Generic placeholder image

Combinatorial Chemistry & High Throughput Screening

Editor-in-Chief

ISSN (Print): 1386-2073
ISSN (Online): 1875-5402

Research Article

Antimicrobial Resistance in Bacteria Causing Urinary Tract Infections

Author(s): Khonaw Kader Salh*

Volume 25, Issue 7, 2022

Published on: 22 June, 2021

Page: [1219 - 1229] Pages: 11

DOI: 10.2174/1386207324666210622161325

Price: $65

Abstract

Background: Bacteria Escherichia coli (E. coli) and Klebsiella pneumoniae (K. pneumoniae) are the main causes of Urinary Tract Infections (UTIs). This research aims to investigate the isolation of etiologic agents from patients with UTIs. In addition, it tries to investigate the incidence of ESBL genes in an etiologic agent.

Methods: This study included 1,000 positive growth isolates. Accordingly, the predominant pathogens associated with urinary tract infections, i.e., Gram-negative, were the main isolates from UTI patients, including E. coli, K. pneumoniae, Pseudomonas aeruginosa, Proteus mirabilis, Staphylococcus aureus, and Enterococcus faecalis.

Results: Among suspicious cases of urinary tract infections, the results showed that 15.2% of the patients had UTIs, with female patients in the childbearing age group being more affected. E. coli (644; 64.4%) and K. pneumoniae (322; 32.2%) were shown to be more isolated. Among 936 (93.6%) ESBL producing bacteria, 614 (61.4 %) were E. coli, and 32.2% were K. In addition, high resistance was recorded for antibiotics Cefotaxime (85.7 %), Cefepime (85.7%), Ciprofloxacin (83.1%), and Kanamycin (77.9%). Most ESBL-producing K. pneumoniae were multidrug-resistant (MDR). Besides, nitrofurantoin, gentamycin, and imipenem were the most effective antibiotics against ESBL-producing E. coli isolates.

Conclusion: Research shows that high rates of MDR Escherichia coli infections in our hospital were the frequent causes of UTIs. Nitrofurantoin and aminoglycosides were the most beneficial first-line drugs to be prescribed in UTI cases. It is recommended that regular investigations should be carried out on drug resistance in all isolates to formulate helpful antibiotic treatment policies in Iraq. Thus, it is important to determine ESBL prevalence in urine E. coli and K. pneumoniae isolates as it has a great impact on the selection of suitable antibacterial agents. In short, more than half of ESBL producers have Multiple Drug Resistance (MDR).

Keywords: Escherichia coli, urinary tract infections, extended-spectrum beta-lactamase production, antibiotic resistance.

Graphical Abstract
[1]
Angami, S.; Jamir, N.; Sarma, P.C.; Deka, A.C. Urinary tract infection, its causative microorganism and antibiotic susceptibility in Nagaland. Arch. Med. Sci., 2015, 3(1), 40.
[http://dx.doi.org/10.4103/2321-4848.154943]
[2]
Komala, M.; Kumar, K.S. Urinary tract infection: Causes, symptoms, diagnosis and it’s management. IJRPB, 2013, 1(2), 226.
[3]
O’brien, V.P.; Hannan, T.J.; Nielsen, H.V.; Hultgren, S.J. Drug and vaccine development for the treatment and prevention of urinary tract infections. UTI: Mol. Pathogenesis Clin. Manage, 2017, 589-646.
[http://dx.doi.org/10.1128/9781555817404.ch24]
[4]
Rosen, D.A.; Hooton, T.M.; Stamm, W.E.; Humphrey, P.A.; Hultgren, S.J. Detection of intracellular bacterial communities in human urinary tract infection. PLoS Med., 2007, 4(12), e329.
[http://dx.doi.org/10.1371/journal.pmed.0040329] [PMID: 18092884]
[5]
Tenke, P.; Kovacs, B.; Bjerklund Johansen, T.E.; Matsumoto, T.; Tambyah, P.A.; Naber, K.G. European and Asian guidelines on management and prevention of catheter-associated urinary tract infections. Int. J. Antimicrob. Agents, 2008, 31(Suppl. 1), S68-S78.
[http://dx.doi.org/10.1016/j.ijantimicag.2007.07.033] [PMID: 18006279]
[6]
Gilbert, N.M.; O’Brien, V.P.; Hultgren, S.; Macones, G.; Lewis, W.G.; Lewis, A.L. Urinary tract infection as a preventable cause of pregnancy complications: Opportunities, challenges, and a global call to action. Glob. Adv. Health Med., 2013, 2(5), 59-69.
[http://dx.doi.org/10.7453/gahmj.2013.061] [PMID: 24416696]
[7]
Amiri, M.; Lavasani, Z.; Norouzirad, R.; Najibpour, R.; Mohamadpour, M.; Nikpoor, A.R.; Raeisi, M.; Zare Marzouni, H. Prevalence of urinary tract infection among pregnant women and its complications in their newborns during the birth in the hospitals of Dezful city, Iran, 2012-2013. Iran. Red Crescent Med. J., 2015, 17(8), e26946.
[http://dx.doi.org/10.5812/ircmj.26946] [PMID: 26430526]
[8]
Lalueza, A.; Sanz-Trepiana, L.; Bermejo, N.; Yaiza, B.; Morales-Cartagena, A.; Espinosa, M.; García-Jiménez, R.; Jiménez-Rodríguez, O.; Ponce, B.; Lora, D.; Orellana, M.Á.; Fernández-Ruiz, M.; Bermejo, S.; Aguado, J.M. Risk factors for bacteremia in urinary tract infections attended in the emergency department. Intern. Emerg. Med., 2018, 13(1), 41-50.
[http://dx.doi.org/10.1007/s11739-016-1576-6] [PMID: 27864665]
[9]
Pandey, S.; Raza, M.; Bhatta, C. Prevalence and antibiotic sensitivity pattern of methicillin-resistant-Staphylococcus aureus in Kathmandu Medical College-Teaching Hospital. JIOM Nepal., 2012, 34(1), 13-17.
[http://dx.doi.org/10.3126/jiom.v34i1.9117]
[10]
Farajnia, S.; Alikhani, M.Y.; Ghotaslou, R.; Naghili, B.; Nakhlband, A. Causative agents and antimicrobial susceptibilities of urinary tract infections in the northwest of Iran. Int. J. Infect. Dis., 2009, 13(2), 140-144.
[http://dx.doi.org/10.1016/j.ijid.2008.04.014] [PMID: 18703368]
[11]
Flores-Mireles, A.L.; Walker, J.N.; Caparon, M.; Hultgren, S.J. Urinary tract infections: Epidemiology, mechanisms of infection and treatment options. Nat. Rev. Microbiol., 2015, 13(5), 269-284.
[http://dx.doi.org/10.1038/nrmicro3432] [PMID: 25853778]
[12]
Nickel, J.C. Urinary tract infections and resistant bacteria: Highlights of a symposium at the combined meeting of the 25th international congress of chemotherapy (icc) and the 17th European congress of clinical microbiology and infectious diseases (eccmid), March 31–April 3, 2007, Munich, Germany. Rev. Urol., 2007, 9(2), 78-80.
[PMID: 17592541]
[13]
Livermore, D.M. Current epidemiology and growing resistance of gram-negative pathogens. Korean J. Intern. Med. (Korean. Assoc. Intern. Med.), 2012, 27(2), 128-142.
[http://dx.doi.org/10.3904/kjim.2012.27.2.128] [PMID: 22707882]
[14]
Paterson, D.L.; Bonomo, R.A. Extended-spectrum β-lactamases: A clinical update. Clin. Microbiol. Rev., 2005, 18(4), 657-686.
[http://dx.doi.org/10.1128/CMR.18.4.657-686.2005] [PMID: 16223952]
[15]
Najar Peerayeh, S.; Eslami, M.; Memariani, M.; Siadat, S.D. High prevalence of blaCTX-M-1 group extended-spectrum β-lactamase genes in Escherichia coli isolates from Tehran. Jundishapur J. Microbiol., 2013, 6(7)
[http://dx.doi.org/10.5812/jjm.6863]
[16]
Baral, P.; Neupane, S.; Marasini, B.P.; Ghimire, K.R.; Lekhak, B.; Shrestha, B. High prevalence of multidrug resistance in bacterial uropathogens from Kathmandu, Nepal. BMC Res. Notes, 2012, 5(1), 38.
[http://dx.doi.org/10.1186/1756-0500-5-38] [PMID: 22260454]
[17]
Jacoby, G.A.; Munoz-Price, L.S. The new β-lactamases. N. Engl. J. Med., 2005, 352(4), 380-391.
[http://dx.doi.org/10.1056/NEJMra041359] [PMID: 15673804]
[18]
Munier, G.K.; Johnson, C.L.; Snyder, J.W.; Moland, E.S.; Hanson, N.D.; Thomson, K.S. Positive extended-spectrum-β-lactamase (ESBL) screening results may be due to AmpC β-lactamases more often than to ESBLs. J. Clin. Microbiol., 2010, 48(2), 673-674.
[http://dx.doi.org/10.1128/JCM.01544-09] [PMID: 19955269]
[19]
Ejaz, H.; Zafa, A.; Mahmood, S.; Javed, M.M. Urinary tract infections caused by extended spectrum β-lactamase (ESBL) producing Escherichia coli and Klebsiella pneumoniae. Afr. J. Biotechnol., 2011, 10(73), 16661-16666.
[20]
Hrbacek, J.; Cermak, P.; Zachoval, R. Current antibiotic resistance trends of uropathogens in Central Europe: Survey from a Tertiary hospital urology department 2011–2019. Antibiotics (Basel), 2020, 9(9), 630.
[http://dx.doi.org/10.3390/antibiotics9090630] [PMID: 32971752]
[21]
Sánchez-García, J.M.; Sorlózano-Puerto, A.; Navarro-Marí, J.M.; Gutiérrez Fernández, J. Evolution of the antibiotic-resistance of microorganisms causing urinary tract infections: A 4-year epidemiological surveillance study in a hospital population. Rev. Clin. Esp. (Barc.), 2019, 219(3), 116-123.
[http://dx.doi.org/10.1016/j.rceng.2018.10.002] [PMID: 30292463]
[22]
Donaldson, H.; McCalmont, M.; Livermore, D.M.; Rooney, P.J.; Ong, G.; McHenry, E.; Campbell, R.; McMullan, R. Evaluation of the VITEK 2 AST N-054 test card for the detection of extended-spectrum β-lactamase production in Escherichia coli with CTX-M phenotypes. J. Antimicrob. Chemother., 2008, 62(5), 1015-1017.
[http://dx.doi.org/10.1093/jac/dkn316] [PMID: 18669518]
[23]
Bonnet, R. Growing group of extended-spectrum β-lactamases: The CTX-M enzymes. Antimicrob. Agents Chemother., 2004, 48(1), 1-14.
[http://dx.doi.org/10.1128/AAC.48.1.1-14.2004] [PMID: 14693512]
[24]
Bradford, P.A. Extended-spectrum β-lactamases in the 21st century: Characterization, epidemiology, and detection of this important resistance threat. Clin. Microbiol. Rev., 2001, 14(4), 933-951.
[http://dx.doi.org/10.1128/CMR.14.4.933-951.2001] [PMID: 11585791]
[25]
Ananthan, S.; Subha, A. Cefoxitin resistance mediated by loss of a porin in clinical strains of Klebsiella pneumoniae and Escherichia coli. Indian J. Med. Microbiol., 2005, 23(1), 20-23.
[http://dx.doi.org/10.1016/S0255-0857(21)02706-7] [PMID: 15928416]
[26]
Harley, J.; Prescott, L.; Wiley, J.M. Biochemical activities of bacteria. Lab. Exercise Microbiol., 2002, 5, 125-141.
[27]
Tan, T.Y. Use of molecular techniques for the detection of antibiotic resistance in bacteria. Expert Rev. Mol. Diagn., 2003, 3(1), 93-103.
[http://dx.doi.org/10.1586/14737159.3.1.93] [PMID: 12528367]
[28]
Kapel, N. Rapid species identification and antimicrobial susceptibility testing using Raman spectroscopy; Swansea University, 2013.
[29]
Maharjan, A.; Bhetwal, A.; Shakya, S.; Satyal, D.; Shah, S.; Joshi, G.; Khanal, P.R.; Parajuli, N.P. Ugly bugs in healthy guts! Carriage of multidrug-resistant and ESBL-producing commensal Enterobacteriaceae in the intestine of healthy Nepalese adults. Infect. Drug Resist., 2018, 11, 547-554.
[http://dx.doi.org/10.2147/IDR.S156593] [PMID: 29731643]
[30]
Jacobsen, S.M.; Stickler, D.J.; Mobley, H.L.; Shirtliff, M.E. Complicated catheter-associated urinary tract infections due to Escherichia coli and Proteus mirabilis. Clin. Microbiol. Rev., 2008, 21(1), 26-59.
[http://dx.doi.org/10.1128/CMR.00019-07] [PMID: 18202436]
[31]
Özçakar, Z.B. Yalç&nkaya, F.; Kavaz, A.; Kad&o&lu, G.; Elhan, A.H.; Aysev, D.; Güriz, H.; Ekim, M. Urinary tract infections owing to ESBL-producing bacteria: microorganisms change--clinical pattern does not. Acta Paediatr., 2011, 100(8), e61-e64.
[http://dx.doi.org/10.1111/j.1651-2227.2011.02262.x] [PMID: 21392102]
[32]
Beyene, G.; Tsegaye, W. Bacterial uropathogens in urinary tract infection and antibiotic susceptibility pattern in jimma university specialized hospital, southwest ethiopia. Ethiop. J. Health Sci., 2011, 21(2), 141-146.
[http://dx.doi.org/10.4314/ejhs.v21i2.69055] [PMID: 22434993]
[33]
Steward, C.D.; Rasheed, J.K.; Hubert, S.K.; Biddle, J.W.; Raney, P.M.; Anderson, G.J.; Williams, P.P.; Brittain, K.L.; Oliver, A.; McGowan, J.E., Jr; Tenover, F.C. Characterization of clinical isolates of Klebsiella pneumoniae from 19 laboratories using the National Committee for Clinical Laboratory Standards extended-spectrum β-lactamase detection methods. J. Clin. Microbiol., 2001, 39(8), 2864-2872.
[http://dx.doi.org/10.1128/JCM.39.8.2864-2872.2001] [PMID: 11474005]
[34]
Ahmed, O.I.; El-Hady, S.A.; Ahmed, T.M.; Ahmed, I.Z. Detection of bla SHV and bla CTX-M genes in ESBL producing Klebsiella pneumoniae isolated from Egyptian patients with suspected nosocomial infections. Egypt. J. Med. Hum. Genet., 2013, 14(3), 277-283.
[http://dx.doi.org/10.1016/j.ejmhg.2013.05.002]
[35]
Abdi, S; Ranjbar, R; Hakemi, V.M.; Jonaidi, N.; Baghery, B.O.; Bagheri, B.F. Frequency of bla TEM, bla SHV, bla CTX-M, and qnrA among Escherichia coli isolated from urinary tract infection., 2014.
[36]
Sana, T.; Rami, K.; Racha, B.; Fouad, D.; Marcel, A.; Hassan, M. Detection of genes TEM, OXA, SHV and CTX-M in 73 clinical isolates of Escherichia coli producers of extended spectrum Betalactamases and determination of their susceptibility to antibiotics. IAJAA, 2011, 1(1)
[37]
Kumari, N.; Ghimire, G.; Magar, J.K.; Mohapatra, T.M.; Rai, A. Antibiogram pattern of isolates from UTI cases in Eastern part of Nepal. Nepal Med. Coll. J., 2005, 7(2), 116-118.
[PMID: 16519077]
[38]
Paczosa, M.K.; Mecsas, J. Klebsiella pneumoniae: Going on the offense with a strong defense. Microbiol. Mol. Biol. Rev., 2016, 80(3), 629-661.
[http://dx.doi.org/10.1128/MMBR.00078-15] [PMID: 27307579]
[39]
Chander, A.; Shrestha, C.D. Prevalence of extended spectrum beta lactamase producing Escherichia coli and Klebsiella pneumoniae urinary isolates in a tertiary care hospital in Kathmandu, Nepal. BMC Res. Notes, 2013, 6(1), 487.
[http://dx.doi.org/10.1186/1756-0500-6-487] [PMID: 24274894]
[40]
Najar Peerayeh, S.; Rostami, E.; Eslami, M.; Ahangarzadeh Rezaee, M. High frequency of extended-spectrum β-lactamaseproducing Klebsiella pneumoniae and Escherichia coli isolates from male patients’ Urine. Arch. Clin. Infect. Dis., 2016, 11(2)
[http://dx.doi.org/10.5812/archcid.32696]
[41]
Eftekhar, F.; Rastegar, M.; Golalipoor, M.; Mansoursamaei, N. Detection of Extended Spectrum B-Lactamases in Urinary Isolates of Klebsiella pneumoniae in Relation to blaSHV, blaTEM and blaCTX-M gene carriage. Iran. J. Public Health, 2012, 41(3), 127-132.
[PMID: 23113157]
[42]
Robberts, F.J.; Kohner, P.C.; Patel, R. Unreliable extended-spectrum β-lactamase detection in the presence of plasmid-mediated AmpC in Escherichia coli clinical isolates. J. Clin. Microbiol., 2009, 47(2), 358-361.
[http://dx.doi.org/10.1128/JCM.01687-08] [PMID: 19109470]
[43]
Khosravi, A.D.; Hoveizavi, H.; Mehdinejad, M. Prevalence of Klebsiella pneumoniae encoding genes for CTX-M-1, TEM-1 and SHV-1 extended-spectrum beta lactamases (ESBL) enzymes in clinical specimens. Jundishapur J. Microbiol., 2013, 6(10)
[http://dx.doi.org/10.5812/jjm.8256]
[44]
Moini, A.S.; Soltani, B.; Taghavi Ardakani, A.; Moravveji, A.; Erami, M.; Haji Rezaei, M.; Namazi, M. Multidrug-resistant Escherichia coli and Klebsiella pneumoniae isolated from patients in Kashan, Iran. Jundishapur J. Microbiol., 2015, 8(10), e27517.
[http://dx.doi.org/10.5812/jjm.27517] [PMID: 26587220]
[45]
Maleki, N.; Tahanasab, Z.; Mobasherizadeh, S.; Rezaei, A.; Faghri, J. Prevalence of CTX-M and TEM β-lactamases in Klebsiella pneumoniae isolates from patients with urinary tract infection, Al-Zahra hospital, Isfahan, Iran. Adv. Biomed. Res., 2018, 7, 10.
[http://dx.doi.org/10.4103/abr.abr_17_17] [PMID: 29456981]
[46]
Tzouvelekis, L.S.; Tzelepi, E.; Tassios, P.T.; Legakis, N.J. CTX-M-type β-lactamases: An emerging group of extended-spectrum enzymes. Int. J. Antimicrob. Agents, 2000, 14(2), 137-142.
[http://dx.doi.org/10.1016/S0924-8579(99)00165-X] [PMID: 10720804]
[47]
Kjerulf, A.; Hansen, D.S.; Sandvang, D.; Hansen, F.; Frimodt-Møller, N. The prevalence of ESBL-producing E. coli and Klebsiella strains in the Copenhagen area of Denmark. APMIS, 2008, 116(2), 118-124.
[http://dx.doi.org/10.1111/j.1600-0463.2008.00777.x] [PMID: 18321362]
[48]
Mendonça, N.; Leitão, J.; Manageiro, V.; Ferreira, E.; Caniça, M. Spread of extended-spectrum β-lactamase CTX-M-producing escherichia coli clinical isolates in community and nosocomial environments in Portugal. Antimicrob. Agents Chemother., 2007, 51(6), 1946-1955.
[http://dx.doi.org/10.1128/AAC.01412-06] [PMID: 17371815]
[49]
Copur Cicek, A.; Saral, A.; Ozad Duzgun, A.; Yasar, E.; Cizmeci, Z.; Ozlem Balci, P.; Sari, F.; Firat, M.; Altintop, Y.A.; Ak, S.; Caliskan, A.; Yildiz, N.; Sancaktar, M.; Esra Budak, E.; Erturk, A.; Birol Ozgumus, O.; Sandalli, C. Nationwide study of Escherichia coli producing extended-spectrum β-lactamases TEM, SHV and CTX-M in Turkey. J. Antibiot. (Tokyo), 2013, 66(11), 647-650.
[http://dx.doi.org/10.1038/ja.2013.72] [PMID: 23838745]
[50]
Jena, J; Sahoo, RK; Debata, NK Subudhi, E Prevalence of TEM, SHV, and CTX-M genes of extended-spectrum β-lactamaseproducing Escherichia coli strains isolated from urinary tract infections in adults. 3 Biotech, 2017, 7(4), 1-7.
[51]
Chong, Y.; Shimoda, S.; Shimono, N. Current epidemiology, genetic evolution and clinical impact of extended-spectrum β-lactamase-producing Escherichia coli and Klebsiella pneumoniae. Infect. Genet. Evol., 2018, 61, 185-188.
[http://dx.doi.org/10.1016/j.meegid.2018.04.005] [PMID: 29626676]
[52]
Jeong, S.H.; Bae, I.K.; Lee, J.H.; Sohn, S.G.; Kang, G.H.; Jeon, G.J.; Kim, Y.H.; Jeong, B.C.; Lee, S.H. Molecular characterization of extended-spectrum beta-lactamases produced by clinical isolates of Klebsiella pneumoniae and Escherichia coli from a Korean nationwide survey. J. Clin. Microbiol., 2004, 42(7), 2902-2906.
[http://dx.doi.org/10.1128/JCM.42.7.2902-2906.2004] [PMID: 15243036]
[53]
Haji, S.H.; Jalal, S.T.; Omer, S.A.; Mawlood, A.H. Molecular detection of SHV-Type ESBL in E. coli and K. pneumoniae and their antimicrobial resistance profile. Zanco J. Med. Sci., 2018, 22(2), 262-272.
[http://dx.doi.org/10.15218/zjms.2018.035]
[54]
Sharma, M.; Pathak, S.; Srivastava, P. Prevalence and antibiogram of Extended Spectrum β-Lactamase (ESBL) producing Gram negative bacilli and further molecular characterization of ESBL producing Escherichia coli and Klebsiella spp. J. Clin. Diagn. Res., 2013, 7(10), 2173-2177.
[http://dx.doi.org/10.7860/JCDR/2013/6460.3462] [PMID: 24298468]
[55]
Hassan, H.; Abdalhamid, B. Molecular characterization of extended-spectrum beta-lactamase producing Enterobacteriaceae in a Saudi Arabian tertiary hospital. J. Infect. Dev. Ctries., 2014, 8(3), 282-288.
[http://dx.doi.org/10.3855/jidc.3809] [PMID: 24619257]
[56]
Oteo, J.; Pérez-Vázquez, M.; Campos, J. Extended-spectrum [β]-lactamase producing Escherichia coli: changing epidemiology and clinical impact. Curr. Opin. Infect. Dis., 2010, 23(4), 320-326.
[http://dx.doi.org/10.1097/QCO.0b013e3283398dc1] [PMID: 20614578]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy