabidiol: A chemical compound of Cannabis sativa. CNS Neurol. Disord. Drug Targets, 2014, 13(6), 953-960.
[http://dx.doi.org/10.2174/1871527313666140612114838] [PMID: 24923339]
[9]
Fogaça, M.V.; Reis, F.M.; Campos, A.C.; Guimarães, F.S. Effects of intra-prelimbic prefrontal cortex injection of cannabidiol on anxiety-like behavior: Involvement of 5HT1A receptors and previous stressful experience. Eur. Neuropsychopharmacol., 2014, 24(3), 410-419.
[http://dx.doi.org/10.1016/j.euroneuro.2013.10.012] [PMID: 24321837]
[10]
Bahi, A.; Al Mansouri, S.; Al Memari, E.; Al Ameri, M.; Nurulain, S.M.; Ojha, S. β-Caryophyllene, a CB2 receptor agonist produces multiple behavioral changes relevant to anxiety and depression in mice. Physiol. Behav., 2014, 135, 119-124.
[http://dx.doi.org/10.1016/j.physbeh.2014.06.003] [PMID: 24930711]
[11]
Hua, T.; Vemuri, K.; Pu, M.; Qu, L.; Han, G.W.; Wu, Y.; Zhao, S.; Shui, W.; Li, S.; Korde, A.; Laprairie, R.B.; Stahl, E.L.; Ho, J.H.; Zvonok, N.; Zhou, H.; Kufareva, I.; Wu, B.; Zhao, Q.; Hanson, M.A.; Bohn, L.M.; Makriyannis, A.; Stevens, R.C.; Liu, Z.J. Crystal structure of the human cannabinoid receptor CB1. Cell, 2016, 167(3), 750-762.e14.
[http://dx.doi.org/10.1016/j.cell.2016.10.004] [PMID: 27768894]
[12]
Hua, T.; Vemuri, K.; Nikas, S.P.; Laprairie, R.B.; Wu, Y.; Qu, L.; Pu, M.; Korde, A.; Jiang, S.; Ho, J-H.; Han, G.W.; Ding, K.; Li, X.; Liu, H.; Hanson, M.A.; Zhao, S.; Bohn, L.M.; Makriyannis, A.; Stevens, R.C.; Liu, Z-J. Crystal structures of agonist-bound human cannabinoid receptor CB1. Nature, 2017, 547(7664), 468-471.
[http://dx.doi.org/10.1038/nature23272] [PMID: 28678776]
[13]
Gertsch, J.; Leonti, M.; Raduner, S.; Racz, I.; Chen, J-Z.; Xie, X-Q.; Altmann, K-H.; Karsak, M.; Zimmer, A. Beta-caryophyllene is a dietary cannabinoid. Proc. Natl. Acad. Sci. USA, 2008, 105(26), 9099-9104.
[http://dx.doi.org/10.1073/pnas.0803601105] [PMID: 18574142]
[14]
Li, X.; Hua, T.; Vemuri, K.; Ho, J-H.; Wu, Y.; Wu, L.; Popov, P.; Benchama, O.; Zvonok, N.; Locke, K.; Qu, L.; Han, G.W.; Iyer, M.R.; Cinar, R.; Coffey, N.J.; Wang, J.; Wu, M.; Katritch, V.; Zhao, S.; Kunos, G.; Bohn, L.M.; Makriyannis, A.; Stevens, R.C.; Liu, Z.J. Crystal structure of the human cannabinoid receptor CB2. Cell, 2019, 176(3), 459-467.e13.
[http://dx.doi.org/10.1016/j.cell.2018.12.011] [PMID: 30639103]
[15]
Moore, T.H.M.; Zammit, S.; Lingford-Hughes, A.; Barnes, T.R.E.; Jones, P.B.; Burke, M.; Lewis, G. Cannabis use and risk of psychotic or affective mental health outcomes: A systematic review. Lancet, 2007, 370(9584), 319-328.
[http://dx.doi.org/10.1016/S0140-6736(07)61162-3] [PMID: 17662880]
[16]
Kaasbøll, C.; Hagen, R.; Gråwe, R.W. Population-based associations among cannabis use, anxiety, and depression in Norwegian adolescents. J. Child Adolesc. Subst. Abuse, 2018, 27(4), 238-243.
[http://dx.doi.org/10.1080/1067828X.2018.1462281]
[17]
Leadbeater, B.J.; Ames, M.E.; Linden-Carmichael, A.N. Age-varying effects of cannabis use frequency and disorder on symptoms of psychosis, depression and anxiety in adolescents and adults. Addiction, 2019, 114(2), 278-293.
[http://dx.doi.org/10.1111/add.14459] [PMID: 30276906]
[18]
Wittchen, H-U.; Fröhlich, C.; Behrendt, S.; Günther, A.; Rehm, J.; Zimmermann, P.; Lieb, R.; Perkonigg, A. Cannabis use and cannabis use disorders and their relationship to mental disorders: A 10-year prospective-longitudinal community study in adolescents. Drug Alcohol Depend., 2007, 88(Suppl. 1), S60-S70.
[http://dx.doi.org/10.1016/j.drugalcdep.2006.12.013] [PMID: 17257779]
[19]
Otten, R.; Engels, R.C. Testing bidirectional effects between cannabis use and depressive symptoms: Moderation by the serotonin transporter gene. Addict. Biol., 2013, 18(5), 826-835.
[http://dx.doi.org/10.1111/j.1369-1600.2011.00380.x] [PMID: 21967091]
[20]
World Health Organization. The health and social effects of nonmedical cannabis use; World Health Organization, 2016.
[21]
The health effects of cannabis and cannabinoids: The current state of evidence and recommendations for research; National Academies of Sciences, 2017.
[22]
Feingold, D.; Weiser, M.; Rehm, J.; Lev-Ran, S. The association between cannabis use and anxiety disorders: Results from a population-based representative sample. Eur. Neuropsychopharmacol., 2016, 26(3), 493-505.
[http://dx.doi.org/10.1016/j.euroneuro.2015.12.037] [PMID: 26775742]
[23]
Khadrawy, Y.A.; Sawie, H.G.; Abdel-Salam, O.M.E.; Hosny, E.N. Cannabis exacerbates depressive symptoms in rat model induced by reserpine. Behav. Brain Res., 2017, 324, 41-50.
[http://dx.doi.org/10.1016/j.bbr.2017.02.015] [PMID: 28212939]
[24]
Hampson, A.J.; Grimaldi, M.; Axelrod, J.; Wink, D. Cannabidiol and (-)Δ9-tetrahydrocannabinol are neuroprotective antioxidants. Proc. Natl. Acad. Sci. USA, 1998, 95(14), 8268-8273.
[http://dx.doi.org/10.1073/pnas.95.14.8268] [PMID: 9653176]
[25]
Appendino, G.; Gibbons, S.; Giana, A.; Pagani, A.; Grassi, G.; Stavri, M.; Smith, E.; Rahman, M.M. Antibacterial cannabinoids from Cannabis sativa: A structure-activity study. J. Nat. Prod., 2008, 71(8), 1427-1430.
[http://dx.doi.org/10.1021/np8002673] [PMID: 18681481]
[26]
Welch, S.P.; Stevens, D.L. Antinociceptive activity of intrathecally administered cannabinoids alone, and in combination with morphine, in mice. J. Pharmacol. Exp. Ther., 1992, 262(1), 10-18.
[PMID: 1320680]
[27]
Mattes, R.D.; Engelman, K.; Shaw, L.M.; Elsohly, M.A. Cannabinoids and appetite stimulation. Pharmacol. Biochem. Behav., 1994, 49(1), 187-195.
[http://dx.doi.org/10.1016/0091-3057(94)90475-8] [PMID: 7816872]
[28]
Guzmán, M. Cannabinoids: Potential anticancer agents. Nat. Rev. Cancer, 2003, 3(10), 745-755.
[http://dx.doi.org/10.1038/nrc1188] [PMID: 14570037]
[29]
Hinz, B.; Ramer, R. Anti-tumour actions of cannabinoids. Br. J. Pharmacol., 2019, 176(10), 1384-1394.
[http://dx.doi.org/10.1111/bph.14426] [PMID: 30019449]
[30]
Kirkham, T.C. Endogenous cannabinoids: A new target in the treatment of obesity. Am. J. Physiol. Regul. Integr. Comp. Physiol., 2003, 284(2), R343-R344.
[http://dx.doi.org/10.1152/ajpregu.00706.2002] [PMID: 12529283]
[31]
Ramírez, B.G.; Blázquez, C.; Gómez del Pulgar, T.; Guzmán, M.; de Ceballos, M.L. Prevention of Alzheimer’s disease pathology by cannabinoids: Neuroprotection mediated by blockade of microglial activation. J. Neurosci., 2005, 25(8), 1904-1913.
[http://dx.doi.org/10.1523/JNEUROSCI.4540-04.2005] [PMID: 15728830]
[32]
Nagayama, T.; Sinor, A.D.; Simon, R.P.; Chen, J.; Graham, S.H.; Jin, K.; Greenberg, D.A. Cannabinoids and neuroprotection in global and focal cerebral ischemia and in neuronal cultures. J. Neurosci., 1999, 19(8), 2987-2995.
[http://dx.doi.org/10.1523/JNEUROSCI.19-08-02987.1999] [PMID: 10191316]
[33]
Panikashvili, D.; Simeonidou, C.; Ben-Shabat, S.; Hanuš, L.; Breuer, A.; Mechoulam, R.; Shohami, E. An endogenous cannabinoid (2-AG) is neuroprotective after brain injury. Nature, 2001, 413(6855), 527-531.
[http://dx.doi.org/10.1038/35097089] [PMID: 11586361]
[34]
Maya-López, M.; Rubio-López, L.C.; Rodríguez-Alvarez, I.V.; Orduño-Piceno, J.; Flores-Valdivia, Y.; Colonnello, A.; Rangel-López, E.; Túnez, I.; Prospéro-García, O.; Santamaría, A. A cannabinoid receptor-mediated mechanism participates in the neuroprotective effects of oleamide against excitotoxic damage in rat brain synaptosomes and cortical slices. Neurotox. Res., 2020, 37(1), 126-135.
[http://dx.doi.org/10.1007/s12640-019-00083-1] [PMID: 31286434]
[35]
Li, H.; Liu, Y.; Tian, D.; Tian, L.; Ju, X.; Qi, L.; Wang, Y.; Liang, C. Overview of cannabidiol (CBD) and its analogues: Structures, biological activities, and neuroprotective mechanisms in epilepsy and Alzheimer’s disease. Eur. J. Med. Chem., 2020, 192, 112163.
[http://dx.doi.org/10.1016/j.ejmech.2020.112163] [PMID: 32109623]
[36]
Jiang, W.; Zhang, Y.; Xiao, L.; Van Cleemput, J.; Ji, S-P.; Bai, G.; Zhang, X. Cannabinoids promote embryonic and adult hippocampus neurogenesis and produce anxiolytic- and antidepressant-like effects. J. Clin. Invest., 2005, 115(11), 3104-3116.
[http://dx.doi.org/10.1172/JCI25509] [PMID: 16224541]
[37]
Edery, H.; Grunfeld, Y.; Ben‐Zvi, Z.; Mechoulam, R. Structural requirements for cannabinoid activity. Ann. N. Y. Acad. Sci., 1971, 191(1), 40-53.
[http://dx.doi.org/10.1111/j.1749-6632.1971.tb13985.x]
[38]
Martin, B.R.; Balster, R.L.; Razdan, R.K.; Harris, L.S.; Dewey, W.L. Behavioral comparisons of the stereoisomers of tetrahydrocannabinols. Life Sci., 1981, 29(6), 565-574.
[http://dx.doi.org/10.1016/0024-3205(81)90434-3] [PMID: 6268916]
[39]
Compton, D.R.; Rice, K.C.; De Costa, B.R.; Razdan, R.K.; Melvin, L.S.; Johnson, M.R.; Martin, B.R. Cannabinoid structure-activity relationships: Correlation of receptor binding and in vivo activities. J. Pharmacol. Exp. Ther., 1993, 265(1), 218-226.
[PMID: 8474008]
[40]
Christensen, H.D.; Freudenthal, R.I.; Gidley, J.T.; Rosenfeld, R.; Boegli, G.; Testino, L.; Brine, D.R.; Pitt, C.G.; Wall, M.E. Activity of delta8- and delta9-tetrahydrocannabinol and related compounds in the mouse. Science, 1971, 172(3979), 165-167.
[http://dx.doi.org/10.1126/science.172.3979.165] [PMID: 5547729]
[41]
Ho, B.T.; Estevez, V.; Englert, L.F.; McIsaac, W.M. 9 -Tetrahydrocannabinol and its metabolites in monkey brains. J. Pharm. Pharmacol., 1972, 24(5), 414-416.
[http://dx.doi.org/10.1111/j.2042-7158.1972.tb09021.x] [PMID: 4403817]
[42]
Lemberger, L.; Silberstein, S.D.; Axelrod, J.; Kopin, I.J. Marihuana: Studies on the disposition and metabolism of delta-9-tetrahydrocannabinol in man. Science, 1970, 170(3964), 1320-1322.
[http://dx.doi.org/10.1126/science.170.3964.1320] [PMID: 5479011]
[43]
Howlett, A.C. Cannabinoid inhibition of adenylate cyclase: Relative activity of constituents and metabolites of marihuana. Neuropharmacology, 1987, 26(5), 507-512.
[http://dx.doi.org/10.1016/0028-3908(87)90035-9] [PMID: 3601007]
[44]
Reggio, P.H.; Greer, K.V.; Cox, S.M. The importance of the orientation of the C9 substituent to cannabinoid activity. J. Med. Chem., 1989, 32(7), 1630-1635.
[http://dx.doi.org/10.1021/jm00127a038] [PMID: 2738895]
[45]
Reggio, P.H.; Panu, A.M.; Miles, S. Characterization of a region of steric interference at the cannabinoid receptor using the active analog approach. J. Med. Chem., 1993, 36(12), 1761-1771.
[http://dx.doi.org/10.1021/jm00064a010] [PMID: 8510104]
[46]
Valjent, E.; Mitchell, J.M.; Besson, M.J.; Caboche, J.; Maldonado, R. Behavioural and biochemical evidence for interactions between Delta 9-tetrahydrocannabinol and nicotine. Br. J. Pharmacol., 2002, 135(2), 564-578.
[http://dx.doi.org/10.1038/sj.bjp.0704479] [PMID: 11815392]
[47]
Phan, K.L.; Angstadt, M.; Golden, J.; Onyewuenyi, I.; Popovska, A.; de Wit, H. Cannabinoid modulation of amygdala reactivity to social signals of threat in humans. J. Neurosci., 2008, 28(10), 2313-2319.
[http://dx.doi.org/10.1523/JNEUROSCI.5603-07.2008] [PMID: 18322078]
[48]
D’Souza, D.C.; Perry, E.; MacDougall, L.; Ammerman, Y.; Cooper, T.; Wu, Y.T.; Braley, G.; Gueorguieva, R.; Krystal, J.H. The psychotomimetic effects of intravenous delta-9-tetrahydrocannabinol in healthy individuals: Implications for psychosis. Neuropsychopharmacology, 2004, 29(8), 1558-1572.
[http://dx.doi.org/10.1038/sj.npp.1300496] [PMID: 15173844]
[49]
Patel, S.; Hillard, C.J. Pharmacological evaluation of cannabinoid receptor ligands in a mouse model of anxiety: Further evidence for an anxiolytic role for endogenous cannabinoid signaling. J. Pharmacol. Exp. Ther., 2006, 318(1), 304-311.
[http://dx.doi.org/10.1124/jpet.106.101287] [PMID: 16569753]
[50]
Herman, J.P.; Figueiredo, H.; Mueller, N.K.; Ulrich-Lai, Y.; Ostrander, M.M.; Choi, D.C.; Cullinan, W.E. Central mechanisms of stress integration: Hierarchical circuitry controlling hypothalamo-pituitary-adrenocortical responsiveness. Front. Neuroendocrinol., 2003, 24(3), 151-180.
[http://dx.doi.org/10.1016/j.yfrne.2003.07.001] [PMID: 14596810]
[51]
Cerqueira, J.J.; Catania, C.; Sotiropoulos, I.; Schubert, M.; Kalisch, R.; Almeida, O.F.; Auer, D.P.; Sousa, N. Corticosteroid status influences the volume of the rat cingulate cortex - a magnetic resonance imaging study. J. Psychiatr. Res., 2005, 39(5), 451-460.
[http://dx.doi.org/10.1016/j.jpsychires.2005.01.003] [PMID: 15992553]
[52]
Sapolsky, R.M.; Krey, L.C.; McEwen, B.S. The neuroendocrinology of stress and aging: The glucocorticoid cascade hypothesis. Endocr. Rev., 1986, 7(3), 284-301.
[http://dx.doi.org/10.1210/edrv-7-3-284] [PMID: 3527687]
[53]
Lang, U.E.; Borgwardt, S. Molecular mechanisms of depression: Perspectives on new treatment strategies. Cell. Physiol. Biochem., 2013, 31(6), 761-777.
[http://dx.doi.org/10.1159/000350094] [PMID: 23735822]
[54]
Husni, A.S.; McCurdy, C.R.; Radwan, M.M.; Ahmed, S.A.; Slade, D.; Ross, S.A.; ElSohly, M.A.; Cutler, S.J. Evaluation of phytocannabinoids from high-potency Cannabis sativa using in vitro bioassays to determine structure–activity relationships for cannabinoid receptor 1 and cannabinoid receptor 2. Med. Chem. Res., 2014, 23(9), 4295-4300.
[http://dx.doi.org/10.1007/s00044-014-0972-6] [PMID: 25419092]
[55]
Domschke, K.; Dannlowski, U.; Ohrmann, P.; Lawford, B.; Bauer, J.; Kugel, H.; Heindel, W.; Young, R.; Morris, P.; Arolt, V.; Deckert, J.; Suslow, T.; Baune, B.T. Cannabinoid receptor 1 (CNR1) gene: Impact on antidepressant treatment response and emotion processing in major depression. Eur. Neuropsychopharmacol., 2008, 18(10), 751-759.
[http://dx.doi.org/10.1016/j.euroneuro.2008.05.003] [PMID: 18579347]
[56]
Howlett, A.C.; Barth, F.; Bonner, T.I.; Cabral, G.; Casellas, P.; Devane, W.A.; Felder, C.C.; Herkenham, M.; Mackie, K.; Martin, B.R.; Mechoulam, R.; Pertwee, R.G. International union of pharmacology. XXVII. Classification of cannabinoid receptors. Pharmacol. Rev., 2002, 54(2), 161-202.
[http://dx.doi.org/10.1124/pr.54.2.161] [PMID: 12037135]
[57]
Witkin, J.M.; Tzavara, E.T.; Davis, R.J.; Li, X.; Nomikos, G.G. A therapeutic role for cannabinoid CB1 receptor antagonists in major depressive disorders. Trends Pharmacol. Sci., 2005, 26(12), 609-617.
[http://dx.doi.org/10.1016/j.tips.2005.10.006] [PMID: 16260047]
[58]
Howlett, A.C. The cannabinoid receptors. Prostaglandins Other Lipid Mediat., 2002, 68-69, 619-631.
[http://dx.doi.org/10.1016/S0090-6980(02)00060-6] [PMID: 12432948]
[59]
Chaperon, F.; Thiébot, M-H. Behavioral effects of cannabinoid agents in animals. Crit. Rev. Neurobiol., 1999, 13(3), 243-281.
[http://dx.doi.org/10.1615/CritRevNeurobiol.v13.i3.20] [PMID: 10803637]
[60]
Cravatt, B.F.; Lichtman, A.H. The endogenous cannabinoid system and its role in nociceptive behavior. J. Neurobiol., 2004, 61(1), 149-160.
[http://dx.doi.org/10.1002/neu.20080] [PMID: 15362158]
[61]
Pertwee, R.G. Cannabinoids and multiple sclerosis. Pharmacol. Ther., 2002, 95(2), 165-174.
[http://dx.doi.org/10.1016/S0163-7258(02)00255-3] [PMID: 12182963]
[62]
Fernández-Ruiz, J.; Romero, J.; Ramos, J.A. Endocannabinoids and neurodegenerative disorders: Parkinson’s disease, huntington’s chorea, alzheimer’s disease, and others.Endocannabinoids; Pertwee, R., Ed.; Springer , 2015; 231, pp. 233-259.
[http://dx.doi.org/10.1007/978-3-319-20825-1_8]
[63]
Black, M.D.; Stevens, R.J.; Rogacki, N.; Featherstone, R.E.; Senyah, Y.; Giardino, O.; Borowsky, B.; Stemmelin, J.; Cohen, C.; Pichat, P.; Arad, M.; Barak, S.; De Levie, A.; Weiner, I.; Griebel, G.; Varty, G.B. AVE1625, a cannabinoid CB1 receptor antagonist, as a co-treatment with antipsychotics for schizophrenia: Improvement in cognitive function and reduction of antipsychotic-side effects in rodents. Psychopharmacology (Berl.), 2011, 215(1), 149-163.
[http://dx.doi.org/10.1007/s00213-010-2124-0] [PMID: 21181124]
[64]
He, X.H.; Jordan, C.J.; Vemuri, K.; Bi, G.H.; Zhan, J.; Gardner, E.L.; Makriyannis, A.; Wang, Y.L.; Xi, Z.X. Cannabinoid CB1 receptor neutral antagonist AM4113 inhibits heroin self-administration without depressive side effects in rats. Acta Pharmacol. Sin., 2019, 40(3), 365-373.
[http://dx.doi.org/10.1038/s41401-018-0059-x] [PMID: 29967454]
[65]
Pertwee, R.G. Pharmacology of cannabinoid CB1 and CB2 receptors. Pharmacol. Ther., 1997, 74(2), 129-180.
[http://dx.doi.org/10.1016/S0163-7258(97)82001-3] [PMID: 9336020]
[66]
Pertwee, R.G. Advances in cannabinoid receptor pharmacology. Cannabis the genus cannabis; Brown, D.T., Ed.; CRC Press, 1998, pp. 148-200.
[67]
Contino, M.; Capparelli, E.; Colabufo, N.A.; Bush, A.I. The CB2 cannabinoid system: A new strategy in neurodegenerative disorder and neuroinflammation. Front. Neurosci., 2017, 11, 196.
[http://dx.doi.org/10.3389/fnins.2017.00196] [PMID: 28428743]
[68]
Guindon, J.; Hohmann, A.G. Cannabinoid CB2 receptors: A therapeutic target for the treatment of inflammatory and neuropathic pain. Br. J. Pharmacol., 2008, 153(2), 319-334.
[http://dx.doi.org/10.1038/sj.bjp.0707531] [PMID: 17994113]
[69]
Lunn, C.A.; Reich, E.P.; Fine, J.S.; Lavey, B.; Kozlowski, J.A.; Hipkin, R.W.; Lundell, D.J.; Bober, L. Biology and therapeutic potential of cannabinoid CB2 receptor inverse agonists. Br. J. Pharmacol., 2008, 153(2), 226-239.
[http://dx.doi.org/10.1038/sj.bjp.0707480] [PMID: 17906679]
[70]
Liu, Q-R.; Canseco-Alba, A.; Zhang, H-Y.; Tagliaferro, P.; Chung, M.; Dennis, E.; Sanabria, B.; Schanz, N.; Escosteguy-Neto, J.C.; Ishiguro, H.; Lin, Z.; Sgro, S.; Leonard, C.M.; Santos-Junior, J.G.; Gardner, E.L.; Egan, J.M.; Lee, J.W.; Xi, Z.X.; Onaivi, E.S. Cannabinoid type 2 receptors in dopamine neurons inhibits psychomotor behaviors, alters anxiety, depression and alcohol preference. Sci. Rep., 2017, 7(1), 17410.
[http://dx.doi.org/10.1038/s41598-017-17796-y] [PMID: 29234141]
[71]
Gorzalka, B.B.; Hill, M.N.; Hillard, C.J. Regulation of endocannabinoid signaling by stress: Implications for stress-related affective disorders. Neurosci. Biobehav. Rev., 2008, 32(6), 1152-1160.
[http://dx.doi.org/10.1016/j.neubiorev.2008.03.004] [PMID: 18433869]
[72]
Steiner, M.A.; Wotjak, C.T. Role of the endocannabinoid system in regulation of the hypothalamic-pituitary-adrenocortical axis. Prog. Brain Res., 2008, 170, 397-432.
[http://dx.doi.org/10.1016/S0079-6123(08)00433-0] [PMID: 18655899]
[73]
Hill, M.N.; Patel, S.; Carrier, E.J.; Rademacher, D.J.; Ormerod, B.K.; Hillard, C.J.; Gorzalka, B.B. Downregulation of endocannabinoid signaling in the hippocampus following chronic unpredictable stress. Neuropsychopharmacology, 2005, 30(3), 508-515.
[http://dx.doi.org/10.1038/sj.npp.1300601] [PMID: 15525997]
[74]
Blankman, J.L.; Cravatt, B.F. Chemical probes of endocannabinoid metabolism. Pharmacol. Rev., 2013, 65(2), 849-871.
[http://dx.doi.org/10.1124/pr.112.006387] [PMID: 23512546]
[75]
Lichtman, A.H.; Shelton, C.C.; Advani, T.; Cravatt, B.F. Mice lacking fatty acid amide hydrolase exhibit a cannabinoid receptor-mediated phenotypic hypoalgesia. Pain, 2004, 109(3), 319-327.
[http://dx.doi.org/10.1016/j.pain.2004.01.022] [PMID: 15157693]
[76]
Cravatt, B.F.; Demarest, K.; Patricelli, M.P.; Bracey, M.H.; Giang, D.K.; Martin, B.R.; Lichtman, A.H. Supersensitivity to anandamide and enhanced endogenous cannabinoid signaling in mice lacking fatty acid amide hydrolase. Proc. Natl. Acad. Sci. USA, 2001, 98(16), 9371-9376.
[http://dx.doi.org/10.1073/pnas.161191698] [PMID: 11470906]
[77]
Martin, M.; Ledent, C.; Parmentier, M.; Maldonado, R.; Valverde, O. Involvement of CB1 cannabinoid receptors in emotional behaviour. Psychopharmacology (Berl.), 2002, 159(4), 379-387.
[http://dx.doi.org/10.1007/s00213-001-0946-5] [PMID: 11823890]
[78]
Soriano, D.; Brusco, A.; Caltana, L. Further evidence of anxiety- and depression-like behavior for total genetic ablation of cannabinoid receptor type 1. Behav. Brain Res., 2021, 400, 113007.
[http://dx.doi.org/10.1016/j.bbr.2020.113007] [PMID: 33171148]
[79]
García-Gutiérrez, M.S.; Pérez-Ortiz, J.M.; Gutiérrez-Adán, A.; Manzanares, J. Depression-resistant endophenotype in mice overexpressing cannabinoid CB(2) receptors. Br. J. Pharmacol., 2010, 160(7), 1773-1784.
[http://dx.doi.org/10.1111/j.1476-5381.2010.00819.x] [PMID: 20649579]
[80]
Monory, K.; Blaudzun, H.; Massa, F.; Kaiser, N.; Lemberger, T.; Schütz, G.; Wotjak, C.T.; Lutz, B.; Marsicano, G. Genetic dissection of behavioural and autonomic effects of Δ(9)-tetrahydrocannabinol in mice. PLoS Biol., 2007, 5(10), e269.
[http://dx.doi.org/10.1371/journal.pbio.0050269] [PMID: 17927447]
[81]
Martin, B.R.; Compton, D.R.; Little, P.J.; Martin, T.J.; Beardsley, P.M. Pharmacological evaluation of agonistic and antagonistic activity of cannabinoids. NIDA Res. Monogr., 1987, 79, 108-122.
[PMID: 2830532]
[82]
Manwell, L.A.; Satvat, E.; Lang, S.T.; Allen, C.P.; Leri, F.; Parker, L.A. FAAH inhibitor, URB-597, promotes extinction and CB(1) antagonist, SR141716, inhibits extinction of conditioned aversion produced by naloxone-precipitated morphine withdrawal, but not extinction of conditioned preference produced by morphine in rats. Pharmacol. Biochem. Behav., 2009, 94(1), 154-162.
[http://dx.doi.org/10.1016/j.pbb.2009.08.002] [PMID: 19698735]
[83]
Ross, R.A. Anandamide and vanilloid TRPV1 receptors. Br. J. Pharmacol., 2003, 140(5), 790-801.
[http://dx.doi.org/10.1038/sj.bjp.0705467] [PMID: 14517174]
[84]
Rubino, T.; Realini, N.; Castiglioni, C.; Guidali, C.; Viganó, D.; Marras, E.; Petrosino, S.; Perletti, G.; Maccarrone, M.; Di Marzo, V.; Parolaro, D. Role in anxiety behavior of the endocannabinoid system in the prefrontal cortex. Cereb. Cortex, 2008, 18(6), 1292-1301.
[http://dx.doi.org/10.1093/cercor/bhm161] [PMID: 17921459]
[85]
Chávez, A.E.; Chiu, C.Q.; Castillo, P.E. TRPV1 activation by endogenous anandamide triggers postsynaptic long-term depression in dentate gyrus. Nat. Neurosci., 2010, 13(12), 1511-1518.
[http://dx.doi.org/10.1038/nn.2684] [PMID: 21076423]
[86]
Matsuda, L.A.; Lolait, S.J.; Brownstein, M.J.; Young, A.C.; Bonner, T.I. Structure of a cannabinoid receptor and functional expression of the cloned cDNA. Nature, 1990, 346(6284), 561-564.
[http://dx.doi.org/10.1038/346561a0] [PMID: 2165569]
[87]
Smaga, I.; Bystrowska, B.; Gawliński, D.; Przegaliński, E.; Filip, M. The endocannabinoid/endovanilloid system and depression. Curr. Neuropharmacol., 2014, 12(5), 462-474.
[http://dx.doi.org/10.2174/1570159X12666140923205412] [PMID: 25426013]
[88]
Barrero, F.J.; Ampuero, I.; Morales, B.; Vives, F.; de Dios Luna Del Castillo, J.; Hoenicka, J.; García Yébenes, J. Depression in Parkinson’s disease is related to a genetic polymorphism of the cannabinoid receptor gene (CNR1). Pharmacogenomics J., 2005, 5(2), 135-141.
[http://dx.doi.org/10.1038/sj.tpj.6500301] [PMID: 15668727]
[89]
Thomas, A.; Stevenson, L.A.; Wease, K.N.; Price, M.R.; Baillie, G.; Ross, R.A.; Pertwee, R.G. Evidence that the plant cannabinoid Δ9-tetrahydrocannabivarin is a cannabinoid CB1 and CB2 receptor antagonist. Br. J. Pharmacol., 2005, 146(7), 917-926.
[http://dx.doi.org/10.1038/sj.bjp.0706414] [PMID: 16205722]
[90]
Navarro, G.; Varani, K.; Lillo, A.; Vincenzi, F.; Rivas-Santisteban, R.; Raïch, I.; Reyes-Resina, I.; Ferreiro-Vera, C.; Borea, P.A.; Sánchez de Medina, V.; Nadal, X.; Franco, R. Pharmacological data of cannabidiol- and cannabigerol-type phytocannabinoids acting on cannabinoid CB1, CB2 and CB1/CB2 heteromer receptors. Pharmacol. Res., 2020, 159, 104940.
[http://dx.doi.org/10.1016/j.phrs.2020.104940] [PMID: 32470563]
[91]
Laaris, N.; Good, C.H.; Lupica, C.R.Δ. Delta9-tetrahydrocannabinol is a full agonist at CB1 receptors on GABA neuron axon terminals in the hippocampus. Neuropharmacology, 2010, 59(1-2), 121-127.
[http://dx.doi.org/10.1016/j.neuropharm.2010.04.013] [PMID: 20417220]
[92]
Darmani, N.A.Δ. Delta(9)-tetrahydrocannabinol and synthetic cannabinoids prevent emesis produced by the cannabinoid CB(1) receptor antagonist/inverse agonist SR 141716A. Neuropsychopharmacology, 2001, 24(2), 198-203.
[http://dx.doi.org/10.1016/S0893-133X(00)00197-4] [PMID: 11120402]
[93]
McPartland, J.M.; Glass, M.; Pertwee, R.G. Meta-analysis of cannabinoid ligand binding affinity and receptor distribution: Interspecies differences. Br. J. Pharmacol., 2007, 152(5), 583-593.
[http://dx.doi.org/10.1038/sj.bjp.0707399] [PMID: 17641667]
[94]
Palomares, B.; Garrido-Rodriguez, M.; Gonzalo-Consuegra, C.; Gómez-Cañas, M.; Saen-Oon, S.; Soliva, R.; Collado, J.A.; Fernández-Ruiz, J.; Morello, G.; Calzado, M.A.Δ.; Appendino, G.; Muñoz, E.Δ. 9 -Tetrahydrocannabinolic acid alleviates collagen-induced arthritis: Role of PPARγ and CB1 receptors. Br. J. Pharmacol., 2020, 177(17), 4034-4054.
[http://dx.doi.org/10.1111/bph.15155] [PMID: 32510591]
[95]
Govaerts, S.J.; Hermans, E.; Lambert, D.M. Comparison of cannabinoid ligands affinities and efficacies in murine tissues and in transfected cells expressing human recombinant cannabinoid receptors. Eur. J. Pharm. Sci., 2004, 23(3), 233-243.
[http://dx.doi.org/10.1016/j.ejps.2004.07.013] [PMID: 15489124]
[96]
Ross, R.A.; Brockie, H.C.; Stevenson, L.A.; Murphy, V.L.; Templeton, F.; Makriyannis, A.; Pertwee, R.G. Agonist-inverse agonist characterization at CB1 and CB2 cannabinoid receptors of L759633, L759656, and AM630. Br. J. Pharmacol., 1999, 126(3), 665-672.
[http://dx.doi.org/10.1038/sj.bjp.0702351] [PMID: 10188977]
[97]
Rajasekaran, M.; Brents, L.K.; Franks, L.N.; Moran, J.H.; Prather, P.L. Human metabolites of synthetic cannabinoids JWH-018 and JWH-073 bind with high affinity and act as potent agonists at cannabinoid type-2 receptors. Toxicol. Appl. Pharmacol., 2013, 269(2), 100-108.
[http://dx.doi.org/10.1016/j.taap.2013.03.012] [PMID: 23537664]
[98]
Aung, M.M.; Griffin, G.; Huffman, J.W.; Wu, M.; Keel, C.; Yang, B.; Showalter, V.M.; Abood, M.E.; Martin, B.R. Influence of the N-1 alkyl chain length of cannabimimetic indoles upon CB(1) and CB(2) receptor binding. Drug Alcohol Depend., 2000, 60(2), 133-140.
[http://dx.doi.org/10.1016/S0376-8716(99)00152-0] [PMID: 10940540]
[99]
Khanolkar, A.D.; Lu, D.; Ibrahim, M.; Duclos, R.I., Jr; Thakur, G.A.; Malan, T.P., Jr; Porreca, F.; Veerappan, V.; Tian, X.; George, C.; Parrish, D.A.; Papahatjis, D.P.; Makriyannis, A. Cannabilactones: A novel class of CB2 selective agonists with peripheral analgesic activity. J. Med. Chem., 2007, 50(26), 6493-6500.
[http://dx.doi.org/10.1021/jm070441u] [PMID: 18038967]
[100]
Penthala, N.R.; Shoeib, A.; Dachavaram, S.S.; Cabanlong, C.V.; Yang, J.; Zhan, C-G.; Prather, P.L.; Crooks, P.A. 7-Azaindolequinuclidinones (7-AIQD): A novel class of cannabinoid 1 (CB1) and cannabinoid 2 (CB2) receptor ligands. Bioorg. Med. Chem. Lett., 2020, 30(22), 127501.
[http://dx.doi.org/10.1016/j.bmcl.2020.127501] [PMID: 32882418]
[101]
Wiley, J.L.; Marusich, J.A.; Thomas, B.F. Combination chemistry: Structure–activity relationships of novel psychoactive cannabinoids.Neuropharmacology of new psychoactive substances (NPS). Current topics in behavioral neurosciences; M, B.; R, G.; J, W., Eds.; Springer: Cham , 2016; 32, pp. 231-248.
[http://dx.doi.org/10.1007/7854_2016_17]
[102]
Shao, Z.; Yin, J.; Chapman, K.; Grzemska, M.; Clark, L.; Wang, J.; Rosenbaum, D.M. High-resolution crystal structure of the human CB1 cannabinoid receptor. Nature, 2016, 540(7634), 602-606.
[http://dx.doi.org/10.1038/nature20613] [PMID: 27851727]
[103]
Lange, J.H.; Kruse, C.G. Keynote review: Medicinal chemistry strategies to CB1 cannabinoid receptor antagonists. Drug Discov. Today, 2005, 10(10), 693-702.
[http://dx.doi.org/10.1016/S1359-6446(05)03427-6] [PMID: 15896682]
[104]
Ahn, K.H.; Bertalovitz, A.C.; Mierke, D.F.; Kendall, D.A. Dual role of the second extracellular loop of the cannabinoid receptor 1: Ligand binding and receptor localization. Mol. Pharmacol., 2009, 76(4), 833-842.
[http://dx.doi.org/10.1124/mol.109.057356] [PMID: 19643997]
[105]
Han, S.; Zhang, F-F.; Qian, H-Y.; Chen, L-L.; Pu, J-B.; Xie, X.; Chen, J-Z. Development of quinoline-2, 4 (1 H, 3 H)-diones as potent and selective ligands of the cannabinoid type 2 receptor. J. Med. Chem., 2015, 58(15), 5751-5769.
[http://dx.doi.org/10.1021/acs.jmedchem.5b00227] [PMID: 26151231]
[106]
Lucchesi, V.; Hurst, D.P.; Shore, D.M.; Bertini, S.; Ehrmann, B.M.; Allarà, M.; Lawrence, L.; Ligresti, A.; Minutolo, F.; Saccomanni, G.; Sharir, H.; Macchia, M.; Di Marzo, V.; Abood, M.E.; Reggio, P.H.; Manera, C. CB2-selective cannabinoid receptor ligands: Synthesis, pharmacological evaluation, and molecular modeling investigation of 1,8-Naphthyridin-2(1H)-one-3-carboxamides. J. Med. Chem., 2014, 57(21), 8777-8791.
[http://dx.doi.org/10.1021/jm500807e] [PMID: 25272206]
[107]
Sharma, C.; Al Kaabi, J.M.; Nurulain, S.M.; Goyal, S.N.; Kamal, M.A.; Ojha, S. Polypharmacological properties and therapeutic potential of β-caryophyllene: A dietary phytocannabinoid of pharmaceutical promise. Curr. Pharm. Des., 2016, 22(21), 3237-3264.
[http://dx.doi.org/10.2174/1381612822666160311115226] [PMID: 26965491]
[108]
Russo, E.B. Taming THC: Potential cannabis synergy and phytocannabinoid-terpenoid entourage effects. Br. J. Pharmacol., 2011, 163(7), 1344-1364.
[http://dx.doi.org/10.1111/j.1476-5381.2011.01238.x] [PMID: 21749363]
[109]
Hwang, E-S.; Kim, H-B.; Lee, S.; Kim, M-J.; Kim, K-J.; Han, G.; Han, S-Y.; Lee, E-A.; Yoon, J-H.; Kim, D-O.; Maeng, S.; Park, J-H. Antidepressant-like effects of β-caryophyllene on restraint plus stress-induced depression. Behav. Brain Res., 2020, 380, 112439.
[http://dx.doi.org/10.1016/j.bbr.2019.112439] [PMID: 31862467]
[110]
Venkatakrishnan, A.J.; Deupi, X.; Lebon, G.; Tate, C.G.; Schertler, G.F.; Babu, M.M. Molecular signatures of G-protein-coupled receptors. Nature, 2013, 494(7436), 185-194.
[http://dx.doi.org/10.1038/nature11896] [PMID: 23407534]
[111]
Gareau, Y.; Dufresne, C.; Gallant, M.; Rochette, C.; Sawyer, N.; Slipetz, D.M.; Tremblay, N.; Weech, P.K.; Metters, K.M.; Labelle, M. Structure activity relationships of tetrahydrocannabinol analogues on human cannabinoid receptors. Bioorg. Med. Chem. Lett., 1996, 6(2), 189-194.
[http://dx.doi.org/10.1016/0960-894X(95)00573-C]
[112]
Poso, A.; Huffman, J.W. Targeting the cannabinoid CB2 receptor: Modelling and structural determinants of CB2 selective ligands. Br. J. Pharmacol., 2008, 153(2), 335-346.
[http://dx.doi.org/10.1038/sj.bjp.0707567] [PMID: 17982473]
[113]
Khanolkar, A.D.; Lu, D.; Fan, P.; Tian, X.; Makriyannis, A. Novel conformationally restricted tetracyclic analogs of delta8-tetrahydrocannabinol. Bioorg. Med. Chem. Lett., 1999, 9(15), 2119-2124.
[http://dx.doi.org/10.1016/S0960-894X(99)00355-8] [PMID: 10465529]
[114]
Lu, D.; Meng, Z.; Thakur, G.A.; Fan, P.; Steed, J.; Tartal, C.L.; Hurst, D.P.; Reggio, P.H.; Deschamps, J.R.; Parrish, D.A.; George, C.; Järbe, T.U.; Lamb, R.J.; Makriyannis, A. Adamantyl cannabinoids: A novel class of cannabinergic ligands. J. Med. Chem., 2005, 48(14), 4576-4585.
[http://dx.doi.org/10.1021/jm058175c] [PMID: 15999995]
[115]
Bach, A.W.; Lan, N.C.; Johnson, D.L.; Abell, C.W.; Bembenek, M.E.; Kwan, S-W.; Seeburg, P.H.; Shih, J.C. cDNA cloning of human liver monoamine oxidase A and B: Molecular basis of differences in enzymatic properties. Proc. Natl. Acad. Sci. USA, 1988, 85(13), 4934-4938.
[http://dx.doi.org/10.1073/pnas.85.13.4934] [PMID: 3387449]
[116]
Perez-Caballero, L.; Torres-Sanchez, S.; Romero-López-Alberca, C.; González-Saiz, F.; Mico, J.A.; Berrocoso, E. Monoaminergic system and depression. Cell Tissue Res., 2019, 377(1), 107-113.
[http://dx.doi.org/10.1007/s00441-018-2978-8] [PMID: 30627806]
[117]
Owens, M.J.; Nemeroff, C.B. Role of serotonin in the pathophysiology of depression: Focus on the serotonin transporter. Clin. Chem., 1994, 40(2), 288-295.
[http://dx.doi.org/10.1093/clinchem/40.2.288] [PMID: 7508830]
[118]
Blier, P.; El Mansari, M. Serotonin and beyond: Therapeutics for major depression. Philos. Trans. R. Soc. Lond. B Biol. Sci., 2013, 368(1615), 20120536.
[http://dx.doi.org/10.1098/rstb.2012.0536] [PMID: 23440470]
[119]
Sherif, F.; Marcusson, J.; Oreland, L. Brain gamma-aminobutyrate transaminase and monoamine oxidase activities in suicide victims. Eur. Arch. Psychiatry Clin. Neurosci., 1991, 241(3), 139-144.
[http://dx.doi.org/10.1007/BF02219712] [PMID: 1790159]
[120]
Meyer, J.H.; Ginovart, N.; Boovariwala, A.; Sagrati, S.; Hussey, D.; Garcia, A.; Young, T.; Praschak-Rieder, N.; Wilson, A.A.; Houle, S. Elevated monoamine oxidase a levels in the brain: An explanation for the monoamine imbalance of major depression. Arch. Gen. Psychiatry, 2006, 63(11), 1209-1216.
[http://dx.doi.org/10.1001/archpsyc.63.11.1209] [PMID: 17088501]
[121]
Schulze, T.G.; Müller, D.J.; Krauss, H.; Scherk, H.; Ohlraun, S.; Syagailo, Y.V.; Windemuth, C.; Neidt, H.; Grässle, M.; Papassotiropoulos, A.; Heun, R.; Nöthen, M.M.; Maier, W.; Lesch, K.P.; Rietschel, M. Association between a functional polymorphism in the monoamine oxidase A gene promoter and major depressive disorder. Am. J. Med. Genet., 2000, 96(6), 801-803.
[http://dx.doi.org/10.1002/1096-8628(20001204)96:6<801:AID-AJMG21>3.0.CO;2-4] [PMID: 11121185]
[122]
Yu, Y.W.; Tsai, S-J.; Hong, C-J.; Chen, T-J.; Chen, M-C.; Yang, C-W. Association study of a monoamine oxidase a gene promoter polymorphism with major depressive disorder and antidepressant response. Neuropsychopharmacology, 2005, 30(9), 1719-1723.
[http://dx.doi.org/10.1038/sj.npp.1300785] [PMID: 15956990]
[123]
Youdim, M.B.; Bakhle, Y.S. Monoamine oxidase: Isoforms and inhibitors in Parkinson’s disease and depressive illness. Br. J. Pharmacol., 2006, 147(S1)(Suppl. 1), S287-S296.
[http://dx.doi.org/10.1038/sj.bjp.0706464] [PMID: 16402116]
[124]
Stahl, S.M.; Felker, A. Monoamine oxidase inhibitors: A modern guide to an unrequited class of antidepressants. CNS Spectr., 2008, 13(10), 855-870.
[http://dx.doi.org/10.1017/S1092852900016965] [PMID: 18955941]
[125]
Fišar, Z. Inhibition of monoamine oxidase activity by cannabinoids. Naunyn Schmiedebergs Arch. Pharmacol., 2010, 381(6), 563-572.
[http://dx.doi.org/10.1007/s00210-010-0517-6] [PMID: 20401651]
[126]
Maccarrone, M.; Attinà, M.; Cartoni, A.; Bari, M.; Finazzi-Agrò, A. Gas chromatography-mass spectrometry analysis of endogenous cannabinoids in healthy and tumoral human brain and human cells in culture. J. Neurochem., 2001, 76(2), 594-601.
[http://dx.doi.org/10.1046/j.1471-4159.2001.00092.x] [PMID: 11208922]
[127]
Moranta, D.; Esteban, S.; García-Sevilla, J.A. Differential effects of acute cannabinoid drug treatment, mediated by CB1 receptors, on the in vivo activity of tyrosine and tryptophan hydroxylase in the rat brain. Naunyn Schmiedebergs Arch. Pharmacol., 2004, 369(5), 516-524.
[http://dx.doi.org/10.1007/s00210-004-0921-x] [PMID: 15064921]
[128]
Sagredo, O.; Ramos, J.A.; Fernández-Ruiz, J.; Rodríguez, M.L.L.; de Miguel, R. Chronic ∆9-tetrahydrocannabinol administration affects serotonin levels in the rat frontal cortex. Naunyn Schmiedebergs Arch. Pharmacol., 2006, 372(4), 313-317.
[http://dx.doi.org/10.1007/s00210-005-0026-1] [PMID: 16385404]
[129]
Nakazi, M.; Bauer, U.; Nickel, T.; Kathmann, M.; Schlicker, E. Inhibition of serotonin release in the mouse brain via presynaptic cannabinoid CB1 receptors. Naunyn Schmiedebergs Arch. Pharmacol., 2000, 361(1), 19-24.
[http://dx.doi.org/10.1007/s002109900147] [PMID: 10651142]
[130]
Darmani, N.A.; Janoyan, J.J.; Kumar, N.; Crim, J.L. Behaviorally active doses of the CB1 receptor antagonist SR 141716A increase brain serotonin and dopamine levels and turnover. Pharmacol. Biochem. Behav., 2003, 75(4), 777-787.
[http://dx.doi.org/10.1016/S0091-3057(03)00150-3] [PMID: 12957219]
[131]
Tzavara, E.T.; Davis, R.J.; Perry, K.W.; Li, X.; Salhoff, C.; Bymaster, F.P.; Witkin, J.M.; Nomikos, G.G. The CB1 receptor antagonist SR141716A selectively increases monoaminergic neurotransmission in the medial prefrontal cortex: Implications for therapeutic actions. Br. J. Pharmacol., 2003, 138(4), 544-553.
[http://dx.doi.org/10.1038/sj.bjp.0705100] [PMID: 12598408]
[132]
De Gregorio, D.; McLaughlin, R.J.; Posa, L.; Ochoa-Sanchez, R.; Enns, J.; Lopez-Canul, M.; Aboud, M.; Maione, S.; Comai, S.; Gobbi, G. Cannabidiol modulates serotonergic transmission and reverses both allodynia and anxiety-like behavior in a model of neuropathic pain. Pain, 2019, 160(1), 136-150.
[http://dx.doi.org/10.1097/j.pain.0000000000001386] [PMID: 30157131]
[133]
Bambico, F.R.; Katz, N.; Debonnel, G.; Gobbi, G. Cannabinoids elicit antidepressant-like behavior and activate serotonergic neurons through the medial prefrontal cortex. J. Neurosci., 2007, 27(43), 11700-11711.
[http://dx.doi.org/10.1523/JNEUROSCI.1636-07.2007] [PMID: 17959812]
[134]
De Gregorio, D.; Dean Conway, J.; Canul, M-L.; Posa, L.; Bambico, F.R.; Gobbi, G. Effects of chronic exposure to low doses of Δ9- tetrahydrocannabinol in adolescence and adulthood on serotonin/norepinephrine neurotransmission and emotional behaviors. Int. J. Neuropsychopharmacol., 2020, 23(11), 751-761.
[http://dx.doi.org/10.1093/ijnp/pyaa058] [PMID: 32725198]
[135]
Cascio, M.G.; Gauson, L.A.; Stevenson, L.A.; Ross, R.A.; Pertwee, R.G. Evidence that the plant cannabinoid cannabigerol is a highly potent α2-adrenoceptor agonist and moderately potent 5HT1A receptor antagonist. Br. J. Pharmacol., 2010, 159(1), 129-141.
[http://dx.doi.org/10.1111/j.1476-5381.2009.00515.x] [PMID: 20002104]
[136]
Cascio, M.G.; Zamberletti, E.; Marini, P.; Parolaro, D.; Pertwee, R.G. The phytocannabinoid, ∆9-tetrahydro-cannabivarin, can act through 5-HT1A receptors to produce antipsychotic effects. Br. J. Pharmacol., 2015, 172(5), 1305-1318.
[http://dx.doi.org/10.1111/bph.13000] [PMID: 25363799]
[137]
Oakes, M.D.; Law, W.J.; Clark, T.; Bamber, B.A.; Komuniecki, R. Cannabinoids activate monoaminergic signaling to modulate key C. elegans behaviors. J. Neurosci., 2017, 37(11), 2859-2869.
[http://dx.doi.org/10.1523/JNEUROSCI.3151-16.2017] [PMID: 28188220]
[138]
Egashira, N.; Mishima, K.; Iwasaki, K.; Fujiwara, M. Intracerebral microinjections of delta 9-tetrahydrocannabinol: Search for the impairment of spatial memory in the eight-arm radial maze in rats. Brain Res., 2002, 952(2), 239-245.
[http://dx.doi.org/10.1016/S0006-8993(02)03247-X] [PMID: 12376185]
[139]
Trivedi, M.H.; Fava, M.; Wisniewski, S.R.; Thase, M.E.; Quitkin, F.; Warden, D.; Ritz, L.; Nierenberg, A.A.; Lebowitz, B.D.; Biggs, M.M.; Luther, J.F.; Shores-Wilson, K.; Rush, A.J. Medication augmentation after the failure of SSRIs for depression. N. Engl. J. Med., 2006, 354(12), 1243-1252.
[http://dx.doi.org/10.1056/NEJMoa052964] [PMID: 16554526]
[140]
Souery, D.; Oswald, P.; Massat, I.; Bailer, U.; Bollen, J.; Demyttenaere, K.; Kasper, S.; Lecrubier, Y.; Montgomery, S.; Serretti, A.; Zohar, J.; Mendlewicz, J. Clinical factors associated with treatment resistance in major depressive disorder: Results from a European multicenter study. J. Clin. Psychiatry, 2007, 68(7), 1062-1070.
[http://dx.doi.org/10.4088/JCP.v68n0713] [PMID: 17685743]
[141]
Berman, R.M.; Cappiello, A.; Anand, A.; Oren, D.A.; Heninger, G.R.; Charney, D.S.; Krystal, J.H. Antidepressant effects of ketamine in depressed patients. Biol. Psychiatry, 2000, 47(4), 351-354.
[http://dx.doi.org/10.1016/S0006-3223(99)00230-9] [PMID: 10686270]
[142]
Hashimoto, K. Rapid-acting antidepressant ketamine, its metabolites and other candidates: A historical overview and future perspective. Psychiatry Clin. Neurosci., 2019, 73(10), 613-627.
[http://dx.doi.org/10.1111/pcn.12902] [PMID: 31215725]
[143]
Réus, G.Z.; Abelaira, H.M.; Tuon, T.; Titus, S.E.; Ignácio, Z.M.; Rodrigues, A.L.S.; Quevedo, J. Glutamatergic nmda receptor as therapeutic target for depression.Advances in protein chemistry and structural biology; Donev, R., Ed.; Academic Press , 2016; 103, pp. 169-202.
[144]
Machado-Vieira, R.; Manji, H.K.; Zarate, C.A. The role of the tripartite glutamatergic synapse in the pathophysiology and therapeutics of mood disorders. Neuroscientist, 2009, 15(5), 525-539.
[http://dx.doi.org/10.1177/1073858409336093] [PMID: 19471044]
[145]
Hashimoto, K. Emerging role of glutamate in the pathophysiology of major depressive disorder. Brain Res. Brain Res. Rev., 2009, 61(2), 105-123.
[http://dx.doi.org/10.1016/j.brainresrev.2009.05.005] [PMID: 19481572]
[146]
Hashimoto, K. The role of glutamate on the action of antidepressants. Prog. Neuropsychopharmacol. Biol. Psychiatry, 2011, 35(7), 1558-1568.
[http://dx.doi.org/10.1016/j.pnpbp.2010.06.013] [PMID: 20600468]
[147]
Haj-Mirzaian, A.; Ostadhadi, S.; Kordjazy, N.; Dehpour, A.R.; Ejtemaei Mehr, S. Opioid/NMDA receptors blockade reverses the depressant-like behavior of foot shock stress in the mouse forced swimming test. Eur. J. Pharmacol., 2014, 735, 26-31.
[http://dx.doi.org/10.1016/j.ejphar.2014.03.053] [PMID: 24726844]
[148]
Kordjazy, N.; Haj-Mirzaian, A.; Amiri, S.; Ostadhadi, S.; Amini-Khoei, H.; Dehpour, A.R. Involvement of N-methyl-d-aspartate receptors in the antidepressant-like effect of 5-hydroxytryptamine 3 antagonists in mouse forced swimming test and tail suspension test. Pharmacol. Biochem. Behav., 2016, 141, 1-9.
[http://dx.doi.org/10.1016/j.pbb.2015.11.009] [PMID: 26604075]
[149]
Ostadhadi, S.; Khan, M.I.; Norouzi-Javidan, A.; Chamanara, M.; Jazaeri, F.; Zolfaghari, S.; Dehpour, A-R. Involvement of NMDA receptors and L-arginine/nitric oxide/cyclic guanosine monophosphate pathway in the antidepressant-like effects of topiramate in mice forced swimming test. Brain Res. Bull., 2016, 122, 62-70.
[http://dx.doi.org/10.1016/j.brainresbull.2016.03.004] [PMID: 26988103]
[150]
Haj-Mirzaian, A.; Kordjazy, N.; Haj-Mirzaian, A.; Ostadhadi, S.; Ghasemi, M.; Amiri, S.; Faizi, M.; Dehpour, A. Evidence for the involvement of NMDA receptors in the antidepressant-like effect of nicotine in mouse forced swimming and tail suspension tests. Psychopharmacology (Berl.), 2015, 232(19), 3551-3561.
[http://dx.doi.org/10.1007/s00213-015-4004-0] [PMID: 26173610]
[151]
Paul, I.A.; Skolnick, P. Glutamate and depression: Clinical and preclinical studies. Ann. N. Y. Acad. Sci., 2003, 1003(1), 250-272.
[http://dx.doi.org/10.1196/annals.1300.016] [PMID: 14684451]
[152]
Garcia, L.S.; Comim, C.M.; Valvassori, S.S.; Réus, G.Z.; Stertz, L.; Kapczinski, F.; Gavioli, E.C.; Quevedo, J. Ketamine treatment reverses behavioral and physiological alterations induced by chronic mild stress in rats. Prog. Neuropsychopharmacol. Biol. Psychiatry, 2009, 33(3), 450-455.
[http://dx.doi.org/10.1016/j.pnpbp.2009.01.004] [PMID: 19439250]
[153]
Zarate, C.A., Jr; Singh, J.B.; Carlson, P.J.; Brutsche, N.E.; Ameli, R.; Luckenbaugh, D.A.; Charney, D.S.; Manji, H.K. A randomized trial of an N-methyl-D-aspartate antagonist in treatment-resistant major depression. Arch. Gen. Psychiatry, 2006, 63(8), 856-864.
[http://dx.doi.org/10.1001/archpsyc.63.8.856] [PMID: 16894061]
[154]
Sánchez-Blázquez, P.; Rodríguez-Muñoz, M.; Garzón, J. The cannabinoid receptor 1 associates with NMDA receptors to produce glutamatergic hypofunction: Implications in psychosis and schizophrenia. Front. Pharmacol., 2014, 4, 169.
[http://dx.doi.org/10.3389/fphar.2013.00169] [PMID: 24427139]
[155]
Vicente-Sánchez, A.; Sánchez-Blázquez, P.; Rodríguez-Muñoz, M.; Garzón, J. HINT1 protein cooperates with cannabinoid 1 receptor to negatively regulate glutamate NMDA receptor activity. Mol. Brain, 2013, 6(1), 42.
[http://dx.doi.org/10.1186/1756-6606-6-42] [PMID: 24093505]
[156]
Feigenbaum, J.J.; Bergmann, F.; Richmond, S.A.; Mechoulam, R.; Nadler, V.; Kloog, Y.; Sokolovsky, M. Nonpsychotropic cannabinoid acts as a functional N-methyl-D-aspartate receptor blocker. Proc. Natl. Acad. Sci. USA, 1989, 86(23), 9584-9587.
[http://dx.doi.org/10.1073/pnas.86.23.9584] [PMID: 2556719]
[157]
El-Remessy, A.B.; Khalil, I.E.; Matragoon, S.; Abou-Mohamed, G.; Tsai, N-J.; Roon, P.; Caldwell, R.B.; Caldwell, R.W.; Green, K.; Liou, G.I. Neuroprotective effect of (-)Δ9-tetrahydrocannabinol and cannabidiol in N-methyl-D-aspartate-induced retinal neurotoxicity: Involvement of peroxynitrite. Am. J. Pathol., 2003, 163(5), 1997-2008.
[http://dx.doi.org/10.1016/S0002-9440(10)63558-4] [PMID: 14578199]
[158]
Dhir, A.; Kulkarni, S.K. Nitric oxide and major depression. Nitric Oxide, 2011, 24(3), 125-131.
[http://dx.doi.org/10.1016/j.niox.2011.02.002] [PMID: 21335097]
[159]
Ignarro, L.J. Physiology and pathophysiology of nitric oxide. Kidney Int. Suppl., 1996, 55, S2-S5.
[PMID: 8743501]
[160]
Ischiropoulos, H.; Beckman, J.S. Oxidative stress and nitration in neurodegeneration: Cause, effect, or association? J. Clin. Invest., 2003, 111(2), 163-169.
[http://dx.doi.org/10.1172/JCI200317638] [PMID: 12531868]
[161]
Contestabile, A. Roles of NMDA receptor activity and nitric oxide production in brain development. Brain Res. Brain Res. Rev., 2000, 32(2-3), 476-509.
[http://dx.doi.org/10.1016/S0165-0173(00)00018-7] [PMID: 10760552]
[162]
Esplugues, J.V. NO as a signalling molecule in the nervous system. Br. J. Pharmacol., 2002, 135(5), 1079-1095.
[http://dx.doi.org/10.1038/sj.bjp.0704569] [PMID: 11877313]
[163]
Feil, R.; Kleppisch, T. NO/cGMP-dependent modulation of synaptic transmission. Handb. Exp. Pharmacol., 2008, 184(184), 529-560.
[http://dx.doi.org/10.1007/978-3-540-74805-2_16] [PMID: 18064424]
[164]
Jaffrey, S.R.; Erdjument-Bromage, H.; Ferris, C.D.; Tempst, P.; Snyder, S.H. Protein S-nitrosylation: A physiological signal for neuronal nitric oxide. Nat. Cell Biol., 2001, 3(2), 193-197.
[http://dx.doi.org/10.1038/35055104] [PMID: 11175752]
[165]
Finkel, M.S.; Laghrissi-Thode, F.; Pollock, B.G.; Rong, J. Paroxetine is a novel nitric oxide synthase inhibitor. Psychopharmacol. Bull., 1996, 32(4), 653-658.
[PMID: 8993087]
[166]
Caley, C.F.; Weber, S.S. Paroxetine: A selective serotonin reuptake inhibiting antidepressant. Ann. Pharmacother., 1993, 27(10), 1212-1222.
[http://dx.doi.org/10.1177/106002809302701012] [PMID: 8251692]
[167]
Esposito, G.; De Filippis, D.; Maiuri, M.C.; De Stefano, D.; Carnuccio, R.; Iuvone, T. Cannabidiol inhibits inducible nitric oxide synthase protein expression and nitric oxide production in β-amyloid stimulated PC12 neurons through p38 MAP kinase and NF-kappaB involvement. Neurosci. Lett., 2006, 399(1-2), 91-95.
[http://dx.doi.org/10.1016/j.neulet.2006.01.047] [PMID: 16490313]
[168]
Fouad, A.A.; Al-Mulhim, A.S.; Jresat, I. Cannabidiol treatment ameliorates ischemia/reperfusion renal injury in rats. Life Sci., 2012, 91(7-8), 284-292.
[http://dx.doi.org/10.1016/j.lfs.2012.07.030] [PMID: 22877651]
[169]
Molina-Holgado, F.; Molina-Holgado, E.; Guaza, C.; Rothwell, N.J. Role of CB1 and CB2 receptors in the inhibitory effects of cannabinoids on lipopolysaccharide-induced nitric oxide release in astrocyte cultures. J. Neurosci. Res., 2002, 67(6), 829-836.
[http://dx.doi.org/10.1002/jnr.10165] [PMID: 11891798]
[170]
Yeisley, D.J.; Arabiyat, A.S.; Hahn, M.S. Cannabidiol-driven alterations to inflammatory protein landscape of lipopolysaccharide-activated macrophages in vitro may be mediated by autophagy and oxidative stress. Cannabis Cannabinoid Res., 2021, 6(3), 253-263.
[http://dx.doi.org/10.1089/can.2020.0109] [PMID: 33998893]
[171]
Rodríguez-Muñoz, M.; Onetti, Y.; Cortés-Montero, E.; Garzón, J.; Sánchez-Blázquez, P. Cannabidiol enhances morphine antinociception, diminishes NMDA-mediated seizures and reduces stroke damage via the sigma 1 receptor. Mol. Brain, 2018, 11(1), 51.
[http://dx.doi.org/10.1186/s13041-018-0395-2] [PMID: 30223868]
[172]
Nadler, V.; Mechoulam, R.; Sokolovsky, M. The non-psychotropic cannabinoid (+)-(3S,4S)-7-hydroxy-delta 6- tetrahydrocannabinol 1,1-dimethylheptyl (HU-211) attenuates N-methyl-D-aspartate receptor-mediated neurotoxicity in primary cultures of rat forebrain. Neurosci. Lett., 1993, 162(1-2), 43-45.
[http://dx.doi.org/10.1016/0304-3940(93)90555-Y] [PMID: 8121633]
[173]
Enna, S.J. The GABA receptors.The GABA receptors; Enna, S.J; Möhler, H., Ed.; Springer, 2007, pp. 1-21.
[http://dx.doi.org/10.1007/978-1-59745-465-0_1]
[174]
Bormann, J. The ‘ABC’ of GABA receptors. Trends Pharmacol. Sci., 2000, 21(1), 16-19.
[http://dx.doi.org/10.1016/S0165-6147(99)01413-3] [PMID: 10637650]
[175]
Chebib, M.; Johnston, G.A. The ‘ABC’ of GABA receptors: A brief review. Clin. Exp. Pharmacol. Physiol., 1999, 26(11), 937-940.
[http://dx.doi.org/10.1046/j.1440-1681.1999.03151.x] [PMID: 10561820]
[176]
Watanabe, M.; Maemura, K.; Kanbara, K.; Tamayama, T.; Hayasaki, H. GABA and GABA receptors in the central nervous system and other organs.International review of cytology; Jeon, K.W., Ed.; Elsevier, , 2002; 213, pp. 1-47.
[177]
Olsen, R.W.; Tobin, A.J. Molecular biology of GABAA receptors. FASEB J., 1990, 4(5), 1469-1480.
[http://dx.doi.org/10.1096/fasebj.4.5.2155149] [PMID: 2155149]
[178]
Bowery, N.G. GABAB receptor pharmacology. Annu. Rev. Pharmacol. Toxicol., 1993, 33(1), 109-147.
[http://dx.doi.org/10.1146/annurev.pa.33.040193.000545] [PMID: 8388192]
[179]
Kaupmann, K.; Malitschek, B.; Schuler, V.; Heid, J.; Froestl, W.; Beck, P.; Mosbacher, J.; Bischoff, S.; Kulik, A.; Shigemoto, R.; Karschin, A.; Bettler, B. GABA(B)-receptor subtypes assemble into functional heteromeric complexes. Nature, 1998, 396(6712), 683-687.
[http://dx.doi.org/10.1038/25360] [PMID: 9872317]
[180]
Takahashi, T.; Kajikawa, Y.; Tsujimoto, T. G-Protein-coupled modulation of presynaptic calcium currents and transmitter release by a GABAB receptor. J. Neurosci., 1998, 18(9), 3138-3146.
[http://dx.doi.org/10.1523/JNEUROSCI.18-09-03138.1998] [PMID: 9547222]
[181]
Kerr, D.I.B.; Ong, J. GABAB receptors. Pharmacol. Ther., 1995, 67(2), 187-246.
[http://dx.doi.org/10.1016/0163-7258(95)00016-A] [PMID: 7494864]
[182]
Nutt, D.J.; Malizia, A.L. New insights into the role of the GABA(A)-benzodiazepine receptor in psychiatric disorder. Br. J. Psychiatry, 2001, 179(5), 390-396.
[http://dx.doi.org/10.1192/bjp.179.5.390] [PMID: 11689393]
[183]
Lydiard, R.B. The role of GABA in anxiety disorders. J. Clin. Psychiatry, 2003, 64(Suppl. 3), 21-27.
[PMID: 12662130]
[184]
Nemeroff, C.B. The role of GABA in the pathophysiology and treatment of anxiety disorders. Psychopharmacol. Bull., 2003, 37(4), 133-146.
[PMID: 15131523]
[185]
Brambilla, P.; Perez, J.; Barale, F.; Schettini, G.; Soares, J.C. GABAergic dysfunction in mood disorders. Mol. Psychiatry, 2003, 8(8), 721-737, 715.
[http://dx.doi.org/10.1038/sj.mp.4001362] [PMID: 12888801]
[186]
Krystal, J.H.; Sanacora, G.; Blumberg, H.; Anand, A.; Charney, D.S.; Marek, G.; Epperson, C.N.; Goddard, A.; Mason, G.F. Glutamate and GABA systems as targets for novel antidepressant and mood-stabilizing treatments. Mol. Psychiatry, 2002, 7(1)(Suppl. 1), S71-S80.
[http://dx.doi.org/10.1038/sj.mp.4001021] [PMID: 11986998]
[187]
Chang, L.; Cloak, C.C.; Ernst, T. Magnetic resonance spectroscopy studies of GABA in neuropsychiatric disorders. J. Clin. Psychiatry, 2003, 64(Suppl. 3), 7-14.
[PMID: 12662128]
[188]
Leung, J.W.; Xue, H. GABAergic functions and depression: From classical therapies to herbal medicine. Curr. Drug Targets CNS Neurol. Disord., 2003, 2(6), 363-374.
[http://dx.doi.org/10.2174/1568007033482715] [PMID: 14683464]
[189]
Prévot, T.; Sibille, E. Altered GABA-mediated information processing and cognitive dysfunctions in depression and other brain disorders. Mol. Psychiatry, 2020, 1-17.
[http://dx.doi.org/10.1038/s41380-020-0727-3] [PMID: 32346158]
[190]
Korpi, E.R.; Kleinman, J.E.; Wyatt, R.J. GABA concentrations in forebrain areas of suicide victims. Biol. Psychiatry, 1988, 23(2), 109-114.
[http://dx.doi.org/10.1016/0006-3223(88)90079-0] [PMID: 3334879]
[191]
Newton, D.F.; Fee, C.; Nikolova, Y.S.; Sibille, E. Altered gabaergic function, cortical microcircuitry, and information processing in depression. Neurobiology of depression;; Quevedo, J.; Carvalho, A.F.; Zarate, C.A., Eds.; Academic Press, 2019, pp. 315-329.
[http://dx.doi.org/10.1016/B978-0-12-813333-0.00028-7]
[192]
Kasa, K.; Otsuki, S.; Yamamoto, M.; Sato, M.; Kuroda, H.; Ogawa, N. Cerebrospinal fluid gamma-aminobutyric acid and homovanillic acid in depressive disorders. Biol. Psychiatry, 1982, 17(8), 877-883.
[PMID: 7115838]
[193]
Petty, F.; Kramer, G.L.; Gullion, C.M.; Rush, A.J. Low plasma γ-aminobutyric acid levels in male patients with depression. Biol. Psychiatry, 1992, 32(4), 354-363.
[http://dx.doi.org/10.1016/0006-3223(92)90039-3] [PMID: 1420649]
[194]
Petty, F. Plasma concentrations of gamma-aminobutyric acid (GABA) and mood disorders: A blood test for manic depressive disease? Clin. Chem., 1994, 40(2), 296-302.
[http://dx.doi.org/10.1093/clinchem/40.2.296] [PMID: 8313610]
[195]
Klumpers, U.M.; Veltman, D.J.; Drent, M.L.; Boellaard, R.; Comans, E.F.; Meynen, G.; Lammertsma, A.A.; Hoogendijk, W.J. Reduced parahippocampal and lateral temporal GABAA-[11C]flumazenil binding in major depression: Preliminary results. Eur. J. Nucl. Med. Mol. Imaging, 2010, 37(3), 565-574.
[http://dx.doi.org/10.1007/s00259-009-1292-9] [PMID: 19890631]
[196]
Rajkowska, G.; O’Dwyer, G.; Teleki, Z.; Stockmeier, C.A.; Miguel-Hidalgo, J.J. GABAergic neurons immunoreactive for calcium binding proteins are reduced in the prefrontal cortex in major depression. Neuropsychopharmacology, 2007, 32(2), 471-482.
[http://dx.doi.org/10.1038/sj.npp.1301234] [PMID: 17063153]
[197]
Cheetham, S.C.; Crompton, M.R.; Katona, C.L.; Parker, S.J.; Horton, R.W. Brain GABAA/benzodiazepine binding sites and glutamic acid decarboxylase activity in depressed suicide victims. Brain Res., 1988, 460(1), 114-123.
[http://dx.doi.org/10.1016/0006-8993(88)91211-5] [PMID: 2851368]
[198]
Pandey, G.N.; Conley, R.R.; Pandey, S.C.; Goel, S.; Roberts, R.C.; Tamminga, C.A.; Chute, D.; Smialek, J. Benzodiazepine receptors in the post-mortem brain of suicide victims and schizophrenic subjects. Psychiatry Res., 1997, 71(3), 137-149.
[http://dx.doi.org/10.1016/S0165-1781(97)00060-7] [PMID: 9271787]
[199]
Sundman-Eriksson, I.; Allard, P. [(3)H]Tiagabine binding to GABA transporter-1 (GAT-1) in suicidal depression. J. Affect. Disord., 2002, 71(1-3), 29-33.
[http://dx.doi.org/10.1016/S0165-0327(01)00349-4] [PMID: 12167498]
[200]
Bartholini, G.; Scatton, B.; Zivkovic, B.; Lloyd, K. Neuropharmacological basis of the action of GABA receptor agonists in neuropsychiatric disorder (with special reference to depression). Biol. Psychiatry, 1981, 16, 419-424.
[201]
Morselli, P.; Fournier, V.; Macher, J.; Orofiamma, B.; Bottin, P.; Huber, P. Therapeutic action of progabide in depressive illness: A controlled clinical trial.GABA and mood disorders. Experimental and clinical research; Raven Press: New York, NY, 1986, pp. 119-126.
[202]
Magni, G.; Garreau, M.; Orofiamma, B.; Palminteri, R. Fengabine, a new GABAmimetic agent in the treatment of depressive disorders: An overview of six double-blind studies versus tricyclics. Neuropsychobiology, 1989, 20(3), 126-131.
[http://dx.doi.org/10.1159/000118485] [PMID: 2668780]
[203]
Musch, B. Antidepressant activity of fengabine (SL 79229): A critical overview of the present results in open clinical studies.GABA and mood disorders. Experimental and clinical research; Raven Press: New York, NY, 1986, pp. 171-177.
[204]
Bartholini, G. GABA receptor agonists: Pharmacological spectrum and therapeutic actions. Med. Res. Rev., 1985, 5(1), 55-75.
[http://dx.doi.org/10.1002/med.2610050103] [PMID: 2984490]
[205]
Tyagarajan, S.K.; Ghosh, H.; Yévenes, G.E.; Nikonenko, I.; Ebeling, C.; Schwerdel, C.; Sidler, C.; Zeilhofer, H.U.; Gerrits, B.; Muller, D.; Fritschy, J.M. Regulation of GABAergic synapse formation and plasticity by GSK3β-dependent phosphorylation of gephyrin. Proc. Natl. Acad. Sci. USA, 2011, 108(1), 379-384.
[http://dx.doi.org/10.1073/pnas.1011824108] [PMID: 21173228]
[206]
Okamoto, H.; Voleti, B.; Banasr, M.; Sarhan, M.; Duric, V.; Girgenti, M.J.; Dileone, R.J.; Newton, S.S.; Duman, R.S. Wnt2 expression and signaling is increased by different classes of antidepressant treatments. Biol. Psychiatry, 2010, 68(6), 521-527.
[http://dx.doi.org/10.1016/j.biopsych.2010.04.023] [PMID: 20570247]
[207]
Rey, A.A.; Purrio, M.; Viveros, M-P.; Lutz, B. Biphasic effects of cannabinoids in anxiety responses: CB1 and GABA(B) receptors in the balance of GABAergic and glutamatergic neurotransmission. Neuropsychopharmacology, 2012, 37(12), 2624-2634.
[http://dx.doi.org/10.1038/npp.2012.123] [PMID: 22850737]
[208]
Puighermanal, E.; Marsicano, G.; Busquets-Garcia, A.; Lutz, B.; Maldonado, R.; Ozaita, A. Cannabinoid modulation of hippocampal long-term memory is mediated by mTOR signaling. Nat. Neurosci., 2009, 12(9), 1152-1158.
[http://dx.doi.org/10.1038/nn.2369] [PMID: 19648913]
[209]
Hoffman, A.F.; Lupica, C.R. Mechanisms of cannabinoid inhibition of GABA(A) synaptic transmission in the hippocampus. J. Neurosci., 2000, 20(7), 2470-2479.
[http://dx.doi.org/10.1523/JNEUROSCI.20-07-02470.2000] [PMID: 10729327]
[210]
Bakas, T.; van Nieuwenhuijzen, P.S.; Devenish, S.O.; McGregor, I.S.; Arnold, J.C.; Chebib, M. The direct actions of cannabidiol and 2-arachidonoyl glycerol at GABAA receptors. Pharmacol. Res., 2017, 119, 358-370.
[http://dx.doi.org/10.1016/j.phrs.2017.02.022] [PMID: 28249817]
[211]
Lile, J.A.; Kelly, T.H.; Hays, L.R. Separate and combined effects of the GABAA positive allosteric modulator diazepam and Δ9-THC in humans discriminating Δ9-THC. Drug Alcohol Depend., 2014, 143, 141-148.
[http://dx.doi.org/10.1016/j.drugalcdep.2014.07.016] [PMID: 25124305]
[212]
Morano, A.; Cifelli, P.; Nencini, P.; Antonilli, L.; Fattouch, J.; Ruffolo, G.; Roseti, C.; Aronica, E.; Limatola, C.; Di Bonaventura, C. Cannabis in epilepsy: From clinical practice to basic research focusing on the possible role of cannabidivarin. Epilepsia Open, 2016, 1(3-4), 145-151.
[213]
Palma, E.; Roseti, C.; Maiolino, F.; Fucile, S.; Martinello, K.; Mazzuferi, M.; Aronica, E.; Manfredi, M.; Esposito, V.; Cantore, G.; Miledi, R.; Simonato, M.; Eusebi, F. GABA(A)-current rundown of temporal lobe epilepsy is associated with repetitive activation of GABA(A) “phasic” receptors. Proc. Natl. Acad. Sci. USA, 2007, 104(52), 20944-20948.
[http://dx.doi.org/10.1073/pnas.0710522105] [PMID: 18083839]
[214]
Dockray, G.J. Cholecystokinin. Curr. Opin. Endocrinol. Diabetes Obes., 2012, 19(1), 8-12.
[http://dx.doi.org/10.1097/MED.0b013e32834eb77d] [PMID: 22157397]
[215]
Lach, G.; Schellekens, H.; Dinan, T.G.; Cryan, J.F. Anxiety, depression, and the microbiome: A role for gut peptides. Neurotherapeutics, 2018, 15(1), 36-59.
[http://dx.doi.org/10.1007/s13311-017-0585-0] [PMID: 29134359]
[216]
Tsou, K.; Mackie, K.; Sañudo-Peña, M.C.; Walker, J.M. Cannabinoid CB1 receptors are localized primarily on cholecystokinin-containing GABAergic interneurons in the rat hippocampal formation. Neuroscience, 1999, 93(3), 969-975.
[http://dx.doi.org/10.1016/S0306-4522(99)00086-X] [PMID: 10473261]
[217]
Becker, C.; Thièbot, M-H.; Touitou, Y.; Hamon, M.; Cesselin, F.; Benoliel, J-J. Enhanced cortical extracellular levels of cholecystokinin-like material in a model of anticipation of social defeat in the rat. J. Neurosci., 2001, 21(1), 262-269.
[http://dx.doi.org/10.1523/JNEUROSCI.21-01-00262.2001] [PMID: 11150343]
[218]
Shlik, J.; Vasar, E.; Bradwejn, J. Cholecystokinin and psychiatric disorders: Role in aetiology and potential of receptor antagonists in therapy. CNS Drugs, 1997, 8(2), 134-152.
[http://dx.doi.org/10.2165/00023210-199708020-00005] [PMID: 23338219]
[219]
Brodin, K.; Rosén, A.; Iwarsson, K.; Ogren, S-O.; Brodin, E. Increased levels of substance P and cholecystokinin in rat cerebral cortex following repeated electroconvulsive shock and subchronic treatment with a serotonin uptake inhibitor. Acta Physiol. Scand., 1989, 136(4), 613-614.
[http://dx.doi.org/10.1111/j.1748-1716.1989.tb08710.x] [PMID: 2476913]
[220]
Harro, J.; Häidkind, R.; Harro, M.; Modiri, A-R.; Gillberg, P-G.; Pähkla, R.; Matto, V.; Oreland, L. Chronic mild unpredictable stress after noradrenergic denervation: Attenuation of behavioural and biochemical effects of DSP-4 treatment. Eur. Neuropsychopharmacol., 1999, 10(1), 5-16.
[http://dx.doi.org/10.1016/S0924-977X(99)00043-7] [PMID: 10647090]
[221]
Kim, H.; Whang, W-W.; Kim, H-T.; Pyun, K-H.; Cho, S-Y.; Hahm, D-H.; Lee, H-J.; Shim, I. Expression of neuropeptide Y and cholecystokinin in the rat brain by chronic mild stress. Brain Res., 2003, 983(1-2), 201-208.
[http://dx.doi.org/10.1016/S0006-8993(03)03087-7] [PMID: 12914981]
[222]
Hernando, F.; Fuentes, J.A.; Roques, B.P.; Ruiz-Gayo, M. The CCKB receptor antagonist, L-365,260, elicits antidepressant-type effects in the forced-swim test in mice. Eur. J. Pharmacol., 1994, 261(3), 257-263.
[http://dx.doi.org/10.1016/0014-2999(94)90115-5] [PMID: 7813546]
[223]
Becker, C.; Zeau, B.; Rivat, C.; Blugeot, A.; Hamon, M.; Benoliel, J.J. Repeated social defeat-induced depression-like behavioral and biological alterations in rats: Involvement of cholecystokinin. Mol. Psychiatry, 2008, 13(12), 1079-1092.
[http://dx.doi.org/10.1038/sj.mp.4002097] [PMID: 17893702]
[224]
Khan, A.A.; Shekh-Ahmad, T.; Khalil, A.; Walker, M.C.; Ali, A.B. Cannabidiol exerts antiepileptic effects by restoring hippocampal interneuron functions in a temporal lobe epilepsy model. Br. J. Pharmacol., 2018, 175(11), 2097-2115.
[http://dx.doi.org/10.1111/bph.14202] [PMID: 29574880]
[225]
Beinfeld, M.C.; Connolly, K. Activation of CB1 cannabinoid receptors in rat hippocampal slices inhibits potassium-evoked cholecystokinin release, a possible mechanism contributing to the spatial memory defects produced by cannabinoids. Neurosci. Lett., 2001, 301(1), 69-71.
[http://dx.doi.org/10.1016/S0304-3940(01)01591-9] [PMID: 11239718]
[226]
Arey, R.N.; Enwright, J.F., III; Spencer, S.M.; Falcon, E.; Ozburn, A.R.; Ghose, S.; Tamminga, C.; McClung, C.A. An important role for cholecystokinin, a CLOCK target gene, in the development and treatment of manic-like behaviors. Mol. Psychiatry, 2014, 19(3), 342-350.
[http://dx.doi.org/10.1038/mp.2013.12] [PMID: 23399917]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy