Generic placeholder image

Current Stem Cell Research & Therapy

Editor-in-Chief

ISSN (Print): 1574-888X
ISSN (Online): 2212-3946

Review Article

Comparison of the Characteristics of Breast Milk-derived Stem Cells with the Stem Cells Derived from the Other Sources: A Comparative Review

Author(s): Ebrahim Rahmani-Moghadam, Vahideh Zarrin, Amir Mahmoodzadeh, Marzieh Owrang and Tahereh Talaei-Khozani*

Volume 17, Issue 1, 2022

Published on: 22 June, 2021

Page: [71 - 90] Pages: 20

DOI: 10.2174/1574888X16666210622125309

Price: $65

Abstract

Breast milk (BrM) is not only a nutrition supply but also contains a diverse population of cells. It has been estimated that up to 6% of the cells in human milk possess the characteristics of mesenchymal stem cells (MSC). Available data also indicate that these cells are multipotent and capable of self-renewal and differentiation to other cells. In this review, we have compared different characteristics such as CD markers, differentiation capacity, and morphology of stem cells derived from human breast milk (hBr-MSC) with human bone marrow (hBMSC), Wharton's jelly (WJMSC), and human adipose tissue (hADMSC). The literature review revealed that human breast milk-derived stem cells specifically express a group of cell surface markers, including CD14, CD31, CD45, and CD86. Importantly, a group of markers, CD13, CD29, CD44, CD105, CD106, CD146, and CD166, were identified which were common in the four sources of stem cells. WJMSC, hBMSC, hADMSC, and hBr-MSC are potently able to differentiate into the mesoderm, ectoderm, and endoderm cell lineages. The ability of hBr-MSCs in differentiation into the neural stem cells, neurons, adipocyte, hepatocyte, chondrocyte, osteocyte, and cardiomyocytes has made these cells a promising source of stem cells in regenerative medicine, while isolation of stem cells from the commonly used sources, such as bone marrow, requires invasive procedures. Although autologous breast milk-derived stem cells are an accessible source for women who are in the lactation period, breast milk can be considered a source of stem cells with high differentiation potential without any ethical concern.

Keywords: Mesenchymal stem cell, breast milk, bone marrow, Wharton's jelly, adipose tissue, differentiation.

« Previous
Graphical Abstract
[1]
Witkowska-Zimny M, Kaminska-El-Hassan E. Cells of human breast milk. Cell Mol Biol Lett 2017; 22: 11.
[http://dx.doi.org/10.1186/s11658-017-0042-4] [PMID: 28717367]
[2]
Hassiotou F, Hepworth AR, Williams TM, et al. Breastmilk cell and fat contents respond similarly to removal of breastmilk by the infant. PLoS One 2013; 8(11): e78232.
[http://dx.doi.org/10.1371/journal.pone.0078232] [PMID: 24223141]
[3]
Aydın MŞ, Yiğit EN, Vatandaşlar E, Erdoğan E, Öztürk G. Transfer and integration of breast milk stem cells to the brain of suckling pups. Sci Rep 2018; 8(1): 14289.
[http://dx.doi.org/10.1038/s41598-018-32715-5] [PMID: 30250150]
[4]
Cregan MD, Fan Y, Appelbee A, et al. Identification of nestin-positive putative mammary stem cells in human breastmilk. Cell Tissue Res 2007; 329(1): 129-36.
[http://dx.doi.org/10.1007/s00441-007-0390-x] [PMID: 17440749]
[5]
Thomas E, Zeps N, Cregan M, Hartmann P, Martin T. 14-3-3σ (sigma) regulates proliferation and differentiation of multipotent p63-positive cells isolated from human breastmilk. Cell Cycle 2011; 10(2): 278-84.
[http://dx.doi.org/10.4161/cc.10.2.14470] [PMID: 21239874]
[6]
Thomas E, Lee-Pullen T, Rigby P, Hartmann P, Xu J, Zeps N. Receptor activator of NF-κB ligand promotes proliferation of a putative mammary stem cell unique to the lactating epithelium. Stem Cells 2012; 30(6): 1255-64.
[http://dx.doi.org/10.1002/stem.1092] [PMID: 22593019]
[7]
Patki S, Kadam S, Chandra V, Bhonde R. Human breast milk is a rich source of multipotent mesenchymal stem cells. Hum Cell 2010; 23(2): 35-40.
[http://dx.doi.org/10.1111/j.1749-0774.2010.00083.x] [PMID: 20712706]
[8]
Kondo T, Matsuoka AJ, Shimomura A, et al. Wnt signaling promotes neuronal differentiation from mesenchymal stem cells through activation of Tlx3. Stem Cells 2011; 29(5): 836-46.
[http://dx.doi.org/10.1002/stem.624] [PMID: 21374761]
[9]
Hassiotou F, Beltran A, Chetwynd E, et al. Breastmilk is a novel source of stem cells with multilineage differentiation potential. Stem Cells 2012; 30(10): 2164-74.
[http://dx.doi.org/10.1002/stem.1188] [PMID: 22865647]
[10]
Sani M, Ebrahimi S, Aleahmad F, et al. Differentiation potential of breast milk-derived mesenchymal stem cells into hepatocyte-like cells. Tissue Eng Regen Med 2017; 14(5): 587-93.
[http://dx.doi.org/10.1007/s13770-017-0066-x] [PMID: 30603512]
[11]
Hosseini SM, Talaei-Khozani T, Sani M, Owrangi B. Differentiation of human breast-milk stem cells to neural stem cells and neurons. Neurol Res Int 2014; 2014: 807896.
[http://dx.doi.org/10.1155/2014/807896] [PMID: 25506428]
[12]
Sani M, Hosseini SM, Salmannejad M, et al. Origins of the breast milk-derived cells; an endeavor to find the cell sources. Cell Biol Int 2015; 39(5): 611-8.
[http://dx.doi.org/10.1002/cbin.10432] [PMID: 25572907]
[13]
Indumathi S, Dhanasekaran M, Rajkumar JS, Sudarsanam D. Exploring the stem cell and non-stem cell constituents of human breast milk. Cytotechnology 2013; 65(3): 385-93.
[http://dx.doi.org/10.1007/s10616-012-9492-8] [PMID: 22940915]
[14]
Tang C, Zhou Q, Lu C, Xiong M, Lee S. Comparison and culturing different types of cells from fresh breast milk with different culture medium. Pediatr Med 2019; 2: 5.
[http://dx.doi.org/10.21037/pm.2019.02.02]
[15]
Kaingade PM, Somasundaram I, Nikam AB, Sarang SA, Patel JS. Assessment of growth factors secreted by human breastmilk mesenchymal stem cells. Breastfeed Med 2016; 11(1): 26-31.
[http://dx.doi.org/10.1089/bfm.2015.0124] [PMID: 26670023]
[16]
Sani M, Hoseini SM, Aleahmad F. The characterization of CD marker profile of breast milk-derived stem cell. Int J Pediatr 2014; 2(2.3): 47-57.
[17]
Sharp JA, Lefèvre C, Watt A, Nicholas KR. Analysis of human breast milk cells: Gene expression profiles during pregnancy, lactation, involution, and mastitic infection. Funct Integr Genomics 2016; 16(3): 297-321.
[http://dx.doi.org/10.1007/s10142-016-0485-0] [PMID: 26909879]
[18]
Fan Y, Chong YS, Choolani MA, Cregan MD, Chan JK. Unravelling the mystery of stem/progenitor cells in human breast milk. PLoS One 2010; 5(12): e14421.
[http://dx.doi.org/10.1371/journal.pone.0014421] [PMID: 21203434]
[19]
Briere C-E, Jensen T, McGrath JM, Young EE, Finck C. Stem-like cell characteristics from breast milk of mothers with preterm infants as compared to mothers with term infants. Breastfeed Med 2017; 12(3): 174-9.
[http://dx.doi.org/10.1089/bfm.2017.0002] [PMID: 28277748]
[20]
Hassiotou F, Geddes DT, Hartmann PE. Cells in human milk: State of the science. J Hum Lact 2013; 29(2): 171-82.
[http://dx.doi.org/10.1177/0890334413477242] [PMID: 23515088]
[21]
Pichiri G, Lanzano D, Piras M, Dessì A, Reali A, Puddu M. Human breast milk stem cells: A new challenge for perinatologists. JPNIM J Pediatric Neonatal Individ Med 2016; 5(1): e050120.
[22]
Kakulas F, Geddes DT, Hartmann PE. Breastmilk is unlikely to be a source of Mesenchymal stem cells. Breastfeed Med 2016; 11(3): 150-1.
[http://dx.doi.org/10.1089/bfm.2016.0021] [PMID: 26959399]
[23]
Hassiotou F, Geddes D. Anatomy of the human mammary gland: Current status of knowledge. Clin Anat 2013; 26(1): 29-48.
[http://dx.doi.org/10.1002/ca.22165] [PMID: 22997014]
[24]
Hassiotou F, Filgueira L, Hartmann PE. Breastmilk is a novel source of stem cells with multi-lineage differentiation potential. Federation Americ Societies Exp Bio. 2013; pp. 21-2.
[25]
Roy S, Gascard P, Dumont N, et al. Rare somatic cells from human breast tissue exhibit extensive lineage plasticity. Proc Natl Acad Sci 2013; 110(12): 4598-603.
[http://dx.doi.org/10.1073/pnas.1218682110] [PMID: 23487770]
[26]
Togarrati PP, Sasaki RT, Abdel-Mohsen M, et al. Identification and characterization of a rich population of CD34+ mesenchymal stem/stromal cells in human parotid, sublingual and submandibular glands. Sci Rep 2017; 7(1): 3484.
[http://dx.doi.org/10.1038/s41598-017-03681-1] [PMID: 28615711]
[27]
Wu K-C, Chang Y-H, Liu H-W, Ding D-C. Transplanting human umbilical cord mesenchymal stem cells and hyaluronate hydrogel repairs cartilage of osteoarthritis in the minipig model. Ci Ji Yi Xue Za Zhi 2019; 31(1): 11-9.
[PMID: 30692826]
[28]
De Ugarte DA, Alfonso Z, Zuk PA, et al. Differential expression of stem cell mobilization-associated molecules on multi-lineage cells from adipose tissue and bone marrow. Immunol Lett 2003; 89(2-3): 267-70.
[http://dx.doi.org/10.1016/S0165-2478(03)00108-1] [PMID: 14556988]
[29]
Festy F, Hoareau L, Bes-Houtmann S, et al. Surface protein expression between human adipose tissue-derived stromal cells and mature adipocytes. Histochem Cell Biol 2005; 124(2): 113-21.
[http://dx.doi.org/10.1007/s00418-005-0014-z] [PMID: 16032396]
[30]
Katz AJ, Tholpady A, Tholpady SS, Shang H, Ogle RC. Cell surface and transcriptional characterization of human adipose-derived adherent stromal (hADAS) cells. Stem Cells 2005; 23(3): 412-23.
[http://dx.doi.org/10.1634/stemcells.2004-0021] [PMID: 15749936]
[31]
Al-Nbaheen M, Vishnubalaji R, Ali D, et al. Human stromal (mesenchymal) stem cells from bone marrow, adipose tissue and skin exhibit differences in molecular phenotype and differentiation potential. Stem Cell Rev Rep 2013; 9(1): 32-43.
[http://dx.doi.org/10.1007/s12015-012-9365-8] [PMID: 22529014]
[32]
Friedman R, Betancur M, Boissel L, Tuncer H, Cetrulo C, Klingemann H. Umbilical cord mesenchymal stem cells: Adjuvants for human cell transplantation. Biol Blood Marrow Transplant 2007; 13(12): 1477-86.
[http://dx.doi.org/10.1016/j.bbmt.2007.08.048] [PMID: 18022578]
[33]
Hung SC, Chen NJ, Hsieh SL, Li H, Ma HL, Lo WH. Isolation and characterization of size-sieved stem cells from human bone marrow. Stem Cells 2002; 20(3): 249-58.
[http://dx.doi.org/10.1634/stemcells.20-3-249] [PMID: 12004083]
[34]
Alipour R, Sadeghi F, Hashemi-Beni B, et al. Phenotypic characterizations and comparison of adult dental stem cells with adipose-derived stem cells. Int J Prev Med 2010; 1(3): 164-71.
[PMID: 21566786]
[35]
Jo CH, Kim O-S, Park E-Y, et al. Fetal mesenchymal stem cells derived from human umbilical cord sustain primitive characteristics during extensive expansion. Cell Tissue Res 2008; 334(3): 423-33.
[http://dx.doi.org/10.1007/s00441-008-0696-3] [PMID: 18941782]
[36]
Battula VL, Bareiss PM, Treml S, et al. Human placenta and bone marrow derived MSC cultured in serum-free, b-FGF-containing medium express cell surface frizzled-9 and SSEA-4 and give rise to multilineage differentiation. Differentiation 2007; 75(4): 279-91.
[http://dx.doi.org/10.1111/j.1432-0436.2006.00139.x] [PMID: 17288545]
[37]
Hamid AA, Idrus RBH, Saim AB, Sathappan S, Chua K-H. Characterization of human adipose-derived stem cells and expression of chondrogenic genes during induction of cartilage differentiation. Clinics (São Paulo) 2012; 67(2): 99-106.
[http://dx.doi.org/10.6061/clinics/2012(02)03] [PMID: 22358233]
[38]
Gronthos S, Franklin DM, Leddy HA, Robey PG, Storms RW, Gimble JM. Surface protein characterization of human adipose tissue-derived stromal cells. J Cell Physiol 2001; 189(1): 54-63.
[http://dx.doi.org/10.1002/jcp.1138] [PMID: 11573204]
[39]
Wan Safwani WKZ, Makpol S, Sathapan S, Chua KH. The changes of stemness biomarkers expression in human adipose-derived stem cells during long-term manipulation. Biotechnol Appl Biochem 2011; 58(4): 261-70.
[http://dx.doi.org/10.1002/bab.38] [PMID: 21838801]
[40]
Nae S, Bordeianu I, Stăncioiu AT, Antohi N. Human adipose-derived stem cells: Definition, isolation, tissue-engineering applications. Rom J Morphol Embryol 2013; 54(4): 919-24.
[PMID: 24398986]
[41]
Weiss ML, Medicetty S, Bledsoe AR, et al. Human umbilical cord matrix stem cells: Preliminary characterization and effect of transplantation in a rodent model of Parkinson’s disease. Stem Cells 2006; 24(3): 781-92.
[http://dx.doi.org/10.1634/stemcells.2005-0330] [PMID: 16223852]
[42]
Troyer DL, Weiss ML. Wharton’s jelly-derived cells are a primitive stromal cell population. Stem Cells 2008; 26(3): 591-9.
[http://dx.doi.org/10.1634/stemcells.2007-0439] [PMID: 18065397]
[43]
Lund RD, Wang S, Lu B, et al. Cells isolated from umbilical cord tissue rescue photoreceptors and visual functions in a rodent model of retinal disease. Stem Cells 2007; 25(3): 602-11.
[http://dx.doi.org/10.1634/stemcells.2006-0308erratum] [PMID: 17053209]
[44]
La Rocca G, Anzalone R, Corrao S, et al. Isolation and characterization of Oct-4+/HLA-G+ mesenchymal stem cells from human umbilical cord matrix: Differentiation potential and detection of new markers. Histochem Cell Biol 2009; 131(2): 267-82.
[http://dx.doi.org/10.1007/s00418-008-0519-3] [PMID: 18836737]
[45]
Ding D-C, Shyu W-C, Chiang M-F, et al. Enhancement of neuroplasticity through upregulation of β1-integrin in human umbilical cord-derived stromal cell implanted stroke model. Neurobiol Dis 2007; 27(3): 339-53.
[http://dx.doi.org/10.1016/j.nbd.2007.06.010] [PMID: 17651977]
[46]
Farias VA, Linares-Fernández JL, Peñalver JL, et al. Human umbilical cord stromal stem cell express CD10 and exert contractile properties. Placenta 2011; 32(1): 86-95.
[http://dx.doi.org/10.1016/j.placenta.2010.11.003] [PMID: 21126763]
[47]
Fong C-Y, Chak L-L, Biswas A, et al. Human Wharton’s jelly stem cells have unique transcriptome profiles compared to human embryonic stem cells and other mesenchymal stem cells. Stem Cell Rev Rep 2011; 7(1): 1-16.
[http://dx.doi.org/10.1007/s12015-010-9166-x] [PMID: 20602182]
[48]
Yañez R, Lamana ML, García-Castro J, Colmenero I, Ramírez M, Bueren JA. Adipose tissue-derived mesenchymal stem cells have in vivo immunosuppressive properties applicable for the control of the graft-versus-host disease. Stem Cells 2006; 24(11): 2582-91.
[http://dx.doi.org/10.1634/stemcells.2006-0228] [PMID: 16873762]
[49]
Wagner W, Wein F, Seckinger A, et al. Comparative characteristics of mesenchymal stem cells from human bone marrow, adipose tissue, and umbilical cord blood. Exp Hematol 2005; 33(11): 1402-16.
[http://dx.doi.org/10.1016/j.exphem.2005.07.003] [PMID: 16263424]
[50]
Reyes M, Lund T, Lenvik T, Aguiar D, Koodie L, Verfaillie CM. Purification and ex vivo expansion of postnatal human marrow mesodermal progenitor cells. Blood 2001; 98(9): 2615-25.
[http://dx.doi.org/10.1182/blood.V98.9.2615] [PMID: 11675329]
[51]
Aust L, Devlin B, Foster SJ, et al. Yield of human adipose-derived adult stem cells from liposuction aspirates. Cytotherapy 2004; 6(1): 7-14.
[http://dx.doi.org/10.1080/14653240310004539] [PMID: 14985162]
[52]
Ong WK, Tan CS, Chan KL, et al. Identification of specific cell-surface markers of adipose-derived stem cells from subcutaneous and visceral fat depots. Stem Cell Reports 2014; 2(2): 171-9.
[http://dx.doi.org/10.1016/j.stemcr.2014.01.002] [PMID: 24527391]
[53]
Walmsley GG, Atashroo DA, Maan ZN, et al. High-throughput screening of surface marker expression on undifferentiated and differentiated human adipose-derived stromal cells. Tissue Eng Part A 2015; 21(15-16): 2281-91.
[http://dx.doi.org/10.1089/ten.tea.2015.0039] [PMID: 26020286]
[54]
Ishige I, Nagamura-Inoue T, Honda MJ, et al. Comparison of mesenchymal stem cells derived from arterial, venous, and Wharton’s jelly explants of human umbilical cord. Int J Hematol 2009; 90(2): 261-9.
[http://dx.doi.org/10.1007/s12185-009-0377-3] [PMID: 19657615]
[55]
Xu L, Zhou J, Liu J, et al. Different Angiogenic potentials of mesenchymal stem cells derived from umbilical artery, umbilical vein, and Wharton’s jelly. Stem Cells Int 2017; 2017: 3175748.
[http://dx.doi.org/10.1155/2017/3175748] [PMID: 28874910]
[56]
Nagamura-Inoue T, He H. Umbilical cord-derived mesenchymal stem cells: Their advantages and potential clinical utility. World J Stem Cells 2014; 6(2): 195-202.
[http://dx.doi.org/10.4252/wjsc.v6.i2.195] [PMID: 24772246]
[57]
Lu L-L, Liu Y-j, Yang S-G, Zhao Q-J, Wang X, Gong W. Isolation and characterization of human umbilical cord mesenchymal stem cells with hematopoiesis-supportive function and other potentials. Haematologica 2006; 91(8): 1017-26.
[58]
Chen H-C, Lee Y-S, Sieber M, et al. MicroRNA and messenger RNA analyses of mesenchymal stem cells derived from teeth and the Wharton jelly of umbilical cord. Stem Cells Dev 2012; 21(6): 911-22.
[http://dx.doi.org/10.1089/scd.2011.0186] [PMID: 21732813]
[59]
Hsieh J-Y, Fu Y-S, Chang S-J, Tsuang Y-H, Wang H-W. Functional module analysis reveals differential osteogenic and stemness potentials in human mesenchymal stem cells from bone marrow and Wharton’s jelly of umbilical cord. Stem Cells Dev 2010; 19(12): 1895-910.
[http://dx.doi.org/10.1089/scd.2009.0485] [PMID: 20367285]
[60]
Malgieri A, Kantzari E, Patrizi MP, Gambardella S. Bone marrow and umbilical cord blood human mesenchymal stem cells: State of the art. Int J Clin Exp Med 2010; 3(4): 248-69.
[PMID: 21072260]
[61]
Wu KH, Zhou B, Lu SH, et al. In vitro and in vivo differentiation of human umbilical cord derived stem cells into endothelial cells. J Cell Biochem 2007; 100(3): 608-16.
[http://dx.doi.org/10.1002/jcb.21078] [PMID: 16960877]
[62]
Gauthaman K, Fong C-Y, Subramanian A, Biswas A, Bongso A. ROCK inhibitor Y-27632 increases thaw-survival rates and preserves stemness and differentiation potential of human Wharton’s jelly stem cells after cryopreservation. Stem Cell Rev Rep 2010; 6(4): 665-76.
[http://dx.doi.org/10.1007/s12015-010-9184-8] [PMID: 20711690]
[63]
Campard D, Lysy PA, Najimi M, Sokal EM. Native umbilical cord matrix stem cells express hepatic markers and differentiate into hepatocyte-like cells. Gastroenterology 2008; 134(3): 833-48.
[http://dx.doi.org/10.1053/j.gastro.2007.12.024] [PMID: 18243183]
[64]
Subramanian A, Shu-Uin G, Kae-Siang N, et al. Human umbilical cord Wharton’s jelly mesenchymal stem cells do not transform to tumor-associated fibroblasts in the presence of breast and ovarian cancer cells unlike bone marrow mesenchymal stem cells. J Cell Biochem 2012; 113(6): 1886-95.
[http://dx.doi.org/10.1002/jcb.24057] [PMID: 22234854]
[65]
Vishnubalaji R, Al-Nbaheen M, Kadalmani B, Aldahmash A, Ramesh T. Comparative investigation of the differentiation capability of bone-marrow- and adipose-derived mesenchymal stem cells by qualitative and quantitative analysis. Cell Tissue Res 2012; 347(2): 419-27.
[http://dx.doi.org/10.1007/s00441-011-1306-3] [PMID: 22287041]
[66]
Laitinen A, Oja S, Kilpinen L, et al. A robust and reproducible animal serum-free culture method for clinical-grade bone marrow-derived mesenchymal stromal cells. Cytotechnology 2016; 68(4): 891-906.
[http://dx.doi.org/10.1007/s10616-014-9841-x] [PMID: 25777046]
[67]
Puissant B, Barreau C, Bourin P, et al. Immunomodulatory effect of human adipose tissue-derived adult stem cells: Comparison with bone marrow mesenchymal stem cells. Br J Haematol 2005; 129(1): 118-29.
[http://dx.doi.org/10.1111/j.1365-2141.2005.05409.x] [PMID: 15801964]
[68]
Wexler SA, Donaldson C, Denning-Kendall P, Rice C, Bradley B, Hows JM. Adult bone marrow is a rich source of human mesenchymal ‘stem’ cells but umbilical cord and mobilized adult blood are not. Br J Haematol 2003; 121(2): 368-74.
[http://dx.doi.org/10.1046/j.1365-2141.2003.04284.x] [PMID: 12694261]
[69]
Di Nicola M, Carlo-Stella C, Magni M, et al. Human bone marrow stromal cells suppress T-lymphocyte proliferation induced by cellular or nonspecific mitogenic stimuli. Blood 2002; 99(10): 3838-43.
[http://dx.doi.org/10.1182/blood.V99.10.3838] [PMID: 11986244]
[70]
Bernardo ME, Zaffaroni N, Novara F, et al. Human bone marrow derived mesenchymal stem cells do not undergo transformation after long-term in vitro culture and do not exhibit telomere maintenance mechanisms. Cancer Res 2007; 67(19): 9142-9.
[http://dx.doi.org/10.1158/0008-5472.CAN-06-4690] [PMID: 17909019]
[71]
Goodwin HS, Bicknese AR, Chien SN, Bogucki BD, Quinn CO, Wall DA. Multilineage differentiation activity by cells isolated from umbilical cord blood: Expression of bone, fat, and neural markers. Biol Blood Marrow Transplant 2001; 7(11): 581-8.
[http://dx.doi.org/10.1053/bbmt.2001.v7.pm11760145] [PMID: 11760145]
[72]
Cheng K-H, Kuo T-L, Kuo K-K, Hsiao C-C. Human adipose-derived stem cells: Isolation, characterization and current application in regeneration medicine. Genom Med Biomark Health Sci 2011; 3(2): 53-62.
[http://dx.doi.org/10.1016/j.gmbhs.2011.08.003]
[73]
Zuk PA, Zhu M, Ashjian P, et al. Human adipose tissue is a source of multipotent stem cells. Mol Biol Cell 2002; 13(12): 4279-95.
[http://dx.doi.org/10.1091/mbc.e02-02-0105] [PMID: 12475952]
[74]
Zhu Y, Liu T, Song K, Fan X, Ma X, Cui Z. Adipose-derived stem cell: A better stem cell than BMSC. Cell Biochem Funct 2008; 26(6): 664-75.
[http://dx.doi.org/10.1002/cbf.1488] [PMID: 18636461]
[75]
Baer PC, Kuçi S, Krause M, et al. Comprehensive phenotypic characterization of human adipose-derived stromal/stem cells and their subsets by a high throughput technology. Stem Cells Dev 2013; 22(2): 330-9.
[http://dx.doi.org/10.1089/scd.2012.0346] [PMID: 22920587]
[76]
Liu G, Zhou H, Li Y, et al. Evaluation of the viability and osteogenic differentiation of cryopreserved human adipose-derived stem cells. Cryobiology 2008; 57(1): 18-24.
[http://dx.doi.org/10.1016/j.cryobiol.2008.04.002] [PMID: 18495102]
[77]
Sharifi AM, Ghazanfari R, Tekiyehmaroof N, Sharifi MA. Isolation, cultivation, characterization and expansion of human adipose-derived mesenchymal stem cell for use in regenerative medicine. Int J Hematol Oncol Stem Cell Res 2012; 6(1): 1-5.
[78]
Ren H, Sang Y, Zhang F, Liu Z, Qi N, Chen Y. Comparative analysis of human mesenchymal stem cells from umbilical cord, dental pulp, and menstrual blood as sources for cell therapy. Stem Cells Int 2016; 2016: 3516574.
[http://dx.doi.org/10.1155/2016/3516574] [PMID: 26880954]
[79]
Millán-Rivero JE, Nadal-Nicolás FM, García-Bernal D, et al. Human Wharton’s jelly mesenchymal stem cells protect axotomized rat retinal ganglion cells via secretion of anti-inflammatory and neurotrophic factors. Sci Rep 2018; 8(1): 16299.
[http://dx.doi.org/10.1038/s41598-018-34527-z] [PMID: 30389962]
[80]
Bharti D, Shivakumar SB, Park J-K, et al. Comparative analysis of human Wharton’s jelly mesenchymal stem cells derived from different parts of the same umbilical cord. Cell Tissue Res 2018; 372(1): 51-65.
[http://dx.doi.org/10.1007/s00441-017-2699-4] [PMID: 29204746]
[81]
Shetty P, Cooper K, Viswanathan C. Comparison of proliferative and multilineage differentiation potentials of cord matrix, cord blood, and bone marrow mesenchymal stem cells. Asian J Transfus Sci 2010; 4(1): 14-24.
[http://dx.doi.org/10.4103/0973-6247.59386] [PMID: 20376261]
[82]
Karahuseyinoglu S, Cinar O, Kilic E, et al. Biology of stem cells in human umbilical cord stroma: In situ and in vitro surveys. Stem Cells 2007; 25(2): 319-31.
[http://dx.doi.org/10.1634/stemcells.2006-0286] [PMID: 17053211]
[83]
Garzón I, Pérez-Köhler B, Garrido-Gómez J, et al. Evaluation of the cell viability of human Wharton’s jelly stem cells for use in cell therapy. Tissue Eng Part C Methods 2012; 18(6): 408-19.
[http://dx.doi.org/10.1089/ten.tec.2011.0508] [PMID: 22166141]
[84]
Torreggiani E, Lisignoli G, Manferdini C, et al. Role of Slug transcription factor in human mesenchymal stem cells. J Cell Mol Med 2012; 16(4): 740-51.
[http://dx.doi.org/10.1111/j.1582-4934.2011.01352.x] [PMID: 21645238]
[85]
Zhang ZY, Teoh SH, Chong MS, et al. Superior osteogenic capacity for bone tissue engineering of fetal compared with perinatal and adult mesenchymal stem cells. Stem Cells 2009; 27(1): 126-37.
[http://dx.doi.org/10.1634/stemcells.2008-0456] [PMID: 18832592]
[86]
Wang Q, Yang Q, Wang Z, et al. Comparative analysis of human mesenchymal stem cells from fetal-bone marrow, adipose tissue, and Warton’s jelly as sources of cell immunomodulatory therapy. Hum Vaccin Immunother 2016; 12(1): 85-96.
[http://dx.doi.org/10.1080/21645515.2015.1030549] [PMID: 26186552]
[87]
Lim J, Razi ZRM, Law J, Nawi AM, Idrus RBH, Ng MH. MSCs can be differentially isolated from maternal, middle and fetal segments of the human umbilical cord. Cytotherapy 2016; 18(12): 1493-502.
[http://dx.doi.org/10.1016/j.jcyt.2016.08.003] [PMID: 27727016]
[88]
Martin-Rendon E, Sweeney D, Lu F, Girdlestone J, Navarrete C, Watt SM. 5-Azacytidine-treated human mesenchymal stem/progenitor cells derived from umbilical cord, cord blood and bone marrow do not generate cardiomyocytes in vitro at high frequencies. Vox Sang 2008; 95(2): 137-48.
[http://dx.doi.org/10.1111/j.1423-0410.2008.01076.x] [PMID: 18557828]
[89]
Heo JS, Choi Y, Kim H-S, Kim HO. Comparison of molecular profiles of human mesenchymal stem cells derived from bone marrow, umbilical cord blood, placenta and adipose tissue. Int J Mol Med 2016; 37(1): 115-25.
[http://dx.doi.org/10.3892/ijmm.2015.2413] [PMID: 26719857]
[90]
Jin HJ, Bae YK, Kim M, et al. Comparative analysis of human mesenchymal stem cells from bone marrow, adipose tissue, and umbilical cord blood as sources of cell therapy. Int J Mol Sci 2013; 14(9): 17986-8001.
[http://dx.doi.org/10.3390/ijms140917986] [PMID: 24005862]
[91]
Gabr MM, Zakaria MM, Refaie AF, et al. Insulin-producing cells from adult human bone marrow mesenchymal stromal cells could control chemically induced diabetes in dogs: A preliminary study. Cell Transplant 2018; 27(6): 937-47.
[http://dx.doi.org/10.1177/0963689718759913] [PMID: 29860900]
[92]
Batsali AK, Pontikoglou C, Koutroulakis D, et al. Differential expression of cell cycle and WNT pathway-related genes accounts for differences in the growth and differentiation potential of Wharton’s jelly and bone marrow-derived mesenchymal stem cells. Stem Cell Res Ther 2017; 8(1): 102.
[http://dx.doi.org/10.1186/s13287-017-0555-9] [PMID: 28446235]
[93]
Mareschi K, Biasin E, Piacibello W, Aglietta M, Madon E, Fagioli F. Isolation of human mesenchymal stem cells: Bone marrow versus umbilical cord blood. haematologica 2001; 86(10): 1099-100.
[94]
Pittenger MF, Mackay AM, Beck SC, Jaiswal RK, Douglas R, Mosca JD. Multilineage potential of adult human mesenchymal stem cells. Science 1999; 284(5411): 143-7.
[95]
Gabr MM, Zakaria MM, Refaie AF, et al. Differentiation of human bone marrow-derived mesenchymal stem cells into insulin-producing cells: Evidence for further maturation in vivo. BioMed Res Int 2015; 2015: 575837.
[http://dx.doi.org/10.1155/2015/575837] [PMID: 26064925]
[96]
Gabr MM, Zakaria MM, Refaie AF, et al. Generation of insulin-producing cells from human bone marrow-derived mesenchymal stem cells: Comparison of three differentiation protocols. BioMed Res Int 2014; 2014: 832736.
[http://dx.doi.org/10.1155/2014/832736] [PMID: 24818157]
[97]
Gabr MM, Zakaria MM, Refaie AF, et al. Insulin-producing cells from adult human bone marrow mesenchymal stem cells control streptozotocin-induced diabetes in nude mice. Cell Transplant 2013; 22(1): 133-45.
[http://dx.doi.org/10.3727/096368912X647162] [PMID: 22710060]
[98]
Pachón-Peña G, Yu G, Tucker A, et al. Stromal stem cells from adipose tissue and bone marrow of age-matched female donors display distinct immunophenotypic profiles. J Cell Physiol 2011; 226(3): 843-51.
[http://dx.doi.org/10.1002/jcp.22408] [PMID: 20857424]
[99]
Zhang X, Hirai M, Cantero S, et al. Isolation and characterization of mesenchymal stem cells from human umbilical cord blood: Reevaluation of critical factors for successful isolation and high ability to proliferate and differentiate to chondrocytes as compared to mesenchymal stem cells from bone marrow and adipose tissue. J Cell Biochem 2011; 112(4): 1206-18.
[http://dx.doi.org/10.1002/jcb.23042] [PMID: 21312238]
[100]
Mageed AS, Pietryga DW, DeHeer DH, West RA. Isolation of large numbers of mesenchymal stem cells from the washings of bone marrow collection bags: Characterization of fresh mesenchymal stem cells. Transplantation 2007; 83(8): 1019-26.
[http://dx.doi.org/10.1097/01.tp.0000259752.13304.0b] [PMID: 17452890]
[101]
Farré J, Roura S, Prat-Vidal C, et al. FGF-4 increases in vitro expansion rate of human adult bone marrow-derived mesenchymal stem cells. Growth Factors 2007; 25(2): 71-6.
[http://dx.doi.org/10.1080/08977190701345200] [PMID: 17852409]
[102]
Kern S, Eichler H, Stoeve J, Klüter H, Bieback K. Comparative analysis of mesenchymal stem cells from bone marrow, umbilical cord blood, or adipose tissue. Stem Cells 2006; 24(5): 1294-301.
[http://dx.doi.org/10.1634/stemcells.2005-0342] [PMID: 16410387]
[103]
Dicker A, Le Blanc K, Aström G, et al. Functional studies of mesenchymal stem cells derived from adult human adipose tissue. Exp Cell Res 2005; 308(2): 283-90.
[http://dx.doi.org/10.1016/j.yexcr.2005.04.029] [PMID: 15925364]
[104]
Anker PS in 't, Noort W, Scherjon SA, et al. Mesenchymal stem cells in human second-trimester bone marrow, liver, lung, and spleen exhibit a similar immunophenotype but a heterogeneous multilineage differentiation potential. haematologica 2003; 88(8): 845-52.
[105]
Campagnoli C, Roberts IA, Kumar S, Bennett PR, Bellantuono I, Fisk NM. Identification of mesenchymal stem/progenitor cells in human first-trimester fetal blood, liver, and bone marrow. Blood 2001; 98(8): 2396-402.
[http://dx.doi.org/10.1182/blood.V98.8.2396] [PMID: 11588036]
[106]
Selmani Z, Naji A, Zidi I, et al. Human leukocyte antigen-G5 secretion by human mesenchymal stem cells is required to suppress T lymphocyte and natural killer function and to induce CD4+CD25highFOXP3+ regulatory T cells. Stem Cells 2008; 26(1): 212-22.
[http://dx.doi.org/10.1634/stemcells.2007-0554] [PMID: 17932417]
[107]
Ren J, Ward D, Chen S, et al. Comparison of human bone marrow stromal cells cultured in human platelet growth factors and fetal bovine serum. J Transl Med 2018; 16(1): 65.
[http://dx.doi.org/10.1186/s12967-018-1400-3] [PMID: 29540180]
[108]
Tondreau T, Lagneaux L, Dejeneffe M, et al. Bone marrow-derived mesenchymal stem cells already express specific neural proteins before any differentiation. Differentiation 2004; 72(7): 319-26.
[http://dx.doi.org/10.1111/j.1432-0436.2004.07207003.x] [PMID: 15554943]
[109]
Seiler C, Gazdhar A, Reyes M, et al. Time-lapse microscopy and classification of 2D human mesenchymal stem cells based on cell shape picks up myogenic from osteogenic and adipogenic differentiation. J Tissue Eng Regen Med 2014; 8(9): 737-46.
[http://dx.doi.org/10.1002/term.1575] [PMID: 22815264]
[110]
Burrow KL, Hoyland JA, Richardson SM. Human adipose-derived stem cells exhibit enhanced proliferative capacity and retain multipotency longer than donor-matched bone marrow mesenchymal stem cells during expansion in vitro. Stem Cells Int 2017; 2017: 2541275.
[http://dx.doi.org/10.1155/2017/2541275] [PMID: 28553357]
[111]
Ryu Y-J, Cho T-J, Lee D-S, Choi J-Y, Cho J. Phenotypic characterization and in vivo localization of human adipose-derived mesenchymal stem cells. Mol Cells 2013; 35(6): 557-64.
[http://dx.doi.org/10.1007/s10059-013-0112-z] [PMID: 23677376]
[112]
Schneider S, Unger M, van Griensven M, Balmayor ER. Adipose-derived mesenchymal stem cells from liposuction and resected fat are feasible sources for regenerative medicine. Eur J Med Res 2017; 22(1): 17.
[http://dx.doi.org/10.1186/s40001-017-0258-9] [PMID: 28526089]
[113]
Kucerova L, Altanerova V, Matuskova M, Tyciakova S, Altaner C. Adipose tissue-derived human mesenchymal stem cells mediated prodrug cancer gene therapy. Cancer Res 2007; 67(13): 6304-13.
[http://dx.doi.org/10.1158/0008-5472.CAN-06-4024] [PMID: 17616689]
[114]
Dudakovic A, Camilleri E, Riester SM, et al. High-resolution molecular validation of self-renewal and spontaneous differentiation in clinical-grade adipose-tissue derived human mesenchymal stem cells. J Cell Biochem 2014; 115(10): 1816-28.
[http://dx.doi.org/10.1002/jcb.24852] [PMID: 24905804]
[115]
Yong KW, Pingguan-Murphy B, Xu F, et al. Phenotypic and functional characterization of long-term cryopreserved human adipose-derived stem cells. Sci Rep 2015; 5(1): 9596.
[http://dx.doi.org/10.1038/srep09596] [PMID: 25872464]
[116]
Johal KS, Lees VC, Reid AJ. Adipose-derived stem cells: Selecting for translational success. Regen Med 2015; 10(1): 79-96.
[http://dx.doi.org/10.2217/rme.14.72] [PMID: 25562354]
[117]
Liu G-P, Liao C-H, Xu Y-P. Proliferation and adipogenic differentiation of human adipose-derived stem cells isolated from middle-aged patients with prominent orbital fat in the lower eyelids. Plast Aesthet Res 2016; 3(1): 322-7.
[http://dx.doi.org/10.20517/2347-9264.2016.74]
[118]
Subramanian A, Fong C-Y, Biswas A, Bongso A. Comparative characterization of cells from the various compartments of the human umbilical cord shows that the Wharton’s jelly compartment provides the best source of clinically utilizable mesenchymal stem cells. PLoS One 2015; 10(6): e0127992.
[http://dx.doi.org/10.1371/journal.pone.0127992] [PMID: 26061052]
[119]
Charvet HJ, Orbay H, Harrison L, Devi K, Sahar DE. In vitro effects of adipose-derived stem cells on breast cancer cells harvested from the same patient. Ann Plast Surg 2016; 76(Suppl. 3): S241-5.
[http://dx.doi.org/10.1097/SAP.0000000000000802] [PMID: 27070671]
[120]
Ennis J, Götherström C, Le Blanc K, Davies JE. In vitro immunologic properties of human umbilical cord perivascular cells. Cytotherapy 2008; 10(2): 174-81.
[http://dx.doi.org/10.1080/14653240801891667] [PMID: 18368596]
[121]
Christopherson KW II, Frank RR, Jagan S, Paganessi LA, Gregory SA, Fung HC. CD26 protease inhibition improves functional response of unfractionated cord blood, bone marrow, and mobilized peripheral blood cells to CXCL12/SDF-1. Exp Hematol 2012; 40(11): 945-52.
[http://dx.doi.org/10.1016/j.exphem.2012.07.009] [PMID: 22846168]
[122]
Wang HS, Hung SC, Peng ST, et al. Mesenchymal stem cells in the Wharton’s jelly of the human umbilical cord. Stem Cells 2004; 22(7): 1330-7.
[http://dx.doi.org/10.1634/stemcells.2004-0013] [PMID: 15579650]
[123]
Qiao C, Xu W, Zhu W, et al. Human mesenchymal stem cells isolated from the umbilical cord. Cell Biol Int 2008; 32(1): 8-15.
[http://dx.doi.org/10.1016/j.cellbi.2007.08.002] [PMID: 17904875]
[124]
Margossian T, Reppel L, Makdissy N, Stoltz J-F, Bensoussan D, Huselstein C. Mesenchymal stem cells derived from Wharton’s jelly: Comparative phenotype analysis between tissue and in vitro expansion. Biomed Mater Eng 2012; 22(4): 243-54.
[http://dx.doi.org/10.3233/BME-2012-0714] [PMID: 22785368]
[125]
Ali H, Al-Yatama MK, Abu-Farha M, Behbehani K, Al Madhoun A. Multi-lineage differentiation of human umbilical cord Wharton’s Jelly Mesenchymal Stromal Cells mediates changes in the expression profile of stemness markers. PLoS One 2015; 10(4): e0122465.
[http://dx.doi.org/10.1371/journal.pone.0122465] [PMID: 25848763]
[126]
Shi Z, Zhao L, Qiu G, He R, Detamore MS. The effect of extended passaging on the phenotype and osteogenic potential of human umbilical cord mesenchymal stem cells. Mol Cell Biochem 2015; 401(1-2): 155-64.
[http://dx.doi.org/10.1007/s11010-014-2303-0] [PMID: 25555467]
[127]
Al-Yamani A, Kalamegam G, Ahmed F, et al. Evaluation of in vitro chondrocytic differentiation: A stem cell research initiative at the King Abdulaziz University, Kingdom of Saudi Arabia. Bioinformation 2018; 14(2): 53-9.
[http://dx.doi.org/10.6026/97320630014053] [PMID: 29618900]
[128]
Li J, Huang H, Xu X. Biological and genetic characteristics of mesenchymal stem cells in vitro derived from human adipose, umbilical cord and placenta. Int J Clin Exp Med 2017; 10(12): 16310-8.
[129]
Bai J, Hu Y, Wang Y-R, et al. Comparison of human amniotic fluid-derived and umbilical cord Wharton’s Jelly-derived mesenchymal stromal cells: Characterization and myocardial differentiation capacity. J Geriatr Cardiol 2012; 9(2): 166-71.
[http://dx.doi.org/10.3724/SP.J.1263.2011.12091] [PMID: 22916064]
[130]
Liu S, Yuan M, Hou K, et al. Immune characterization of mesenchymal stem cells in human umbilical cord Wharton’s jelly and derived cartilage cells. Cell Immunol 2012; 278(1-2): 35-44.
[http://dx.doi.org/10.1016/j.cellimm.2012.06.010] [PMID: 23121974]
[131]
Kalamegam G, Sait KHW, Ahmed F, et al. Human Wharton's jelly stem cell (hWJSC) extracts inhibit ovarian cancer cell lines OVCAR3 and SKOV3 in vitro by inducing cell cycle arrest and apoptosis. Front Oncol 2018; 8: 592.
[http://dx.doi.org/10.3389/fonc.2018.00592] [PMID: 30581772]
[132]
Kalamegam G, Sait KHW, Anfinan N, et al. Cytokines secreted by human Wharton’s jelly stem cells inhibit the proliferation of ovarian cancer (OVCAR3) cells in vitro. Oncol Lett 2019; 17(5): 4521-31.
[http://dx.doi.org/10.3892/ol.2019.10094] [PMID: 30944641]
[133]
Wu L-F, Wang N-N, Liu Y-S, Wei X. Differentiation of Wharton’s jelly primitive stromal cells into insulin-producing cells in comparison with bone marrow mesenchymal stem cells. Tissue Eng Part A 2009; 15(10): 2865-73.
[http://dx.doi.org/10.1089/ten.tea.2008.0579] [PMID: 19257811]
[134]
Gari M, Alsehli H, Gari A, et al. Derivation and differentiation of bone marrow mesenchymal stem cells from osteoarthritis patients. Tissue Eng Regen Med 2016; 13(6): 732-9.
[http://dx.doi.org/10.1007/s13770-016-0013-2] [PMID: 30603454]
[135]
Pierdomenico L, Bonsi L, Calvitti M, et al. Multipotent mesenchymal stem cells with immunosuppressive activity can be easily isolated from dental pulp. Transplantation 2005; 80(6): 836-42.
[http://dx.doi.org/10.1097/01.tp.0000173794.72151.88] [PMID: 16210973]
[136]
Wang C, Li Y, Yang M, et al. Efficient differentiation of bone marrow mesenchymal stem cells into endothelial cells in vitro. Eur J Vasc Endovasc Surg 2018; 55(2): 257-65.
[http://dx.doi.org/10.1016/j.ejvs.2017.10.012] [PMID: 29208350]
[137]
Xiang Y, Zheng Q, Jia BB, et al. Ex vivo expansion and pluripotential differentiation of cryopreserved human bone marrow mesenchymal stem cells. J Zhejiang Univ Sci B 2007; 8(2): 136-46.
[http://dx.doi.org/10.1631/jzus.2007.B0136] [PMID: 17266190]
[138]
Miao Z, Jin J, Chen L, et al. Isolation of mesenchymal stem cells from human placenta: Comparison with human bone marrow mesenchymal stem cells. Cell Biol Int 2006; 30(9): 681-7.
[http://dx.doi.org/10.1016/j.cellbi.2006.03.009] [PMID: 16870478]
[139]
Chen Y-T, Tsai M-J, Hsieh N, et al. The superiority of conditioned medium derived from rapidly expanded mesenchymal stem cells for neural repair. Stem Cell Res Ther 2019; 10(1): 1-15.
[http://dx.doi.org/10.1186/s13287-018-1105-9] [PMID: 30606242]
[140]
Lee RH, Kim B, Choi I, et al. Characterization and expression analysis of mesenchymal stem cells from human bone marrow and adipose tissue. Cell Physiol Biochem 2004; 14(4-6): 311-24.
[http://dx.doi.org/10.1159/000080341] [PMID: 15319535]
[141]
Yang X-F, He X, He J, et al. High efficient isolation and systematic identification of human adipose-derived mesenchymal stem cells. J Biomed Sci 2011; 18(1): 59.
[http://dx.doi.org/10.1186/1423-0127-18-59] [PMID: 21854621]
[142]
Meliga E, Strem BM, Duckers HJ, Serruys PW. Adipose-derived cells. Cell Transplant 2007; 16(9): 963-70.
[http://dx.doi.org/10.3727/096368907783338190] [PMID: 18293895]
[143]
Zhou F, Gao S, Wang L, et al. Human adipose-derived stem cells partially rescue the stroke syndromes by promoting spatial learning and memory in mouse middle cerebral artery occlusion model. Stem Cell Res Ther 2015; 6(1): 92.
[http://dx.doi.org/10.1186/s13287-015-0078-1] [PMID: 25956259]
[144]
Gao S, Zhao P, Lin C, et al. Differentiation of human adipose-derived stem cells into neuron-like cells which are compatible with photocurable three-dimensional scaffolds. Tissue Eng Part A 2014; 20(7-8): 1271-84.
[http://dx.doi.org/10.1089/ten.tea.2012.0773] [PMID: 24251600]
[145]
Lei L, Liao W, Sheng P, Fu M, He A, Huang G. Biological character of human adipose-derived adult stem cells and influence of donor age on cell replication in culture. Sci China C Life Sci 2007; 50(3): 320-8.
[http://dx.doi.org/10.1007/s11427-007-0019-z] [PMID: 17609888]
[146]
Tapp H, Deepe R, Ingram JA, Kuremsky M, Hanley EN Jr, Gruber HE. Adipose-derived mesenchymal stem cells from the sand rat: Transforming growth factor beta and 3D co-culture with human disc cells stimulate proteoglycan and collagen type I rich extracellular matrix. Arthritis Res Ther 2008; 10(4): R89.
[http://dx.doi.org/10.1186/ar2473] [PMID: 18691412]
[147]
Okura H, Komoda H, Saga A, et al. Properties of hepatocyte-like cell clusters from human adipose tissue-derived mesenchymal stem cells. Tissue Eng Part C Methods 2010; 16(4): 761-70.
[http://dx.doi.org/10.1089/ten.tec.2009.0208] [PMID: 19839740]
[148]
Carvalho PP, Gimble JM, Dias IR, Gomes ME, Reis RL. Xenofree enzymatic products for the isolation of human adipose-derived stromal/stem cells. Tissue Eng Part C Methods 2013; 19(6): 473-8.
[http://dx.doi.org/10.1089/ten.tec.2012.0465] [PMID: 23126465]
[149]
Zhang Y, Wang Y, Wang L, et al. Effects of Rehmannia glutinosa oligosaccharide on human adipose-derived mesenchymal stem cells in vitro. Life Sci 2012; 91(25-26): 1323-7.
[http://dx.doi.org/10.1016/j.lfs.2012.10.015] [PMID: 23123441]
[150]
Mildmay-White A, Khan W. Cell surface markers on adipose-derived stem cells: A systematic review. Curr Stem Cell Res Ther 2017; 12(6): 484-92.
[http://dx.doi.org/10.2174/1574888X11666160429122133] [PMID: 27133085]
[151]
Huang S-J, Fu R-H, Shyu W-C, et al. Adipose-derived stem cells: Isolation, characterization, and differentiation potential. Cell Transplant 2013; 22(4): 701-9.
[http://dx.doi.org/10.3727/096368912X655127] [PMID: 23068312]
[152]
Gimble JM, Katz AJ, Bunnell BA. Adipose-derived stem cells for regenerative medicine. Circ Res 2007; 100(9): 1249-60.
[http://dx.doi.org/10.1161/01.RES.0000265074.83288.09] [PMID: 17495232]
[153]
Ranera B, Lyahyai J, Romero A, et al. Immunophenotype and gene expression profiles of cell surface markers of mesenchymal stem cells derived from equine bone marrow and adipose tissue. Vet Immunol Immunopathol 2011; 144(1-2): 147-54.
[http://dx.doi.org/10.1016/j.vetimm.2011.06.033] [PMID: 21782255]
[154]
Kadner A, Hoerstrup SP, Tracy J, et al. Human umbilical cord cells: A new cell source for cardiovascular tissue engineering. Ann Thorac Surg 2002; 74(4): S1422-8.
[http://dx.doi.org/10.1016/S0003-4975(02)03910-3] [PMID: 12400830]
[155]
Kadner A, Zund G, Maurus C, et al. Human umbilical cord cells for cardiovascular tissue engineering: A comparative study. Eur J Cardiothorac Surg 2004; 25(4): 635-41.
[http://dx.doi.org/10.1016/j.ejcts.2003.12.038] [PMID: 15037283]
[156]
Noël D, Caton D, Roche S, et al. Cell specific differences between human adipose-derived and mesenchymal-stromal cells despite similar differentiation potentials. Exp Cell Res 2008; 314(7): 1575-84.
[http://dx.doi.org/10.1016/j.yexcr.2007.12.022] [PMID: 18325494]
[157]
Yoshimura K, Shigeura T, Matsumoto D, et al. Characterization of freshly isolated and cultured cells derived from the fatty and fluid portions of liposuction aspirates. J Cell Physiol 2006; 208(1): 64-76.
[http://dx.doi.org/10.1002/jcp.20636] [PMID: 16557516]
[158]
Lin G, Garcia M, Ning H, et al. Defining stem and progenitor cells within adipose tissue. Stem Cells Dev 2008; 17(6): 1053-63.
[http://dx.doi.org/10.1089/scd.2008.0117] [PMID: 18597617]
[159]
Mitterberger MC, Lechner S, Mattesich M, et al. DLK1(PREF1) is a negative regulator of adipogenesis in CD105⁺/CD90⁺/CD34⁺/CD31⁻/FABP4⁻ adipose-derived stromal cells from subcutaneous abdominal fat pats of adult women. Stem Cell Res (Amst) 2012; 9(1): 35-48.
[http://dx.doi.org/10.1016/j.scr.2012.04.001] [PMID: 22640926]
[160]
Klar AS, Güven S, Zimoch J, et al. Characterization of vasculogenic potential of human adipose-derived endothelial cells in a three-dimensional vascularized skin substitute. Pediatr Surg Int 2016; 32(1): 17-27.
[http://dx.doi.org/10.1007/s00383-015-3808-7] [PMID: 26621500]
[161]
Wosnitza M, Hemmrich K, Groger A, Gräber S, Pallua N. Plasticity of human adipose stem cells to perform adipogenic and endothelial differentiation. Differentiation 2007; 75(1): 12-23.
[http://dx.doi.org/10.1111/j.1432-0436.2006.00110.x] [PMID: 17244018]
[162]
Mieczkowska A, Schumacher A, Filipowicz N, et al. Immunophenotyping and transcriptional profiling of in vitro cultured human adipose tissue derived stem cells. Sci Rep 2018; 8(1): 11339.
[http://dx.doi.org/10.1038/s41598-018-29477-5] [PMID: 30054533]
[163]
Mei H, González S, Nakatsu MN, Baclagon ER, Chen FV, Deng SX. Human adipose-derived stem cells support the growth of limbal stem/progenitor cells. PLoS One 2017; 12(10): e0186238.
[http://dx.doi.org/10.1371/journal.pone.0186238] [PMID: 29020119]
[164]
Folgiero V, Migliano E, Tedesco M, et al. Purification and characterization of adipose-derived stem cells from patients with lipoaspirate transplant. Cell Transplant 2010; 19(10): 1225-35.
[http://dx.doi.org/10.3727/09638910X519265] [PMID: 21208530]
[165]
Li H, Zimmerlin L, Marra KG, Donnenberg VS, Donnenberg AD, Rubin JP. Adipogenic potential of adipose stem cell subpopulations. Plast Reconstr Surg 2011; 128(3): 663-72.
[http://dx.doi.org/10.1097/PRS.0b013e318221db33] [PMID: 21572381]
[166]
Shah FS, Wu X, Dietrich M, Rood J, Gimble JM. A non-enzymatic method for isolating human adipose tissue-derived stromal stem cells. Cytotherapy 2013; 15(8): 979-85.
[http://dx.doi.org/10.1016/j.jcyt.2013.04.001] [PMID: 23725689]
[167]
Hashemibeni B, Razavi S, Esfandiary E, Karbasi S, Mardani M, Nasresfahani M. Induction of chondrogenic differentiation of human adipose-derived stem cells with TGF-β3 in pellet culture system. IJBMS 2008; 11(1): 10-7.
[168]
Blaber SP, Hill CJ, Webster RA, et al. Effect of labeling with iron oxide particles or nanodiamonds on the functionality of adipose-derived mesenchymal stem cells. PLoS One 2013; 8(1): e52997.
[http://dx.doi.org/10.1371/journal.pone.0052997] [PMID: 23301012]
[169]
Khodabandeh Z, Vojdani Z, Talaei-Khozani T, Jaberipour M, Hosseini A, Bahmanpour S. Comparison of the expression of hepatic genes by human Wharton’s Jelly Mesenchymal stem cells cultured in 2D and 3D Collagen culture systems. Iran J Med Sci 2016; 41(1): 28-36.
[PMID: 26722142]
[170]
Borhani-Haghighi M, Talaei-Khozani T, Ayatollahi M, Vojdani Z. Wharton’s Jelly-derived mesenchymal stem cells can differentiate into hepatocyte-like cells by HepG2 cell line extract. Iran J Med Sci 2015; 40(2): 143-51.
[PMID: 25821294]
[171]
Nekanti U, Mohanty L, Venugopal P, Balasubramanian S, Totey S, Ta M. Optimization and scale-up of Wharton’s jelly-derived mesenchymal stem cells for clinical applications. Stem Cell Res (Amst) 2010; 5(3): 244-54.
[http://dx.doi.org/10.1016/j.scr.2010.08.005] [PMID: 20880767]
[172]
Schugar RC, Chirieleison SM, Wescoe KE, et al. High harvest yield, high expansion, and phenotype stability of CD146 mesenchymal stromal cells from whole primitive human umbilical cord tissue. J Biomed Biotechnol 2009; 2009: 789526.
[http://dx.doi.org/10.1155/2009/789526] [PMID: 20037738]
[173]
Fong C-Y, Richards M, Manasi N, Biswas A, Bongso A. Comparative growth behaviour and characterization of stem cells from human Wharton’s jelly. Reprod Biomed Online 2007; 15(6): 708-18.
[http://dx.doi.org/10.1016/S1472-6483(10)60539-1] [PMID: 18062871]
[174]
Conconi MT, Burra P, Di Liddo R, et al. CD105(+) cells from Wharton’s jelly show in vitro and in vivo myogenic differentiative potential. Int J Mol Med 2006; 18(6): 1089-96.
[http://dx.doi.org/10.3892/ijmm.18.6.1089] [PMID: 17089012]
[175]
Mohseni Kouchesfehani H, Saraee F, Maleki M, Nikougoftar M, Khatami S-M, Sagha M. Evaluation of surface markers and related genes of the human‎ umbilical cord derived Wharton’s jelly mesenchymal stem cells. Mazandaran Univ Med Sci 2014; 24(112): 24-32.
[176]
Salehinejad P, Alitheen NB, Nematollahi-Mahani SN, et al. Effect of culture media on expansion properties of human umbilical cord matrix-derived mesenchymal cells. Cytotherapy 2012; 14(8): 948-53.
[http://dx.doi.org/10.3109/14653249.2012.684377] [PMID: 22587592]
[177]
Shivakumar SB, Bharti D, Subbarao RB, et al. DMSO‐and serum‐free cryopreservation of Wharton’s jelly tissue isolated from human umbilical cord. J Cell Biochem 2016; 117(10): 2397-412.
[http://dx.doi.org/10.1002/jcb.25563] [PMID: 27038129]
[178]
Yu S, Long J, Yu J, et al. Analysis of differentiation potentials and gene expression profiles of mesenchymal stem cells derived from periodontal ligament and Wharton’s jelly of the umbilical cord. Cells Tissues Organs 2013; 197(3): 209-23.
[http://dx.doi.org/10.1159/000343740] [PMID: 23257615]
[179]
La Rocca G, Anzalone R, Farina F. The expression of CD68 in human umbilical cord mesenchymal stem cells: New evidences of presence in non-myeloid cell types. Scand J Immunol 2009; 70(2): 161-2.
[http://dx.doi.org/10.1111/j.1365-3083.2009.02283.x] [PMID: 19630923]
[180]
Sarugaser R, Lickorish D, Baksh D, Hosseini MM, Davies JE. Human umbilical cord perivascular (HUCPV) cells: A source of mesenchymal progenitors. Stem Cells 2005; 23(2): 220-9.
[http://dx.doi.org/10.1634/stemcells.2004-0166] [PMID: 15671145]
[181]
Prasanna SJ, Gopalakrishnan D, Shankar SR, Vasandan AB. Pro-inflammatory cytokines, IFNgamma and TNFalpha, influence immune properties of human bone marrow and Wharton jelly mesenchymal stem cells differentially. PLoS One 2010; 5(2): e9016.
[http://dx.doi.org/10.1371/journal.pone.0009016] [PMID: 20126406]
[182]
Ghaneialvar H, Soltani L, Rahmani HR, Lotfi AS, Soleimani M. Characterization and classification of mesenchymal stem cells in several species using surface markers for cell therapy purposes. Indian J Clin Biochem 2018; 33(1): 46-52.
[http://dx.doi.org/10.1007/s12291-017-0641-x] [PMID: 29371769]
[183]
Brennan MA, Renaud A, Guilloton F, et al. Inferior in vivo osteogenesis and superior angiogenesis of human adipose‐derived stem cells compared with bone marrow‐derived stem cells cultured in xeno‐free conditions. Stem Cells Transl Med 2017; 6(12): 2160-72.
[http://dx.doi.org/10.1002/sctm.17-0133] [PMID: 29052365]
[184]
Im G-I, Shin Y-W, Lee K-B. Do adipose tissue-derived mesenchymal stem cells have the same osteogenic and chondrogenic potential as bone marrow-derived cells? Osteoarthritis Cartilage 2005; 13(10): 845-53.
[http://dx.doi.org/10.1016/j.joca.2005.05.005] [PMID: 16129630]
[185]
Toosi S, Esmaeilzadeh Z, Naderi-Meshkin H, Heirani-Tabasi A, Peivandi MT, Behravan J. Adipocyte lineage differentiation potential of MSCs isolated from reaming material. J Cell Physiol 2019; 234(11): 20066-71.
[http://dx.doi.org/10.1002/jcp.28605] [PMID: 30963575]
[186]
Toosi S, Naderi-Meshkin H, Kalalinia F, et al. Comparative characteristics of mesenchymal stem cells derived from reamer-irrigator-aspirator, iliac crest bone marrow, and adipose tissue. Cell Mol Biol 2016; 62(10): 68-74.
[PMID: 27609477]
[187]
Yuan Y, Kallos MS, Hunter C, Sen A. Improved expansion of human bone marrow-derived mesenchymal stem cells in microcarrier-based suspension culture. J Tissue Eng Regen Med 2014; 8(3): 210-25.
[http://dx.doi.org/10.1002/term.1515] [PMID: 22689330]
[188]
Kim J, Shin JM, Jeon YJ, Chung HM, Chae J-I. Proteomic validation of multifunctional molecules in mesenchymal stem cells derived from human bone marrow, umbilical cord blood and peripheral blood. PLoS One 2012; 7(5): e32350.
[http://dx.doi.org/10.1371/journal.pone.0032350] [PMID: 22615730]
[189]
Mehlhorn AT, Niemeyer P, Kaiser S, et al. Differential expression pattern of extracellular matrix molecules during chondrogenesis of mesenchymal stem cells from bone marrow and adipose tissue. Tissue Eng 2006; 12(10): 2853-62.
[http://dx.doi.org/10.1089/ten.2006.12.2853] [PMID: 17518654]
[190]
Brady K, Dickinson SC, Guillot PV, et al. Human fetal and adult bone marrow-derived mesenchymal stem cells use different signaling pathways for the initiation of chondrogenesis. Stem Cells Dev 2014; 23(5): 541-54.
[http://dx.doi.org/10.1089/scd.2013.0301] [PMID: 24172175]
[191]
Roson-Burgo B, Sanchez-Guijo F, Del Cañizo C, De Las Rivas J. Transcriptomic portrait of human Mesenchymal Stromal/Stem Cells isolated from bone marrow and placenta. BMC Genomics 2014; 15(1): 910.
[http://dx.doi.org/10.1186/1471-2164-15-910] [PMID: 25326687]
[192]
Alaminos M, Pérez-Köhler B, Garzón I, et al. Transdifferentiation potentiality of human Wharton’s jelly stem cells towards vascular endothelial cells. J Cell Physiol 2010; 223(3): 640-7.
[http://dx.doi.org/10.1002/jcp.22062] [PMID: 20143331]
[193]
Chen H, Zhang N, Li T, et al. Human umbilical cord Wharton’s jelly stem cells: Immune property genes assay and effect of transplantation on the immune cells of heart failure patients. Cell Immunol 2012; 276(1-2): 83-90.
[http://dx.doi.org/10.1016/j.cellimm.2012.03.012] [PMID: 22546369]
[194]
Weiss ML, Anderson C, Medicetty S, et al. Immune properties of human umbilical cord Wharton’s jelly-derived cells. Stem Cells 2008; 26(11): 2865-74.
[http://dx.doi.org/10.1634/stemcells.2007-1028] [PMID: 18703664]
[195]
Vass RA, Kemeny A, Dergez T, et al. Distribution of bioactive factors in human milk samples. Int Breastfeed J 2019; 14(1): 9.
[http://dx.doi.org/10.1186/s13006-019-0203-3] [PMID: 30792750]
[196]
Liu M, Yang SG, Shi L, et al. Mesenchymal stem cells from bone marrow show a stronger stimulating effect on megakaryocyte progenitor expansion than those from non-hematopoietic tissues. Platelets 2010; 21(3): 199-210.
[http://dx.doi.org/10.3109/09537101003602483] [PMID: 20187717]
[197]
Maleki M, Ghanbarvand F, Reza Behvarz M, Ejtemaei M, Ghadirkhomi E. Comparison of mesenchymal stem cell markers in multiple human adult stem cells. Int J Stem Cells 2014; 7(2): 118-26.
[http://dx.doi.org/10.15283/ijsc.2014.7.2.118] [PMID: 25473449]
[198]
Puah PY, Moh PY, Lee PC, How SE. Spin-coated graphene oxide as a biomaterial for Wharton’s Jelly derived mesenchymal stem cell growth: A preliminary study. Mater Technol 2018; 33(13): 835-43.
[http://dx.doi.org/10.1080/10667857.2018.1515300]
[199]
Wang JM, Gu Y, Pan CJ, Yin LR. Isolation, culture and identification of human adipose-derived stem cells. Exp Ther Med 2017; 13(3): 1039-43.
[http://dx.doi.org/10.3892/etm.2017.4069] [PMID: 28450938]
[200]
Rada T, Reis RL, Gomes ME. Distinct stem cells subpopulations isolated from human adipose tissue exhibit different chondrogenic and osteogenic differentiation potential. Stem Cell Rev Rep 2011; 7(1): 64-76.
[http://dx.doi.org/10.1007/s12015-010-9147-0] [PMID: 20396979]
[201]
Altman AM, Matthias N, Yan Y, et al. Dermal matrix as a carrier for in vivo delivery of human adipose-derived stem cells. Biomaterials 2008; 29(10): 1431-42.
[http://dx.doi.org/10.1016/j.biomaterials.2007.11.026] [PMID: 18191190]
[202]
Sempere JM, Martinez-Peinado P, Arribas MI, et al. Single cell-derived clones from human adipose stem cells present different immunomodulatory properties. Clin Exp Immunol 2014; 176(2): 255-65.
[http://dx.doi.org/10.1111/cei.12270] [PMID: 24666184]
[203]
Marei HES, El-Gamal A, Althani A, et al. Cholinergic and dopaminergic neuronal differentiation of human adipose tissue derived mesenchymal stem cells. J Cell Physiol 2018; 233(2): 936-45.
[http://dx.doi.org/10.1002/jcp.25937] [PMID: 28369825]
[204]
Vakhshori V, Bougioukli S, Sugiyama O, Tang A, Yoho R, Lieberman JR. Cryopreservation of human adipose-derived stem cells for use in ex vivo regional gene therapy for bone repair. Hum Gene Ther Methods 2018; 29(6): 269-77.
[http://dx.doi.org/10.1089/hgtb.2018.191] [PMID: 30280937]
[205]
Irioda AC, Cassilha R, Zocche L, Francisco JC, Cunha RC, Ferreira PE. Human adipose-derived mesenchymal stem cells cryopreservation and thawing decrease α4-integrin expression. Stem Cells Int 2016; 2016: 2562718.
[206]
Pawitan JA. Prospect of adipose tissue derived mesenchymal stem cells in regenerative medicine. Cell Tissue Transplant Ther 2009; 2: 7.
[http://dx.doi.org/10.4137/CTTT.S3654]
[207]
Ferng AS, Marsh KM, Fleming JM, et al. Adipose-derived human stem/stromal cells: Comparative organ specific mitochondrial bioenergy profiles. Springerplus 2016; 5(1): 2057.
[http://dx.doi.org/10.1186/s40064-016-3712-1] [PMID: 27995034]
[208]
Amati E, Perbellini O, Rotta G, et al. High-throughput immunophenotypic characterization of bone marrow- and cord blood-derived mesenchymal stromal cells reveals common and differentially expressed markers: Identification of angiotensin-converting enzyme (CD143) as a marker differentially expressed between adult and perinatal tissue sources. Stem Cell Res Ther 2018; 9(1): 10.
[http://dx.doi.org/10.1186/s13287-017-0755-3] [PMID: 29338788]
[209]
Bojanic C, To K, Zhang B, Mak C, Khan WS. Human umbilical cord derived mesenchymal stem cells in peripheral nerve regeneration. World J Stem Cells 2020; 12(4): 288-302.
[http://dx.doi.org/10.4252/wjsc.v12.i4.288] [PMID: 32399137]
[210]
Alcayaga-Miranda F, Cuenca J, Luz-Crawford P, et al. Characterization of menstrual stem cells: Angiogenic effect, migration and hematopoietic stem cell support in comparison with bone marrow mesenchymal stem cells. Stem Cell Res Ther 2015; 6(1): 32.
[http://dx.doi.org/10.1186/s13287-015-0013-5] [PMID: 25889741]
[211]
Delorme B, Ringe J, Gallay N, et al. Specific plasma membrane protein phenotype of culture-amplified and native human bone marrow mesenchymal stem cells. Blood 2008; 111(5): 2631-5.
[http://dx.doi.org/10.1182/blood-2007-07-099622] [PMID: 18086871]
[212]
Shlush E, Maghen L, Swanson S, et al. In vitro generation of Sertoli-like and haploid spermatid-like cells from human umbilical cord perivascular cells. Stem Cell Res Ther 2017; 8(1): 37.
[http://dx.doi.org/10.1186/s13287-017-0491-8] [PMID: 28202061]
[213]
Romanov YA, Darevskaya AN, Merzlikina NV, Buravkova LB. Mesenchymal stem cells from human bone marrow and adipose tissue: Isolation, characterization, and differentiation potentialities. Bull Exp Biol Med 2005; 140(1): 138-43.
[http://dx.doi.org/10.1007/s10517-005-0430-z] [PMID: 16254640]
[214]
Bjørge L, Jensen TS, Vedeler CA, Ulvestad E, Kristoffersen EK, Matre R. Soluble CD59 in pregnancy and infancy. Immunol Lett 1993; 36(2): 233.
[http://dx.doi.org/10.1016/0165-2478(93)90058-A] [PMID: 7688713]
[215]
Qiao RY, Bai H, Wang CB, Ou JF, Zhang HY, Zhao Q. [Effects of interferon-γ on expression of adhesion molecules in human umbilical cord mesenchymal stromal cells]. Zhongguo Shi Yan Xue Ye Xue Za Zhi 2012; 20(5): 1195-9.
[PMID: 23114147]
[216]
Buschmann J, Gao S, Härter L, et al. Yield and proliferation rate of adipose-derived stromal cells as a function of age, body mass index and harvest site-increasing the yield by use of adherent and supernatant fractions? Cytotherapy 2013; 15(9): 1098-105.
[http://dx.doi.org/10.1016/j.jcyt.2013.04.009] [PMID: 23800730]
[217]
Risbud MV, Shapiro IM, Guttapalli A, et al. Osteogenic potential of adult human stem cells of the lumbar vertebral body and the iliac crest. Spine 2006; 31(1): 83-9.
[http://dx.doi.org/10.1097/01.brs.0000193891.71672.e4] [PMID: 16395182]
[218]
McIntosh K, Zvonic S, Garrett S, et al. The immunogenicity of human adipose-derived cells: Temporal changes in vitro. Stem Cells 2006; 24(5): 1246-53.
[http://dx.doi.org/10.1634/stemcells.2005-0235] [PMID: 16410391]
[219]
Chazenbalk G, Bertolotto C, Heneidi S, et al. Novel pathway of adipogenesis through cross-talk between adipose tissue macrophages, adipose stem cells and adipocytes: Evidence of cell plasticity. PLoS One 2011; 6(3): e17834.
[http://dx.doi.org/10.1371/journal.pone.0017834] [PMID: 21483855]
[220]
García-Contreras M, Vera-Donoso CD, Hernández-Andreu JM, García-Verdugo JM, Oltra E. Therapeutic potential of human adipose-derived stem cells (ADSCs) from cancer patients: A pilot study. PLoS One 2014; 9(11): e113288.
[http://dx.doi.org/10.1371/journal.pone.0113288] [PMID: 25412325]
[221]
Safwani WKZW, Makpol S, Sathapan S, Chua KH. The impact of long-term in vitro expansion on the senescence-associated markers of human adipose-derived stem cells. Appl Biochem Biotechnol 2012; 166(8): 2101-13.
[http://dx.doi.org/10.1007/s12010-012-9637-4] [PMID: 22391697]
[222]
Sathishkumar S, Mohanashankar P, Boopalan P. Cell surface protein expression of stem cells from human adipose tissue at early passage with reference to mesenchymal stem cell phenotype. Int J Med Med Sci 2011; 3(5): 129-34.
[223]
Kim M, Lee S-H, Kim Y, et al. Human adipose tissue-derived mesenchymal stem cells attenuate atopic dermatitis by regulating the expression of MIP-2, miR-122a-SOCS1 axis, and Th1/Th2 responses. Front Pharmacol 2018; 9: 1175.
[http://dx.doi.org/10.3389/fphar.2018.01175] [PMID: 30459600]
[224]
Peng W, Gao T, Yang ZL, et al. Adipose-derived stem cells induced dendritic cells undergo tolerance and inhibit Th1 polarization. Cell Immunol 2012; 278(1-2): 152-7.
[http://dx.doi.org/10.1016/j.cellimm.2012.07.008] [PMID: 22982671]
[225]
Ivanova-Todorova E, Bochev I, Mourdjeva M, et al. Adipose tissue-derived mesenchymal stem cells are more potent suppressors of dendritic cells differentiation compared to bone marrow-derived mesenchymal stem cells. Immunol Lett 2009; 126(1-2): 37-42.
[http://dx.doi.org/10.1016/j.imlet.2009.07.010] [PMID: 19647021]
[226]
Olimpio RMC, de Oliveira M, De Sibio MT, et al. Cell viability assessed in a reproducible model of human osteoblasts derived from human adipose-derived stem cells. PLoS One 2018; 13(4): e0194847.
[http://dx.doi.org/10.1371/journal.pone.0194847] [PMID: 29641603]
[227]
Blazquez-Martinez A, Chiesa M, Arnalich F, Fernandez-Delgado J, Nistal M, De Miguel MP. c-Kit identifies a subpopulation of mesenchymal stem cells in adipose tissue with higher telomerase expression and differentiation potential. Differentiation 2014; 87(3-4): 147-60.
[http://dx.doi.org/10.1016/j.diff.2014.02.007] [PMID: 24713343]
[228]
Mitchell KE, Weiss ML, Mitchell BM, et al. Matrix cells from Wharton’s jelly form neurons and glia. Stem Cells 2003; 21(1): 50-60.
[http://dx.doi.org/10.1634/stemcells.21-1-50] [PMID: 12529551]
[229]
Fong C-Y, Subramanian A, Biswas A, et al. Derivation efficiency, cell proliferation, freeze-thaw survival, stem-cell properties and differentiation of human Wharton’s jelly stem cells. Reprod Biomed Online 2010; 21(3): 391-401.
[http://dx.doi.org/10.1016/j.rbmo.2010.04.010] [PMID: 20638335]
[230]
Suehiro F, Ishii M, Asahina I, Murata H, Nishimura M. Low-serum culture with novel medium promotes maxillary/mandibular bone marrow stromal cell proliferation and osteogenic differentiation ability. Clin Oral Investig 2017; 21(9): 2709-19.
[http://dx.doi.org/10.1007/s00784-017-2073-7] [PMID: 28205023]
[231]
Hagmann S, Moradi B, Frank S, et al. Different culture media affect growth characteristics, surface marker distribution and chondrogenic differentiation of human bone marrow-derived mesenchymal stromal cells. BMC Musculoskelet Disord 2013; 14(1): 223.
[http://dx.doi.org/10.1186/1471-2474-14-223] [PMID: 23898974]
[232]
Zhang F, Sheng W, Wang X-l, Li Z-l. Symbol Effects of glucose on growth and metabolism of human umbilical cord mesenchymal stem cells. Zhongguo Zu Zhi Gong Cheng Yan Jiu Yu Lin Chuang Kang Fu 2009; 13(1): 21-6.
[233]
Yoo JJ, Nam KW, Koo KH, Yoon KS, Kim HJ. Expression patterns of cell surface molecules on human bone marrow stromal cells from multi-donors. Key Eng Mater 2008; 361(1): 1153-6.
[234]
Cui Y, Huang R, Wang Y, Zhu L, Zhang X. Down-regulation of LGR6 promotes bone fracture recovery using bone marrow stromal cells. Biomed Pharmacother 2018; 99: 629-37.
[http://dx.doi.org/10.1016/j.biopha.2017.12.109] [PMID: 29625528]
[235]
Wang B, Li P, Shangguan L, et al. A novel bacterial cellulose membrane immobilized with human umbilical cord mesenchymal stem cells-derived exosome prevents epidural fibrosis. Int J Nanomedicine 2018; 13(1): 5257-73.
[http://dx.doi.org/10.2147/IJN.S167880] [PMID: 30237713]
[236]
Sousa BR, Parreira RC, Fonseca EA, et al. Human adult stem cells from diverse origins: An overview from multiparametric immunophenotyping to clinical applications. Cytometry A 2014; 85(1): 43-77.
[http://dx.doi.org/10.1002/cyto.a.22402] [PMID: 24700575]
[237]
Barillé S, Collette M, Thabard W, Bleunven C, Bataille R, Amiot M. Soluble IL-6R α upregulated IL-6, MMP-1 and MMP-2 secretion in bone marrow stromal cells. Cytokine 2000; 12(9): 1426-9.
[http://dx.doi.org/10.1006/cyto.2000.0734] [PMID: 10976008]
[238]
Petrenko Y, Vackova I, Kekulova K, et al. A Comparative analysis of multipotent mesenchymal stromal cells derived from different sources, with a focus on neuroregenerative potential. Sci Rep 2020; 10(1): 4290.
[http://dx.doi.org/10.1038/s41598-020-61167-z] [PMID: 32152403]
[239]
Trivanović D, Nikolić S, Krstić J, et al. Characteristics of human adipose mesenchymal stem cells isolated from healthy and cancer affected people and their interactions with human breast cancer cell line MCF-7 in vitro. Cell Biol Int 2014; 38(2): 254-65.
[http://dx.doi.org/10.1002/cbin.10198] [PMID: 24155046]
[240]
Talaei-Khozani T, Aleahmad F, Bazrafshan A, Aliabadi E, Vojdani Z. Lectin profile variation in mesenchymal stem cells derived from different sources. Cells Tissues Organs 2019; 208(3-4): 101-12.
[http://dx.doi.org/10.1159/000505238] [PMID: 32464631]
[241]
Zarifi F, Rafiee S, Borhan-Haghighi M, Talaei-Khozani T, Aliabadi E. Lectin histochemistry showed a heterogeneous population of cells among human mesenchymal stem cells isolated from adipose tissue. J Advance Med Sci Applied Technologies 2017; 3(2): 77-84.
[http://dx.doi.org/10.18869/nrip.jamsat.3.2.77]
[242]
Twigger AJ, Hodgetts S, Filgueira L, Hartmann PE, Hassiotou F. From breast milk to brains: The potential of stem cells in human milk. J Hum Lact 2013; 29(2): 136-9.
[http://dx.doi.org/10.1177/0890334413475528] [PMID: 23515086]
[243]
Walker TL, Kempermann G. One mouse, two cultures: Isolation and culture of adult neural stem cells from the two neurogenic zones of individual mice. J Vis Exp 2014; (84): e51225.
[http://dx.doi.org/10.3791/51225] [PMID: 24637893]
[244]
Hatori M, Shimozawa N, Yasmin L, et al. Role of retinoic acid and fibroblast growth factor 2 in neural differentiation from cynomolgus monkey (Macaca fascicularis) embryonic stem cells. Comp Med 2014; 64(2): 140-7.
[PMID: 24674590]
[245]
Mong J, Panman L, Alekseenko Z, et al. Transcription factor-induced lineage programming of noradrenaline and motor neurons from embryonic stem cells. Stem Cells 2014; 32(3): 609-22.
[http://dx.doi.org/10.1002/stem.1585] [PMID: 24549637]
[246]
Esmailpour T, Huang T. TBX3 promotes human embryonic stem cell proliferation and neuroepithelial differentiation in a differentiation stage-dependent manner. Stem Cells 2012; 30(10): 2152-63.
[http://dx.doi.org/10.1002/stem.1187] [PMID: 22865636]
[247]
Bunnell BA, Estes BT, Guilak F, Gimble JM. Differentiation of adipose stem cells. In: Yang K, Ed. Adipose Tissue Protocols. Germany: Springer 2008; pp. 155-71.
[http://dx.doi.org/10.1007/978-1-59745-245-8_12]
[248]
Choudhery MS, Badowski M, Muise A, Harris DT. Comparison of human mesenchymal stem cells derived from adipose and cord tissue. Cytotherapy 2013; 15(3): 330-43.
[http://dx.doi.org/10.1016/j.jcyt.2012.11.010] [PMID: 23318344]
[249]
Yang XY, Wang W, Li X. In vitro hepatic differentiation of human endometrial stromal stem cells. In Vitro Cell Dev Biol Anim 2014; 50(2): 162-70.
[http://dx.doi.org/10.1007/s11626-013-9688-z] [PMID: 24052474]
[250]
Asmani MN, Ai J, Amoabediny G, et al. Three-dimensional culture of differentiated endometrial stromal cells to oligodendrocyte progenitor cells (OPCs) in fibrin hydrogel. Cell Biol Int 2013; 37(12): 1340-9.
[http://dx.doi.org/10.1002/cbin.10171] [PMID: 24038753]
[251]
Ai J, Javidan AN, Mehrabani D. The possibility of differentiation of human endometrial stem cells into neural cells. IRCMJ 2010; 12(3): 328-31.
[252]
Qi Y, Zhang F, Song G, et al. Cholinergic neuronal differentiation of bone marrow mesenchymal stem cells in rhesus monkeys. Sci China Life Sci 2010; 53(5): 573-80.
[http://dx.doi.org/10.1007/s11427-010-0009-4] [PMID: 20596940]
[253]
Long X, Olszewski M, Huang W, Kletzel M. Neural cell differentiation in vitro from adult human bone marrow mesenchymal stem cells. Stem Cells Dev 2005; 14(1): 65-9.
[http://dx.doi.org/10.1089/scd.2005.14.65] [PMID: 15725745]
[254]
Zaim M, Karaman S, Cetin G, Isik S. Donor age and long-term culture affect differentiation and proliferation of human bone marrow mesenchymal stem cells. Ann Hematol 2012; 91(8): 1175-86.
[http://dx.doi.org/10.1007/s00277-012-1438-x] [PMID: 22395436]
[255]
Kil K, Choi MY, Park KH. In vitro differentiation of human Wharton’s jelly-derived mesenchymal stem cells into auditory hair cells and neurons. J Int Adv Otol 2016; 12(1): 37-42.
[http://dx.doi.org/10.5152/iao.2016.1190] [PMID: 27340981]
[256]
Peng J, Wang Y, Zhang L, et al. Human umbilical cord Wharton’s jelly-derived mesenchymal stem cells differentiate into a Schwann-cell phenotype and promote neurite outgrowth in vitro. Brain Res Bull 2011; 84(3): 235-43.
[http://dx.doi.org/10.1016/j.brainresbull.2010.12.013] [PMID: 21194558]
[257]
Messerli M, Wagner A, Sager R, et al. Stem cells from umbilical cord Wharton’s jelly from preterm birth have neuroglial differentiation potential. Reprod Sci 2013; 20(12): 1455-64.
[http://dx.doi.org/10.1177/1933719113488443] [PMID: 23670950]
[258]
Bagher Z, Azami M, Ebrahimi-Barough S, et al. Differentiation of Wharton’s jelly-derived mesenchymal stem cells into motor neuron-like cells on three-dimensional collagen-grafted nanofibers. Mol Neurobiol 2016; 53(4): 2397-408.
[http://dx.doi.org/10.1007/s12035-015-9199-x] [PMID: 26001761]
[259]
Zhang L, Wang LM, Chen WW, et al. Neural differentiation of human Wharton’s jelly-derived mesenchymal stem cells improves the recovery of neurological function after transplantation in ischemic stroke rats. Neural Regen Res 2017; 12(7): 1103-10.
[http://dx.doi.org/10.4103/1673-5374.211189] [PMID: 28852392]
[260]
Lian J, Lv S, Liu C, et al. Effects of serial passage on the characteristics and cardiac and neural differentiation of human umbilical cord Wharton’s jelly-derived mesenchymal stem cells. Stem Cells Int 2016; 2016: 9291013.
[http://dx.doi.org/10.1155/2016/9291013]
[261]
Hosseini SM, Vasaghi A, Nakhlparvar N, Roshanravan R, Talaei-Khozani T, Razi Z. Differentiation of Wharton’s jelly mesenchymal stem cells into neurons in alginate scaffold. Neural Regen Res 2015; 10(8): 1312-6.
[http://dx.doi.org/10.4103/1673-5374.162768] [PMID: 26487861]
[262]
Bagher Z, Ebrahimi-Barough S, Azami M, et al. Induction of human umbilical Wharton’s jelly-derived mesenchymal stem cells toward motor neuron-like cells. In Vitro Cell Dev Biol Anim 2015; 51(9): 987-94.
[http://dx.doi.org/10.1007/s11626-015-9921-z] [PMID: 26148883]
[263]
Zhang L, Zhang H-T, Hong S-Q, Ma X, Jiang X-D, Xu R-X. Cografted Wharton’s jelly cells-derived neurospheres and BDNF promote functional recovery after rat spinal cord transection. Neurochem Res 2009; 34(11): 2030-9.
[http://dx.doi.org/10.1007/s11064-009-9992-x] [PMID: 19462232]
[264]
Wang L, Tran I, Seshareddy K, Weiss ML, Detamore MS. A comparison of human bone marrow-derived mesenchymal stem cells and human umbilical cord-derived mesenchymal stromal cells for cartilage tissue engineering. Tissue Eng Part A 2009; 15(8): 2259-66.
[http://dx.doi.org/10.1089/ten.tea.2008.0393] [PMID: 19260778]
[265]
Richardson SM, Curran JM, Chen R, et al. The differentiation of bone marrow mesenchymal stem cells into chondrocyte-like cells on poly-L-lactic acid (PLLA) scaffolds. Biomaterials 2006; 27(22): 4069-78.
[http://dx.doi.org/10.1016/j.biomaterials.2006.03.017] [PMID: 16569429]
[266]
Zhang H-T, Fan J, Cai Y-Q, et al. Human Wharton’s jelly cells can be induced to differentiate into growth factor-secreting oligodendrocyte progenitor-like cells. Differentiation 2010; 79(1): 15-20.
[http://dx.doi.org/10.1016/j.diff.2009.09.002] [PMID: 19800163]
[267]
Wu C, Chen L, Huang Y-Z, et al. Comparison of the proliferation and differentiation potential of human urine-, placenta decidua basalis-, and bone marrow-derived stem cells. Stem Cells Int 2018; 2018: 7131532.
[http://dx.doi.org/10.1155/2018/7131532] [PMID: 30651734]
[268]
Li CY, Wu XY, Tong JB, et al. Comparative analysis of human mesenchymal stem cells from bone marrow and adipose tissue under xeno-free conditions for cell therapy. Stem Cell Res Ther 2015; 6(1): 55.
[http://dx.doi.org/10.1186/s13287-015-0066-5] [PMID: 25884704]
[269]
Beiki B, Zeynali B, Taghiabadi E, Seyedjafari E, Kehtari M. Osteogenic differentiation of Wharton’s jelly-derived mesenchymal stem cells cultured on WJ-scaffold through conventional signalling mechanism. Artif Cells Nanomed Biotechnol 2018; 46(sup3): S1032-42.
[270]
Corotchi MC, Popa MA, Remes A, Sima LE, Gussi I, Lupu Plesu M. Isolation method and xeno-free culture conditions influence multipotent differentiation capacity of human Wharton’s jelly-derived mesenchymal stem cells. Stem Cell Res Ther 2013; 4(4): 81.
[http://dx.doi.org/10.1186/scrt232] [PMID: 23845279]
[271]
Lo Iacono M, Anzalone R, Corrao S, et al. Perinatal and Wharton’s jelly-derived mesenchymal stem cells in cartilage regenerative medicine and tissue engineering strategies. Open Tissue Eng Regen Med J 2011; 4(1): 72-81.
[http://dx.doi.org/10.2174/1875043501104010072]
[272]
Sadlik B, Jaroslawski G, Puszkarz M, et al. Cartilage repair in the knee using umbilical cord wharton’s jelly-derived mesenchymal stem cells embedded onto collagen scaffolding and implanted under dry arthroscopy. Arthrosc Tech 2017; 7(1): e57-63.
[http://dx.doi.org/10.1016/j.eats.2017.08.055] [PMID: 29552470]
[273]
Zajdel A, Kałucka M, Kokoszka-Mikołaj E, Wilczok A. Osteogenic differentiation of human mesenchymal stem cells from adipose tissue and Wharton’s jelly of the umbilical cord. Acta Biochim Pol 2017; 64(2): 365-9.
[http://dx.doi.org/10.18388/abp.2016_1488] [PMID: 28600911]
[274]
Ansari AS, Yazid MD, Sainik NQAV, Razali RA, Saim AB, Idrus RBH. Osteogenic induction of Wharton’s jelly-derived mesenchymal stem cell for bone regeneration: A systematic review. Stem Cells Int 2018; 2018: 2406462.
[http://dx.doi.org/10.1155/2018/2406462] [PMID: 30534156]
[275]
Huang P, Lin LM, Wu XY, et al. Differentiation of human umbilical cord Wharton’s jelly-derived mesenchymal stem cells into germ-like cells in vitro. J Cell Biochem 2010; 109(4): 747-54.
[PMID: 20052672]
[276]
Pu L, Meng M, Wu J, et al. Compared to the amniotic membrane, Wharton’s jelly may be a more suitable source of mesenchymal stem cells for cardiovascular tissue engineering and clinical regeneration. Stem Cell Res Ther 2017; 8(1): 72.
[http://dx.doi.org/10.1186/s13287-017-0501-x] [PMID: 28320452]
[277]
Nimsanor N, Phetfong J, Plabplueng C, Jangpatarapongsa K, Prachayasittikul V, Supokawej A. Inhibitory effect of oxidative damage on cardiomyocyte differentiation from Wharton’s jelly-derived mesenchymal stem cells. Exp Ther Med 2017; 14(6): 5329-38.
[http://dx.doi.org/10.3892/etm.2017.5249] [PMID: 29285060]
[278]
Xie L, Lin L, Tang Q, et al. Sertoli cell-mediated differentiation of male germ cell-like cells from human umbilical cord Wharton’s jelly-derived mesenchymal stem cells in an in vitro co-culture system. Eur J Med Res 2015; 20(1): 9.
[http://dx.doi.org/10.1186/s40001-014-0080-6] [PMID: 25644284]
[279]
Shi Q, Gao J, Jiang Y, et al. Differentiation of human umbilical cord Wharton’s jelly-derived mesenchymal stem cells into endometrial cells. Stem Cell Res Ther 2017; 8(1): 246.
[http://dx.doi.org/10.1186/s13287-017-0700-5] [PMID: 29096715]
[280]
Krampera M, Pasini A, Rigo A, et al. HB-EGF/HER-1 signaling in bone marrow mesenchymal stem cells: Inducing cell expansion and reversibly preventing multilineage differentiation. Blood 2005; 106(1): 59-66.
[http://dx.doi.org/10.1182/blood-2004-09-3645] [PMID: 15755902]
[281]
Xu W, Zhang X, Qian H, et al. Mesenchymal stem cells from adult human bone marrow differentiate into a cardiomyocyte phenotype in vitro. Exp Biol Med (Maywood) 2004; 229(7): 623-31.
[http://dx.doi.org/10.1177/153537020422900706] [PMID: 15229356]
[282]
Li X, Yu X, Lin Q, et al. Bone marrow mesenchymal stem cells differentiate into functional cardiac phenotypes by cardiac microenvironment. J Mol Cell Cardiol 2007; 42(2): 295-303.
[http://dx.doi.org/10.1016/j.yjmcc.2006.07.002] [PMID: 16919679]
[283]
Antonitsis P, Ioannidou-Papagiannaki E, Kaidoglou A, Papakonstantinou C. In vitro cardiomyogenic differentiation of adult human bone marrow mesenchymal stem cells. The role of 5-azacytidine. Interact Cardiovasc Thorac Surg 2007; 6(5): 593-7.
[http://dx.doi.org/10.1510/icvts.2007.157875] [PMID: 17670726]
[284]
Yin L, Zhu Y, Yang J, et al. Adipose tissue-derived mesenchymal stem cells differentiated into hepatocyte-like cells in vivo and in vitro. Mol Med Rep 2015; 11(3): 1722-32.
[http://dx.doi.org/10.3892/mmr.2014.2935] [PMID: 25395242]
[285]
Iwen KA, Priewe AC, Winnefeld M, et al. Gluteal and abdominal subcutaneous adipose tissue depots as stroma cell source: Gluteal cells display increased adipogenic and osteogenic differentiation potentials. Exp Dermatol 2014; 23(6): 395-400.
[http://dx.doi.org/10.1111/exd.12406] [PMID: 24689514]
[286]
Francis SL, Duchi S, Onofrillo C, Di Bella C, Choong PFM. Adipose-derived mesenchymal stem cells in the use of cartilage tissue engineering: The need for a rapid isolation procedure. Stem Cells Int 2018; 2018: 8947548.
[http://dx.doi.org/10.1155/2018/8947548] [PMID: 29765427]
[287]
Bräunig P, Glanzner W, Rissi V, Gonçalves P. The differentiation potential of adipose tissue-derived mesenchymal stem cells into cell lineage related to male germ cells. Arq Bras Med Vet Zootec 2018; 70(1): 160-8.
[http://dx.doi.org/10.1590/1678-4162-9132]
[288]
Ai J, Mehrabani D. The potential of human endometrial stem cells for osteoblast differentiation. IRCMJ 2010; 12(5): 585-7.
[289]
Tabatabaei FS, Dastjerdi MV, Jazayeri M, Haghighipour N, Dastjerdie EV, Bordbar M. Comparison of osteogenic medium and uniaxial strain on differentiation of endometrial stem cells. Dent Res J (Isfahan) 2013; 10(2): 190-6.
[http://dx.doi.org/10.4103/1735-3327.113341] [PMID: 23946735]
[290]
Hosseinkhani M, Mehrabani D, Karimfar MH, Bakhtiyari S, Manafi A, Shirazi R. Tissue engineered scaffolds in regenerative medicine. World J Plast Surg 2014; 3(1): 3-7.
[PMID: 25489516]
[291]
Choi YS, Dusting GJ, Stubbs S, et al. Differentiation of human adipose-derived stem cells into beating cardiomyocytes. J Cell Mol Med 2010; 14(4): 878-89.
[http://dx.doi.org/10.1111/j.1582-4934.2010.01009.x] [PMID: 20070436]
[292]
Ai J, Mehrabani D. Are Endometrial stem cells novel tools against ischemic heart failure in women? A hypothesis. IRCMJ 2010; 12(1): 73-5.
[293]
Anzalone R, Lo Iacono M, Loria T, et al. Wharton’s jelly mesenchymal stem cells as candidates for beta cells regeneration: Extending the differentiative and immunomodulatory benefits of adult mesenchymal stem cells for the treatment of type 1 diabetes. Stem Cell Rev Rep 2011; 7(2): 342-63.
[http://dx.doi.org/10.1007/s12015-010-9196-4] [PMID: 20972649]
[294]
Xie Q-P, Huang H, Xu B, et al. Human bone marrow mesenchymal stem cells differentiate into insulin-producing cells upon microenvironmental manipulation in vitro. Differentiation 2009; 77(5): 483-91.
[http://dx.doi.org/10.1016/j.diff.2009.01.001] [PMID: 19505629]
[295]
Manaph NPA, Sivanathan KN, Nitschke J, Zhou X-F, Coates PT, Drogemuller CJ. An overview on small molecule-induced differentiation of mesenchymal stem cells into beta cells for diabetic therapy. Stem Cell Res Ther 2019; 10(1): 293.
[http://dx.doi.org/10.1186/s13287-019-1396-5] [PMID: 31547868]
[296]
Taléns-Visconti R, Bonora A, Jover R, et al. Hepatogenic differentiation of human mesenchymal stem cells from adipose tissue in comparison with bone marrow mesenchymal stem cells. World J Gastroenterol 2006; 12(36): 5834-45.
[http://dx.doi.org/10.3748/wjg.v12.i36.5834] [PMID: 17007050]
[297]
Timper K, Seboek D, Eberhardt M, et al. Human adipose tissue-derived mesenchymal stem cells differentiate into insulin, somatostatin, and glucagon expressing cells. Biochem Biophys Res Commun 2006; 341(4): 1135-40.
[http://dx.doi.org/10.1016/j.bbrc.2006.01.072] [PMID: 16460677]
[298]
Khademi F, Soleimani M, Verdi J, et al. Human endometrial stem cells differentiation into functional hepatocyte-like cells. Cell Biol Int 2014; 38(7): 825-34.
[http://dx.doi.org/10.1002/cbin.10278] [PMID: 24687540]
[299]
Afshari A, Shamdani S, Uzan G, Naserian S, Azarpira N. Different approaches for transformation of mesenchymal stem cells into hepatocyte-like cells. Stem Cell Res Ther 2020; 11(1): 54.
[http://dx.doi.org/10.1186/s13287-020-1555-8] [PMID: 32033595]
[300]
Ranjbaran H, Abediankenari S, Khalilian A, Rahmani Z, Momeninezhad Amiri M, Hosseini Khah Z. Differentiation of Wharton’s jelly derived mesenchymal stem cells into insulin producing cells. Int J Hematol Oncol Stem Cell Res 2018; 12(3): 220-9.
[PMID: 30595825]
[301]
Varaa N, Azandeh S, Khodabandeh Z, Gharravi AM. Wharton’s jelly mesenchymal stem cell: Various protocols for isolation and differentiation of hepatocyte-like cells; narrative review. Iran J Med Sci 2019; 44(6): 437-48.
[PMID: 31875078]
[302]
Mortezaee K, Minaii B, Sabbaghziarani F, et al. Retinoic acid as the stimulating factor for differentiation of Wharton’s jelly-mesenchymal stem cells into hepatocyte-like cells. Avicenna J Med Biotechnol 2015; 7(3): 106-12.
[PMID: 26306150]
[303]
Talaei-Khozani T, Borhani-Haghighi M, Ayatollahi M, Vojdani Z. An in vitro model for hepatocyte-like cell differentiation from Wharton’s jelly derived-mesenchymal stem cells by cell-base aggregates. Gastroenterol Hepatol Bed Bench 2015; 8(3): 188-99.
[PMID: 26328041]
[304]
Vojdani Z, Khodabandeh Z, Jaberipour M, Hosseini A, Bahmanpour S, Talaei-Khozani T. The influence of fibroblast growth factor 4 on hepatogenic capacity of Wharton’s jelly mesenchymal stromal cells. Rom J Morphol Embryol 2015; 56(3): 1043-50.
[PMID: 26662137]
[305]
Panta W, Imsoonthornruksa S, Yoisungnern T, Suksaweang S, Ketudat-Cairns M, Parnpai R. Enhanced hepatogenic differentiation of human Wharton’s jelly-derived mesenchymal stem cells by using three-step protocol. Int J Mol Sci 2019; 20(12): 3016.
[http://dx.doi.org/10.3390/ijms20123016] [PMID: 31226809]
[306]
Khodabandeh Z, Vojdani Z, Talaei-Khozani T, Bahmanpour S. Hepatogenic differentiation capacity of human Wharton’s jelly mesenchymal stem cell in a co-culturing system with endothelial cells in matrigel/collagen scaffold in the presence of fetal liver extract. Int J Stem Cells 2017; 10(2): 218-26.
[http://dx.doi.org/10.15283/ijsc17003] [PMID: 29084421]
[307]
Aleahmad F, Ebrahimi S, Salmannezhad M, et al. Heparin/collagen 3D scaffold accelerates hepatocyte differentiation of Wharton’s jelly-derived mesenchymal stem cells. Tissue Eng Regen Med 2017; 14(4): 443-52.
[http://dx.doi.org/10.1007/s13770-017-0048-z] [PMID: 30603500]
[308]
Borhani-Haghighi M, Navid S, Mohamadi Y. The therapeutic potential of conditioned medium from human breast milk stem cells in treating spinal cord injury. Asian Spine J 2020; 14(2): 131-8.
[http://dx.doi.org/10.31616/asj.2019.0026] [PMID: 31711062]
[309]
Intranasal human milk for intraventricular hemorrhage 2020. ClinicalTrials.gov identifier: US national library of medicine, Feb 2000, NCT04225286. Available from: https://clinicaltrials.gov/ct2/show/NCT04225286.
[310]
A pilot study using stem cell rich breast milk to treat early necrotizing enterocolitis 2007. Chinese Clinical Trial Register [Internet]. Chengdu (Sichuan): Ministry of Health (China). 2007 Jun 27 -.Identifier ChiCTR2100042354 Available from: chictr.org.cn/showprojen.aspx?proj=46156.
[311]
Bazafshan A, Talaei-Khozani T. Food engineering as a potential solution for mitigating of the detrimental effects of livestock production. J Environ Treat Tech 2019; 7(2): 201-10.

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy