Generic placeholder image

Current Neuropharmacology

Editor-in-Chief

ISSN (Print): 1570-159X
ISSN (Online): 1875-6190

General Review Article

Dapsone, More than an Effective Neuro and Cytoprotective Drug

Author(s): Araceli Diaz-Ruiz, Juan Nader-Kawachi, Francisco Calderón-Estrella, Alfonso Mata- Bermudez, Laura Alvarez-Mejia and Camilo Ríos*

Volume 20, Issue 1, 2022

Page: [194 - 210] Pages: 17

DOI: 10.2174/1570159X19666210617143108

Price: $65

Abstract

Background:Dapsone (4,4'-diamino-diphenyl sulfone) is a synthetic derivative of sulfones, with the antimicrobial activity described since 1937. It is also a drug traditionally used in dermatological therapies due to its anti-inflammatory effect. In recent years its antioxidant, antiexcitotoxic, and antiapoptotic effects have been described in different ischemic damage models, traumatic damage, and models of neurodegenerative diseases, such as Parkinson's (PD) and Alzheimer's diseases (AD). Finally, dapsone has proven to be a safe and effective drug as a protector against heart, renal and pulmonary cells damage; that is why it is now employed in clinical trials with patients as a neuroprotective therapy by regulating the main mechanisms of damage that lead to cell death

ObjectiveThe objective of this study is to provide a descriptive review of the evidence demonstrating the safety and therapeutic benefit of dapsone treatment, evaluated in animal studies and various human clinical trials

Methods: We conducted a review of PubMed databases looking for scientific research in animals and humans, oriented to demonstrate the effect of dapsone on regulating and reducing the main mechanisms of damage that lead to cell death

ConclusionThe evidence presented in this review shows that dapsone is a safe and effective neuro and cytoprotective treatment that should be considered for translational therapy.

Keywords: Dapsone, neuroprotection, cytoprotection, anti-inflammatory, antioxidant, antiexcitotoxic, antiapoptotic.

Graphical Abstract
[1]
Leker, R.R.; Shohami, E. Cerebral ischemia and trauma-different etiologies yet similar mechanisms: Neuroprotective opportunities. Brain Res. Brain Res. Rev., 2002, 39(1), 55-73.
[http://dx.doi.org/10.1016/S0165-0173(02)00157-1] [PMID: 12086708]
[2]
Kunz, A.; Dirnagl, U.; Mergenthaler, P. Acute pathophysiological processes after ischaemic and traumatic brain injury. Best Pract. Res. Clin. Anaesthesiol., 2010, 24(4), 495-509.
[http://dx.doi.org/10.1016/j.bpa.2010.10.001] [PMID: 21619862]
[3]
Mendel, N.P.; Boris, D.M. Neuroprotection: The way of anti-inflammatory agents. Neuroprotection - new approaches and prospects; Intech Open, 2020.
[4]
Molinelli, E.; Paolinelli, M.; Campanati, A.; Brisigotti, V.; Offidani, A. Metabolic, pharmacokinetic, and toxicological issues surrounding dapsone. Expert Opin. Drug Metab. Toxicol., 2019, 15(5), 367-379.
[http://dx.doi.org/10.1080/17425255.2019.1600670] [PMID: 30943794]
[5]
Wozel, G.; Blasum, C. Dapsone in dermatology and beyond. Arch. Dermatol. Res., 2014, 306(2), 103-124.
[http://dx.doi.org/10.1007/s00403-013-1409-7] [PMID: 24310318]
[6]
Zhu, Y.I.; Stiller, M.J. Dapsone and sulfones in dermatology: Overview and update. J. Am. Acad. Dermatol., 2001, 45(3), 420-434.
[http://dx.doi.org/10.1067/mjd.2001.114733] [PMID: 11511841]
[7]
Farouk, A.; Salman, S. Dapsone and doxycycline could be potential treatment modalities for covid-19. Med. Hypotheses, 2020, 140109768
[8]
Altschuler, E.L.; Kast, R.E. Covid-19 associated adult respiratory distress syndrome (ards). Med. Hypotheses, 2020, 141109774
[9]
Lee, J.H.; An, H.K.; Sohn, M.G.; Kivela, P.; Oh, S. 4,4′-Diaminodiphenyl Sulfone (DDS) as an inflammasome competitor. Int. J. Mol. Sci., 2020, 21(17), 1-23.
[http://dx.doi.org/10.3390/ijms21175953] [PMID: 32824985]
[10]
Schön, M.P.; Berking, C.; Biedermann, T.; Buhl, T.; Erpenbeck, L.; Eyerich, K.; Eyerich, S.; Ghoreschi, K.; Goebeler, M.; Ludwig, R.J.; Schäkel, K.; Schilling, B.; Schlapbach, C.; Stary, G.; von Stebut, E.; Steinbrink, K. Covid-19 and immunological regulations – from basic and translational aspects to clinical implications. German Soc. Dermatol., 2020, 18(8), 795-807.
[11]
Wozel, G. The story of sulfones in tropical medicine and dermatology. Int. J. Dermatol., 1989, 28(1), 17-21.
[http://dx.doi.org/10.1111/j.1365-4362.1989.tb01301.x] [PMID: 2645226]
[12]
Wolf, R.; Matz, H.; Orion, E.; Tuzun, B.; Tuzun, Y. Dapsone. Dermatol. Online J., 2002, 8(1), 3-47.
[http://dx.doi.org/10.2165/00128415-201214270-00052]
[13]
Faget, Q.; Rogge, R.; Johansen, F.; Dinan, J. P. B. y E. C. The promin treatment of leprosy. Public Health Rep., 1943, 34(3), 298-310.
[14]
Shepard, C.C. Leprosy today. N. Engl. J. Med., 1982, 307(26), 1640-1641.
[http://dx.doi.org/10.1056/NEJM198212233072608] [PMID: 7144851]
[15]
Chaves, L.L.; Patriota, Y.; Soares-Sobrinho, J.L.; Vieira, A.C.C.; Costa Lima, S.A.; Reis, S. Drug delivery systems on leprosy therapy: Moving towards eradication? Pharmaceutics, 2020, 12(12), 1202.
[16]
Ghaoui, N.; Hanna, E.; Abbas, O.; Kibbi, A.G.; Kurban, M. Update on the use of dapsone in dermatology. Int. J. Dermatol., 2020, 59(7), 7787-7795.
[17]
Ahmad, R.A.; Rogers, H.J. Pharmacokinetics and protein binding interactions of dapsone and pyrimethamine. Br. J. Clin. Pharmacol., 1980, 10(5), 519-524.
[http://dx.doi.org/10.1111/j.1365-2125.1980.tb01798.x] [PMID: 7437265]
[18]
Pieters, F.A.; Zuidema, J. The pharmacokinetics of dapsone after oral administration to healthy volunteers. Br. J. Clin. Pharmacol., 1986, 22(4), 491-494.
[http://dx.doi.org/10.1111/j.1365-2125.1986.tb02924.x] [PMID: 3768260]
[19]
Zuidema, J.; Hilbers-Modderman, E.S.M.; Merkus, F.W.H.M. Clinical pharmacokinetics of dapsone. Clin. Pharmacokinet., 1986, 11(4), 299-315.
[http://dx.doi.org/10.2165/00003088-198611040-00003] [PMID: 3530584]
[20]
Glazko, A.J.; Chang, T.; Baukema, J.; Chang, S.F. S. A. y D. W. A. Central role of madds in the metabolism of DDS. Int. J. Lepr., 1969, 462-463.
[21]
Karim, A.K.M.B.; Elfellah, M.S.; Evans, D.A.P. Human acetylator polymorphism: Estimate of allele frequency in Libya and details of global distribution. J. Med. Genet., 1981, 18(5), 325-330.
[http://dx.doi.org/10.1136/jmg.18.5.325] [PMID: 7328611]
[22]
Uehleke, H. N-hydroxylation. Xenobiotica, 1971, 1(4), 327-338.
[http://dx.doi.org/10.3109/00498257109041497] [PMID: 4950820]
[23]
Coleman, M.D. Dapsone: Modes of action, toxicity and possible strategies for increasing patient tolerance. Br. J. Dermatol., 1993, 129(5), 507-513.
[http://dx.doi.org/10.1111/j.1365-2133.1993.tb00476.x] [PMID: 8251346]
[24]
Vyas, P.M.; Roychowdhury, S.; Woster, P.M.; Svensson, C.K. Reactive oxygen species generation and its role in the differential cytotoxicity of the arylhydroxylamine metabolites of sulfamethoxazole and dapsone in normal human epidermal keratinocytes. Biochem. Pharmacol., 2005, 70(2), 275-286.
[http://dx.doi.org/10.1016/j.bcp.2005.04.023] [PMID: 15894292]
[25]
Bozeman, P.M.; Learn, D.B.; Thomas, E.L. Inhibition of the human leukocyte enzymes myeloperoxidase and eosinophil peroxidase by dapsone. Biochem. Pharmacol., 1992, 44(3), 553-563.
[http://dx.doi.org/10.1016/0006-2952(92)90449-S] [PMID: 1324677]
[26]
Weiss, S.J.; Weiss, S.J. Tissue destruction by neutrophils. N. Engl. J. Med., 1989, 320(6), 365-376.
[http://dx.doi.org/10.1056/NEJM198902093200606] [PMID: 2536474]
[27]
Booth, S.A.; Moody, C.E.; Dahl, M.V.; Herron, M.J.; Nelson, R.D. Dapsone suppresses integrin-mediated neutrophil adherence function. J. Invest. Dermatol., 1992, 98(2), 135-140.
[http://dx.doi.org/10.1111/1523-1747.ep12555654] [PMID: 1732379]
[28]
Debol, S.M.; Herron, M.J.; Nelson, R.D. Anti-inflammatory action of dapsone: Inhibition of neutrophil adherence is associated with inhibition of chemoattractant-induced signal transduction. J. Leukoc. Biol., 1997, 62(6), 827-836.
[http://dx.doi.org/10.1002/jlb.62.6.827] [PMID: 9400824]
[29]
Harvath, L.; Yancey, K.B.; Katz, S.I. Selective inhibition of human neutrophil chemotaxis to n-formyl-methionyl-leucyl-phenyl-alanine by sulfones. J. Immunol., 1986, 137(4), 1305-1311.
[30]
Maloff, B.L.; Fox, D.; Bruin, E.; Di Meo, T.M. Dapsone inhibits LTB4 binding and bioresponse at the cellular and physiologic levels. Eur. J. Pharmacol., 1988, 158(1-2), 85-89.
[http://dx.doi.org/10.1016/0014-2999(88)90256-7] [PMID: 2851461]
[31]
Kanoh, S.; Tanabe, T.; Rubin, B.K. Dapsone inhibits IL-8 secretion from human bronchial epithelial cells stimulated with lipopolysaccharide and resolves airway inflammation in the ferret. Chest, 2011, 140(4), 980-990.
[http://dx.doi.org/10.1378/chest.10-2908] [PMID: 21436242]
[32]
Schmidt, E.; Reimer, S.; Kruse, N.; Bröcker, E.B.; Zillikens, D. The IL-8 release from cultured human keratinocytes, mediated by antibodies to bullous pemphigoid autoantigen 180, is inhibited by dapsone. Clin. Exp. Immunol., 2001, 124(1), 157-162.
[http://dx.doi.org/10.1046/j.1365-2249.2001.01503.x] [PMID: 11359455]
[33]
Abe, M.; Shimizu, A.; Yokoyama, Y.; Takeuchi, Y.; Ishikawa, O. A possible inhibitory action of diaminodiphenyl sulfone on tumour necrosis factor-α production from activated mononuclear cells on cutaneous lupus erythematosus. Clin. Exp. Dermatol., 2008, 33(6), 759-763.
[http://dx.doi.org/10.1111/j.1365-2230.2008.02864.x] [PMID: 18713254]
[34]
Grossman, S.J.; Jollow, D.J. Role of dapsone hydroxylamine in dapsone-induced hemolytic anemia. J. Pharmacol. Exp. Ther., 1988, 244(1), 118-125.
[PMID: 3335994]
[35]
Mansouri, A.; Lurie, A.A. Methemoglobinemia. Am. J. Hematol., 1993, 7-12.,
[http://dx.doi.org/10.1002/ajh.2830420104] [PMID: 8416301]
[36]
Horowitz, R.I.; Freeman, P.R. Efficacy of double-dose dapsone combination therapy in the treatment of chronic lyme disease/post-treatment lyme disease syndrome (ptlds) and associated co-infections: A report of three cases and retrospective chart review. Antibiotics (Basel), 2020, 9(11), 1-24.
[http://dx.doi.org/10.3390/antibiotics9110725] [PMID: 33105645]
[37]
Barclay, J.A.; Ziemba, S.E.; Ibrahim, R.B. Metahemoglobinemia inducida por dapsona: Un manual para facultativos. Ann. Pharmacother., 2011, 45(9), 1103-1115.
[http://dx.doi.org/10.1345/aph.1Q139] [PMID: 21852596]
[38]
Paccor, A.; Matsuda, M.; Capurso, C.; Rizzo, E.; Larroca, M.C. Methemoglobinemia due to dapsone: A pediatric case report. Arch. Argent. Pediatr., 2018, 116(4), e612-e615.
[http://dx.doi.org/10.5546/aap.2018.e612] [PMID: 30016042]
[39]
Skold, A.; Klein, R. Symptomatic-low grade methemoglobinemia because of dapsone: A multiple hit hypothesis. Am. J. Ther., 2013, 20(6), e729-e732.
[http://dx.doi.org/10.1097/MJT.0b013e318217a5af] [PMID: 21642830]
[40]
Toker, I.; Yesilaras, M.; Tur, F.C.; Toktas, R. Methemoglobinemia caused by dapsone overdose: Which treatment is best? Turk. J. Emerg. Med., 2016, 15(4), 182-184.
[http://dx.doi.org/10.1016/j.tjem.2014.09.002] [PMID: 27239625]
[41]
Cardenas-Rodriguez, N.; Huerta-Gertrudis, B.; Rivera-Espinosa, L.; Montesinos-Correa, H.; Bandala, C.; Carmona-Aparicio, L.; Coballase-Urrutia, E. Role of oxidative stress in refractory epilepsy: Evidence in patients and experimental models. Int. J. Mol. Sci., 2013, 14(1), 1455-76.
[42]
Majores, M.; Schoch, S.; Lie, A.; Becker, A.J. Molecular neuropathology of temporal lobe epilepsy: Complementary approaches in animal models and human disease tissue. Epilepsia, 2007, 48(Suppl. 2), 4-12.
[http://dx.doi.org/10.1111/j.1528-1167.2007.01062.x] [PMID: 17571348]
[43]
Méndez-Armenta, M.; Nava-Ruíz, C.; Juárez-Rebollar, D.; Rodríguez-Martínez, E.; Yescas Gómez, P. Oxidative stress associated with neuronal apoptosis in experimental models of epilepsy. Oxid. Med. Cell. Long., 2014, 2014293689
[44]
Blume, W.T.; Lüders, H.O.; Mizrahi, E.; Tassinari, C.; van Emde Boas, W.; Engel, J., Jr Glossary of descriptive terminology for ictal semiology: Report of the ILAE task force on classification and terminology. Epilepsia, 2001, 42(9), 1212-1218.
[http://dx.doi.org/10.1046/j.1528-1157.2001.22001.x] [PMID: 11580774]
[45]
Fujikawa, D.G.; Itabashi, H.H.; Wu, A.; Shinmei, S.S. Status epilepticus-induced neuronal loss in humans without systemic complications or epilepsy. Epilepsia, 2000, 41(8), 981-991.
[http://dx.doi.org/10.1111/j.1528-1157.2000.tb00283.x] [PMID: 10961625]
[46]
Brodie, M.J. Antiepileptic drug therapy the story so far. Seizure, 2010, 19(10), 650-655.
[http://dx.doi.org/10.1016/j.seizure.2010.10.027] [PMID: 21075011]
[47]
Kwan, P.; Arzimanoglou, A.; Berg, A.T.; Brodie, M.J.; Allen Hauser, W.; Mathern, G.; Moshé, S.L.; Perucca, E.; Wiebe, S.; French, J. Definition of drug resistant epilepsy: Consensus proposal by the ad hoc Task Force of the ILAE Commission on Therapeutic Strategies. Epilepsia, 2010, 51(6), 1069-1077.
[http://dx.doi.org/10.1111/j.1528-1167.2009.02397.x] [PMID: 19889013]
[48]
Hamada, K.; Hiyoshi, T.; Kobayashi, S.; Ishida, S.; Yagi, K.; Seino, M. Anticonvulsive effect of dapsone (4,4′-diaminodiphenyl sulfone) on amygdala-kindled seizures in rats and cats. Epilepsy Res., 1991, 10(2–3), 93-102.
[49]
Ishida, S.; Hamada, K.; Yagi, K.; Seino, M. Comparing the anticonvulsive effects of dapsone on amygdala-kindled seizures and hippocampal-kindled seizures in rats. Acta Neurol. Scand., 1992, 85(2), 132-135.
[http://dx.doi.org/10.1111/j.1600-0404.1992.tb04012.x] [PMID: 1574987]
[50]
Altagracia, M.; Monroy-Noyola, A.; Osorio-Rico, L.; Kravzov, J.; Alvarado-Calvillo, R.; Manjarrez-Marmolejo, J.; Ríos, C. Dapsone attenuates kainic acid-induced seizures in rats. Neurosci. Lett., 1994, 176(1), 52-54.
[http://dx.doi.org/10.1016/0304-3940(94)90869-9] [PMID: 7970237]
[51]
Diaz-Ruiz, A.; Mendez-Armenta, M.; Galván-Arzate, S.; Manjarrez, J.; Nava-Ruiz, C.; Santander, I.; Balderas, G.; Ríos, C. Antioxidant, anticonvulsive and neuroprotective effects of dapsone and phenobarbital against kainic acid-induced damage in rats. Neurochem. Res., 2013, 38(9), 1819-1827.
[http://dx.doi.org/10.1007/s11064-013-1087-z] [PMID: 23729301]
[52]
Ríos, C.; Farfán-Briseño, A.C.; Manjarrez-Marmolejo, J.; Franco-Pérez, J.; Méndez-Armenta, M.; Nava-Ruiz, C.; Caballero-Chacón, S.; Ruiz-Diaz, A.; Baron-Flores, V.; Díaz-Ruiz, A. Efficacy of dapsone administered alone or in combination with diazepam to inhibit status epilepticus in rats. Brain Res., 2019, 1708, 181-187.
[http://dx.doi.org/10.1016/j.brainres.2018.12.017] [PMID: 30571982]
[53]
López-Naranjo, F.; Castañeda-López, C.; Rojas-Oviedo, I.; Altagracia-Martínez, M.; Krazov-Jinich, J.; Manjarrez-Marmolejo, J.; Alvarado-Calvillo, R. Anticonvulsant activity of dapsone analogs. Electrophysiologic evaluation. Arch. Med. Res., 2003, 34(4), 269-272.
[http://dx.doi.org/10.1016/S0188-4409(03)00045-6] [PMID: 12957521]
[54]
Tristán-López, L.; Pérez-Álvarez, V.; Pérez-Severiano, F.; Montes, S.; Pérez-Neri, I.; Rivera-Espinosa, L.; Ríos, C. Protective effect of N,N′-dialkylated analogs of 4,4′-diaminodiphenylsulfone in a model of intrastriatal quinolinic acid induced-excitotoxicity. Neurosci. Lett., 2012, 528(1), 1-5.
[http://dx.doi.org/10.1016/j.neulet.2012.08.050] [PMID: 22982145]
[55]
López-Gómez, M.; Corona, T.; Diaz-Ruiz, A.; Ríos, C. Safety and tolerability of dapsone for the treatment of patients with drug-resistant, partial-onset seizures: An open-label trial. Neurol. Sci., 2011, 32(6), 1063-1067.
[http://dx.doi.org/10.1007/s10072-011-0612-6] [PMID: 21584739]
[56]
Santamaría, A.; Ordaz-Moreno, J.; Rubio-Osornio, M.; Solís-Hernández, F.; Ríos, C. Neuroprotective effect of dapsone against quinolinate- and kainate-induced striatal neurotoxicities in rats. Pharmacol. Toxicol., 1997, 81(6), 271-275.
[PMID: 9444668]
[57]
Rodríguez, E.; Méndez-Armenta, M.; Villeda-Hernández, J.; Galván-Arzate, S.; Barroso-Moguel, R.; Rodríguez, F.; Ríos, C.; Santamaría, A. Dapsone prevents morphological lesions and lipid peroxidation induced by quinolinic acid in rat corpus striatum. Toxicology, 1999, 139(1-2), 111-118.
[http://dx.doi.org/10.1016/S0300-483X(99)00116-X] [PMID: 10614692]
[58]
Kast, R.E.; Lefranc, F.; Karpel-Massler, G.; Halatsch, M.E. Why dapsone stops seizures and may stop neutrophils’ delivery of vegf to glioblastoma. Br. J. Neurosurg., 2012, 26(6), 813-817.
[59]
Luk, K. C.; Kehm, V.; Carroll, J.; Zhang, B.; O’Brien, P.; Trojanowski, J. Q.; Lee, V. M. Y. Pathological α-synuclein transmission initiates Parkinson-like neurodegeneration in nontransgenic mice. Science (80-.)., 2012, 338(6109), 949-953.,
[60]
Deleidi, M.; Gasser, T. The role of inflammation in sporadic and familial Parkinson’s disease. Cell. Mol. Life Sci., 2013, 70(22), 4259-4273.
[http://dx.doi.org/10.1007/s00018-013-1352-y] [PMID: 23665870]
[61]
Sulzer, D. Multiple hit hypotheses for dopamine neuron loss in Parkinson’s disease. Trends Neurosci., 2007, 30(5), 244-250.
[http://dx.doi.org/10.1016/j.tins.2007.03.009] [PMID: 17418429]
[62]
Beitz, J.M. Parkinson’s disease: A review. Front. Biosci., 2014, 6, 65-74.
[http://dx.doi.org/10.2741/S415] [PMID: 24389262]
[63]
Tysnes, O.B.; Storstein, A. Epidemiology of Parkinson’s disease. J. Neural Trans., 2017, 124(8), 901-905.
[64]
Pringsheim, T.; Jette, N.; Frolkis, A.; Steeves, T.D.L. The prevalence of Parkinson’s disease: A systematic review and meta-analysis. Mov. Disord., 2014, 29(13), 1583-1590.
[65]
Broen, M.P.G.; Braaksma, M.M.; Patijn, J.; Weber, W.E.J. Prevalence of pain in Parkinson’s disease: A systematic review using the modified QUADAS tool. Mov. Disord., 2012, 27(4), 480-484.
[http://dx.doi.org/10.1002/mds.24054] [PMID: 22231908]
[66]
Shimura, H.; Hattori, N.; Kubo, Si.; Mizuno, Y.; Asakawa, S.; Minoshima, S.; Shimizu, N.; Iwai, K.; Chiba, T.; Tanaka, K.; Suzuki, T. Familial Parkinson disease gene product, parkin, is a ubiquitin-protein ligase. Nat. Genet., 2000, 25(3), 302-305.
[http://dx.doi.org/10.1038/77060] [PMID: 10888878]
[67]
Hattori, N.; Mizuno, P.Y. Pathogenetic mechanisms of parkin in Parkinson’s disease. Lancet, 2004, 364(9435), 722-724.
[68]
Lee, Y.I.; Kang, H.; Ha, Y.W.; Chang, K.Y.; Cho, S.C.; Song, S.O.; Kim, H.; Jo, A.; Khang, R.; Choi, J.Y.; Lee, Y.; Park, S.C.; Shin, J.H. Diaminodiphenyl sulfone-induced parkin ameliorates age-dependent dopaminergic neuronal loss. Neurobiol. Aging, 2016, 41, 1-10.
[http://dx.doi.org/10.1016/j.neurobiolaging.2015.11.008] [PMID: 27103513]
[69]
Cho, S.C.; Park, M.C.; Keam, B.; Choi, J.M.; Cho, Y.; Hyun, S.; Park, S.C.; Lee, J. DDS, 4,4′-diaminodiphenylsulfone, extends organismic lifespan. Proc. Natl. Acad. Sci. USA, 2010, 107(45), 19326-19331.
[http://dx.doi.org/10.1073/pnas.1005078107] [PMID: 20974969]
[70]
Ljubenkov, P.A.; Geschwind, M.D. Dementia. Semin. Neurol., 2016, 36(4), 397-404.
[http://dx.doi.org/10.1055/s-0036-1585096] [PMID: 27643909]
[71]
Lee, J.H.; Choi, S.H.; Lee, C.J.; Oh, S.S. Recovery of dementia syndrome following treatment of brain inflammation. Dement. Geriatr. Cogn. Disord. Extra, 2020, 10(1), 1-12.
[http://dx.doi.org/10.1159/000504880] [PMID: 32158462]
[72]
Garre-Olmo, J. Epidemiology of Alzheimer’s disease and other dementias. Rev. Neurol., 2018, 66(11), 377-386.
[http://dx.doi.org/10.33588/rn.6611.2017519] [PMID: 29790571]
[73]
Khan, H.; Ullah, H.; Aschner, M.; Cheang, W.S.; Akkol, E.K. Neuroprotective effects of quercetin in Alzheimer’s disease. Biomolecules, 2020, 10(1), 59.
[74]
Zhang, H.; Zheng, Y. β amyloid hypothesis in Alzheimer’s disease: Pathogenesis, prevention,and management. Zhongguo yi xue ke xue yuan xue bao. Acta Academiae Med. Sinicae, 2019, 41(5), 702-708.
[75]
Hulstaert, F.; Blennow, K.; Ivanoiu, A.; Schoonderwaldt, H.C.; Riemenschneider, M.; De Deyn, P.P.; Bancher, C.; Cras, P.; Wiltfang, J.; Mehta, P.D.; Iqbal, K.; Pottel, H.; Vanmechelen, E.; Vanderstichele, H. Improved discrimination of AD patients using β-amyloid(1-42) and tau levels in CSF. Neurology, 1999, 52(8), 1555-1562.
[http://dx.doi.org/10.1212/WNL.52.8.1555] [PMID: 10331678]
[76]
Bishara, D.; Sauer, J.; Taylor, D. The pharmacological management of Alzheimer’s disease. Prog. Neurol. Psychiatry, 2015, 19(4), 9-16.
[http://dx.doi.org/10.1002/pnp.387]
[77]
Goto, M.; Kimura, T.; Hagio, S.; Ueda, K.; Kitajima, S.; Tokunaga, H.; Sato, E. Neuropathological analysis of dementia in a Japanese leprosarium. Dementia, 1995, 6(3), 157-161.
[http://dx.doi.org/10.1159/000106939] [PMID: 7620528]
[78]
McGeer, P.L.; Harada, N.; Kimura, H.; McGeer, E.G.; Schulzer, M. Prevalence of dementia amongst elderly japanese with leprosy: Apparent effect of chronic drug therapy. Dement. Geriatr. Cogn. Disord., 1992, 3(3), 146-149.
[http://dx.doi.org/10.1159/000107010]
[79]
Endoh, M.; Kunishita, T.; Tabira, T. No effect of anti-leprosy drugs in the prevention of Alzheimer’s disease and β-amyloid neurotoxicity. J. Neurol. Sci., 1999, 165(1), 28-30.
[http://dx.doi.org/10.1016/S0022-510X(99)00057-X] [PMID: 10426143]
[80]
Eriksen, J.L.; Sagi, S.A.; Smith, T.E.; Weggen, S.; Das, P.; McLendon, D.C.; Ozols, V.V.; Jessing, K.W.; Zavitz, K.H.; Koo, E.H.; Golde, T.E. NSAIDs and enantiomers of flurbiprofen target γ-secretase and lower Abeta 42 in vivo. J. Clin. Invest., 2003, 112(3), 440-449.
[http://dx.doi.org/10.1172/JCI18162] [PMID: 12897211]
[81]
McLarnon, J.G. Consideration of a pharmacological combinatorial approach to inhibit chronic inflammation in Alzheimer’s Disease. Curr. Alzheimer Res., 2019, 16(11), 1007-1017.
[http://dx.doi.org/10.2174/1567205016666191106095038] [PMID: 31692444]
[82]
Yang, N.; Li, L.; Li, Z.; Ni, C.; Cao, Y.; Liu, T.; Tian, M.; Chui, D.; Guo, X. Protective effect of dapsone on cognitive impairment induced by propofol involves hippocampal autophagy. Neurosci. Lett., 2017, 649, 85-92.
[http://dx.doi.org/10.1016/j.neulet.2017.04.019] [PMID: 28411068]
[83]
Patki, G.; Solanki, N.; Atrooz, F.; Allam, F.; Salim, S. Depression, anxiety-like behavior and memory impairment are associated with increased oxidative stress and inflammation in a rat model of social stress. Brain Res., 2013, 1539, 73-86.
[http://dx.doi.org/10.1016/j.brainres.2013.09.033] [PMID: 24096214]
[84]
Zhang, T.; Tian, X.; Wang, Q.; Tong, Y.; Wang, H.; Li, Z.; Li, L.; Zhou, T.; Zhan, R.; Zhao, L.; Sun, Y.; Fan, D.; Lu, L.; Zhang, J.; Jin, Y.; Xiao, W.; Guo, X.; Chui, D. Surgical stress induced depressive and anxiety like behavior are improved by dapsone via modulating NADPH oxidase level. Neurosci. Lett., 2015, 585, 103-108.
[http://dx.doi.org/10.1016/j.neulet.2014.11.045] [PMID: 25438157]
[85]
Faissner, S.; Plemel, J.R.; Gold, R.; Yong, V.W. Progressive multiple sclerosis: From pathophysiology to therapeutic strategies. Nat. Rev. Drug Discov., 2019, 18(12), 905-922.
[86]
Reich, D.S.; Lucchinetti, C.F.; Calabresi, P.A. Multiple sclerosis. New Engl. J. Med., 2018, 378(2), 169-180.
[87]
Kamm, C.P.; Uitdehaag, B.M.; Polman, C.H. Multiple sclerosis: Current knowledge and future outlook. Eur. Neurol., 2014, 72(3-4), 132-141.
[http://dx.doi.org/10.1159/000360528] [PMID: 25095894]
[88]
Ming, X.; Li, W.; Maeda, Y.; Blumberg, B.; Raval, S.; Cook, S.D.; Dowling, P.C. Caspase-1 expression in multiple sclerosis plaques and cultured glial cells. J. Neurol. Sci., 2002, 197(1-2), 9-18.
[http://dx.doi.org/10.1016/S0022-510X(02)00030-8] [PMID: 11997061]
[89]
Danikowski, K.M.; Jayaraman, S.; Prabhakar, B.S. Regulatory t cells in multiple sclerosis and myasthenia gravis. J. Neuroinflammation, 2017, 14(1), 117.
[90]
Govindarajan, V.; De Rivero, V.J.P.; Keane, R.W. Role of inflammasomes in multiple sclerosis and their potential as therapeutic targets. J. Neuroinflammation, 2020, 17(1), 260.
[91]
Schroder, K.; Tschopp, J. The inflammasomes. Cell, 2010, 140(6), 821-832.
[http://dx.doi.org/10.1016/j.cell.2010.01.040] [PMID: 20303873]
[92]
Ortiz, G.G.; Pacheco-Moisés, F.P.; Macías-Islas, M.Á.; Flores-Alvarado, L.J.; Mireles-Ramírez, M.A.; González-Renovato, E.D.; Hernández-Navarro, V.E.; Sánchez-López, A.L.; Alatorre-Jiménez, M.A. Role of the blood-brain barrier in multiple sclerosis. Arch. Med. Res., 2014, 45(8), 687-697.
[93]
Jiang, X.; Andjelkovic, A.V.; Zhu, L.; Yang, T.; Bennett, M.V.L.; Chen, J.; Keep, R.F.; Shi, Y. Blood-brain barrier dysfunction and recovery after ischemic stroke. Prog. Neurobiol., 2018, 163-164, 144-171.
[94]
Sweeney, M.D.; Zhao, Z.; Montagne, A.; Nelson, A.R.; Zlokovic, B.V. Blood-brain barrier: From physiology to disease and back. Physiol. Rev., 2019, 99(1), 21-78.
[95]
Obermeier, B.; Verma, A.; Ransohoff, R.M. The blood-brain barrier.Handbook of clinical neurology; Elsevier, 2016, 133, pp. 39-59;
[96]
Dejana, E.; Giampietro, C. Vascular endothelial-cadherin and vascular stability. Curr. Opin. Hematol., 2012, 19(3), 218-223.
[http://dx.doi.org/10.1097/MOH.0b013e3283523e1c] [PMID: 22395663]
[97]
Huber, J.D.; Egleton, R.D.; Davis, T.P. Molecular physiology and pathophysiology of tight junctions in the blood-brain barrier. Trends Neurosci., 2001, 24(12), 719-725.
[http://dx.doi.org/10.1016/S0166-2236(00)02004-X] [PMID: 11718877]
[98]
Zhou, T.; Zhao, L.; Zhan, R.; He, Q.; Tong, Y.; Tian, X.; Wang, H.; Zhang, T.; Fu, Y.; Sun, Y.; Xu, F.; Guo, X.; Fan, D.; Han, H.; Chui, D. Blood-brain barrier dysfunction in mice induced by lipopolysaccharide is attenuated by dapsone. Biochem. Biophys. Res. Commun., 2014, 453(3), 419-424.
[http://dx.doi.org/10.1016/j.bbrc.2014.09.093] [PMID: 25268765]
[99]
Zhan, R.; Zhao, M.; Zhou, T.; Chen, Y.; Yu, W.; Zhao, L.; Zhang, T.; Wang, H.; Yang, H.; Jin, Y.; He, Q.; Yang, X.; Guo, X.; Willard, B.; Pan, B.; Huang, Y.; Chen, Y.; Chui, D.; Zheng, L. Dapsone protects brain microvascular integrity from high-fat diet induced LDL oxidation. Cell Death Dis., 2018, 9(6), 683.
[http://dx.doi.org/10.1038/s41419-018-0739-y] [PMID: 29880899]
[100]
Zampeli, E.; Moutsopoulos, H.M. Dapsone: An old drug effective for subacute cutaneous lupus erythematosus. Rheumatology (Oxford), 2019, 58(5), 920-921.
[http://dx.doi.org/10.1093/rheumatology/key434] [PMID: 30615176]
[101]
Moutsopoulos, M.; Zampeli, E.; Vlachoyiannopoulos, G. Medications, therapeutic modalities, and regimens used in the management of rheumatic diseases; Rheumatol. Questions, 2018, pp. 153-157.
[102]
de Risi-Pugliese, T.; Cohen Aubart, F.; Haroche, J.; Moguelet, P.; Grootenboer-Mignot, S.; Mathian, A.; Ingen-Housz-Oro, S.; Hie, M.; Wendremaire, N.; Aucouturier, F.; Lepelletier, F.; Miyara, M.; Bader-Meunier, B.; Rémy, P.; Fabien, N.; Francès, C.; Barete, S.; Amoura, Z. Clinical, histological, immunological presentations and outcomes of bullous systemic lupus erythematosus: 10 new cases and a literature review of 118 cases. Semin. Arthritis Rheum., 2018, 48(1), 83-89.
[http://dx.doi.org/10.1016/j.semarthrit.2017.11.003] [PMID: 29191376]
[103]
Alenazi, S.A.; Elmorsy, E.; Al-Ghafari, A.; El-Husseini, A. Effect of amphotericin B-deoxycholate (Fungizone) on the mitochondria of Wistar rats’ renal proximal tubules cells. J. Appl. Toxicol., 2021, 41(10), 1620-1633.
[http://dx.doi.org/10.1002/jat.4151] [PMID: 33740284]
[104]
Bamford, J.; Sandercock, P.; Dennis, M.; Burn, J.; Warlow, C. Classification and natural history of clinically identifiable subtypes of cerebral infarction. Lancet, 1991, 337(8756), 1521-1526.
[http://dx.doi.org/10.1016/0140-6736(91)93206-O] [PMID: 1675378]
[105]
Lozano, R.; Naghavi, M.; Foreman, K.; Lim, S.; Shibuya, K.; Aboyans, V.; Abraham, J.; Adair, T.; Aggarwal, R.; Ahn, S.Y.; Alvarado, M.; Anderson, H.R.; Anderson, L.M.; Andrews, K.G.; Atkinson, C.; Baddour, L.M.; Barker-Collo, S.; Bartels, D.H.; Bell, M.L.; Benjamin, E.J.; Bennett, D.; Bhalla, K.; Bikbov, B.; Bin, A.A.; Birbeck, G.; Blyth, F.; Bolliger, I.; Boufous, S.; Bucello, C.; Burch, M.; Burney, P.; Carapetis, J.; Chen, H.; Chou, D.; Chugh, S.S.; Coffeng, L.E.; Colan, S.D.; Colquhoun, S.; Colson, K.E.; Condon, J.; Connor, M.D.; Cooper, L.T.; Corriere, M.; Cortinovis, M.; de Vaccaro, K.C.; Couser, W.; Cowie, B.C.; Criqui, M.H.; Cross, M.; Dabhadkar, K.C.; Dahodwala, N.; De Leo, D.; Degenhardt, L.; Delossantos, A.; Denenberg, J.; Des Jarlais, D.C.; Dharmaratne, S.D.; Dorsey, E.R.; Driscoll, T.; Duber, H.; Ebel, B.; Erwin, P.J.; Espindola, P.; Ezzati, M.; Feigin, V.; Flaxman, A.D.; Forouzanfar, M.H.; Fowkes, F.G.; Franklin, R.; Fransen, M.; Freeman, M.K.; Gabriel, S.E.; Gakidou, E.; Gaspari, F.; Gillum, R.F.; Gonzalez-Medina, D.; Halasa, Y.A.; Haring, D.; Harrison, J.E.; Havmoeller, R.; Hay, R.J.; Hoen, B.; Hotez, P.J.; Hoy, D.; Jacobsen, K.H.; James, S.L.; Jasrasaria, R.; Jayaraman, S.; Johns, N.; Karthikeyan, G.; Kassebaum, N.; Keren, A.; Khoo, J.P.; Knowlton, L.M.; Kobusingye, O.; Koranteng, A.; Krishnamurthi, R.; Lipnick, M.; Lipshultz, S.E.; Ohno, S.L.; Mabweijano, J.; MacIntyre, M.F.; Mallinger, L.; March, L.; Marks, G.B.; Marks, R.; Matsumori, A.; Matzopoulos, R.; Mayosi, B.M.; McAnulty, J.H.; McDermott, M.M.; McGrath, J.; Mensah, G.A.; Merriman, T.R.; Michaud, C.; Miller, M.; Miller, T.R.; Mock, C.; Mocumbi, A.O.; Mokdad, A.A.; Moran, A.; Mulholland, K.; Nair, M.N.; Naldi, L.; Narayan, K.M.; Nasseri, K.; Norman, P.; O’Donnell, M.; Omer, S.B.; Ortblad, K.; Osborne, R.; Ozgediz, D.; Pahari, B.; Pandian, J.D.; Rivero, A.P.; Padilla, R.P.; Perez-Ruiz, F.; Perico, N.; Phillips, D.; Pierce, K.; Pope, C.A., III; Porrini, E.; Pourmalek, F.; Raju, M.; Ranganathan, D.; Rehm, J.T.; Rein, D.B.; Remuzzi, G.; Rivara, F.P.; Roberts, T.; De León, F.R.; Rosenfeld, L.C.; Rushton, L.; Sacco, R.L.; Salomon, J.A.; Sampson, U.; Sanman, E.; Schwebel, D.C.; Segui-Gomez, M.; Shepard, D.S.; Singh, D.; Singleton, J.; Sliwa, K.; Smith, E.; Steer, A.; Taylor, J.A.; Thomas, B.; Tleyjeh, I.M.; Towbin, J.A.; Truelsen, T.; Undurraga, E.A.; Venketasubramanian, N.; Vijayakumar, L.; Vos, T.; Wagner, G.R.; Wang, M.; Wang, W.; Watt, K.; Weinstock, M.A.; Weintraub, R.; Wilkinson, J.D.; Woolf, A.D.; Wulf, S.; Yeh, P.H.; Yip, P.; Zabetian, A.; Zheng, Z.J.; Lopez, A.D.; Murray, C.J.; AlMazroa, M.A.; Memish, Z.A. Global and regional mortality from 235 causes of death for 20 age groups in 1990 and 2010: A systematic analysis for the Global Burden of Disease Study 2010. Lancet, 2012, 380(9859), 2095-2128.
[http://dx.doi.org/10.1016/S0140-6736(12)61728-0] [PMID: 23245604]
[106]
Carlos, C-B.; José, R-S.L.; Erwin, C.; Antonio, A.; Carolina, L-J.; Luis, M-B.M.; Jorge, V-C.; Fernando, B.; José Antonio, F.; Bertha, T.; Idelfonso, R-L.; Ricardo, R-G. Factores de riesgo, causas y pronóstico de los tipos de enferme-dad vascular cerebral en méxico: Estudio renamevasc, 2011, 12.,
[107]
Boltze, J.; Aronowski, J.A.; Badaut, J.; Buckwalter, M.S.; Caleo, M.; Chopp, M.; Dave, K.R.; Didwischus, N.; Dijkhuizen, R.M.; Doeppner, T.R.; Dreier, J.P.; Fouad, K.; Gelderblom, M.; Gertz, K.; Golubczyk, D.; Gregson, B.A.; Hamel, E.; Hanley, D.F.; Härtig, W.; Hummel, F.C.; Ikhsan, M.; Janowski, M.; Jolkkonen, J.; Karuppagounder, S.S.; Keep, R.F.; Koerte, I.K.; Kokaia, Z.; Li, P.; Liu, F.; Lizasoain, I.; Ludewig, P.; Metz, G.A.S.; Montagne, A.; Obenaus, A.; Palumbo, A.; Pearl, M.; Perez-Pinzon, M.; Planas, A.M.; Plesnila, N.; Raval, A.P.; Rueger, M.A.; Sansing, L.H.; Sohrabji, F.; Stagg, C.J.; Stetler, R.A.; Stowe, A.M.; Sun, D.; Taguchi, A.; Tanter, M.; Vay, S.U.; Vemuganti, R.; Vivien, D.; Walczak, P.; Wang, J.; Xiong, Y.; Zille, M. New mechanistic insights, novel treatment paradigms, and clinical progress in cerebrovascular diseases. Front. Aging Neurosci., 2021, 13623751
[http://dx.doi.org/10.3389/fnagi.2021.623751] [PMID: 33584250]
[108]
Cipolla, M.J.; Liebeskind, D.S.; Chan, S.L. The importance of comorbidities in ischemic stroke: Impact of hypertension on the cerebral circulation. J. Cereb. Blood Flow Metab., 2018, 38(12), 2129-2149.
[109]
Saver, J.L. Time is brain--quantified. Stroke, 2006, 37(1), 263-266.
[http://dx.doi.org/10.1161/01.STR.0000196957.55928.ab] [PMID: 16339467]
[110]
Cheon, S.Y.; Kim, E.J.; Kim, J.M.; Koo, B.N. Cell type-specific mechanisms in the pathogenesis of ischemic stroke: The role of apoptosis signal-regulating kinase 1. Oxid. Med. Cell. Longev., 2018, 20182596043
[111]
Alonso de Leciñana, M.; Egido, J.A.; Casado, I.; Ribó, M.; Dávalos, A.; Masjuan, J.; Caniego, J.L.; Martínez, V.E.; Díez, T.E. Alonso de Leciñana, M.; Egido, J. A.; Casado, I.; Ribó, M.; Dávalos, A.; Masjuan, J.; Caniego, J. L.; Martínez Vila, E.; Díez, T.E.; Fuentes, S.B.; Álvarez-Sabin, J.; Arenillas, J.; Calleja, S.; Castellanos, M.; Castillo, J.; Díaz-Otero, F.; López-Fernández, J. C.; Freijo, M.; Gállego, J.; García-Pastor, A.; Gil-Núñez, A.; Gilo, F.; Irimia, P.; Lago, A.; Maestre, J.; Martí-Fábregas, J.; Martínez-Sánchez, P.; Molina, C.; Morales, A.; Nombela, F.; Purroy, F.; Rodríguez-Yañez, M.; Roquer, J.; Rubio, F.; Segura, T.; Serena, J.; Simal, P.; Tejada, J.; Vivancos, J. Guía Para El Tratamiento Del Infarto Cerebral Agudo. Neurologia. Neurologia, 2014, (March), 102-122.
[http://dx.doi.org/10.1016/j.nrl.2011.09.012] [PMID: 22152803]
[112]
Lansberg, M.G.; O’Donnell, M.J.; Khatri, P.; Lang, E.S.; Nguyen-Huynh, M.N.; Schwartz, N.E.; Sonnenberg, F.A.; Schulman, S.; Vandvik, P.O.; Spencer, F.A.; Alonso-Coello, P.; Guyatt, G.H.; Akl, E.A. Antithrombotic and thrombolytic therapy for ischemic stroke: Antithrombotic therapy and prevention of thrombosis. Chest, 9th; American College of Chest Physicians, 2012, 141, pp. (2 SUPPL.)e601S-e636S. Evidence-Based Clinical Practice Guidelines.,
[113]
Ríos, C.; Nader-Kawachi, J.; Rodriguez-Payán, A.J.; Nava-Ruiz, C. Neuroprotective effect of dapsone in an occlusive model of focal ischemia in rats. Brain Res., 2004, 999(2), 212-215.
[http://dx.doi.org/10.1016/j.brainres.2003.11.040] [PMID: 14759500]
[114]
Nader-Kawachi, J.; Góngora-Rivera, F.; Santos-Zambrano, J.; Calzada, P.; Ríos, C. Neuroprotective effect of dapsone in patients with acute ischemic stroke: A pilot study. Neurol. Res., 2007, 29(3), 331-334.
[http://dx.doi.org/10.1179/016164107X159234] [PMID: 17509235]
[115]
Diaz-Ruiz, A.; Zavala, C.; Montes, S.; Ortiz-Plata, A.; Salgado-Ceballos, H.; Orozco-Suarez, S.; Nava-Ruiz, C.; Pérez-Neri, I.; Perez-Severiano, F.; Ríos, C. Antioxidant, antiinflammatory and antiapoptotic effects of dapsone in a model of brain ischemia/reperfusion in rats. J. Neurosci. Res., 2008, 86(15), 3410-3419.
[http://dx.doi.org/10.1002/jnr.21775] [PMID: 18615706]
[116]
Diaz-Ruiz, A.; Roldan-Valadez, E.; Ortiz-Plata, A.; Mondragón-Lozano, R.; Heras-Romero, Y.; Mendez-Armenta, M.; Osorio-Rico, L.; Nava-Ruiz, C.; Ríos, C. Dapsone improves functional deficit and diminishes brain damage evaluated by 3-Tesla magnetic resonance image after transient cerebral ischemia and reperfusion in rats. Brain Res., 2016, 1646, 384-392.
[http://dx.doi.org/10.1016/j.brainres.2016.06.023] [PMID: 27321157]
[117]
Mahale, A.; Kumar, R.; Sarode, L.P.; Gakare, S.; Prakash, A.; Ugale, R.R. Dapsone prolong delayed excitotoxic neuronal cell death by interacting with proapoptotic/survival signaling proteins. J. Stroke Cerebrovasc. Dis., 2020, 29(8)104848
[http://dx.doi.org/10.1016/j.jstrokecerebrovasdis.2020.104848] [PMID: 32689584]
[118]
Hagen, E.M. Acute complications of spinal cord injuries. World J. Orthop., 2015, 6(1), 17-23.
[http://dx.doi.org/10.5312/wjo.v6.i1.17] [PMID: 25621207]
[119]
Wyndaele, M.; Wyndaele, J.J. Incidence, prevalence and epidemiology of spinal cord injury: What learns a worldwide literature survey? Spinal Cord, 2006, 44(9), 523-529.
[http://dx.doi.org/10.1038/sj.sc.3101893] [PMID: 16389270]
[120]
Hastings, J.D.; Harvey, L.A.; Bruce, J.A.; Somers, M.F. comp ensation allows reco very of functional in dependence in people with severe motor impairm ents folowing spinal cord injury. J. Rehabil. Med., 2012, 44(5), 477-478.
[http://dx.doi.org/10.2340/16501977-0965] [PMID: 22434496]
[121]
Alizadeh, A.; Dyck, S.M.; Karimi-Abdolrezaee, S. Traumatic spinal cord injury: An overview of pathophysiology, models and acute injury mechanisms. Front. Neurol., 2019, 10, 282.
[http://dx.doi.org/10.3389/fneur.2019.00282] [PMID: 30967837]
[122]
Silva, N.A.; Sousa, N.; Reis, R.L.; Salgado, A.J. From basics to clinical: A comprehensive review on spinal cord injury. Prog. Neurobiol., 2014, 114, 25-57.
[123]
Diaz-Ruiz, A.; Salgado-Ceballos, H.; Montes, S.; Guizar-Sahagún, G.; Gelista-Herrera, N.; Mendez-Armenta, M.; Diaz-Cintra, S.; Ríos, C. Delayed administration of dapsone protects from tissue damage and improves recovery after spinal cord injury. J. Neurosci. Res., 2011, 89(3), 373-380.
[http://dx.doi.org/10.1002/jnr.22555] [PMID: 21259324]
[124]
Ríos, C.; Orozco-Suarez, S.; Salgado-Ceballos, H.; Mendez-Armenta, M.; Nava-Ruiz, C.; Santander, I.; Barón-Flores, V.; Caram-Salas, N.; Diaz-Ruiz, A. Anti-apoptotic effects of dapsone after spinal cord injury in rats. Neurochem. Res., 2015, 40(6), 1243-1251.
[http://dx.doi.org/10.1007/s11064-015-1588-z] [PMID: 25931161]
[125]
Afshari, K.; Momeni Roudsari, N.; Lashgari, N.A.; Haddadi, N.S.; Haj-Mirzaian, A.; Hassan Nejad, M.; Shafaroodi, H.; Ghasemi, M.; Dehpour, A.R.; Abdolghaffari, A.H. Antibiotics with therapeutic effects on spinal cord injury: A review. Fundam. Clin. Pharmacol., 2021, 35(2), 277-304.
[http://dx.doi.org/10.1111/fcp.12605] [PMID: 33464681]
[126]
Roy, P.S.; Saikia, B.J. Cancer and cure: A critical analysis. Indian J. Cancer, 2016, 53(3), 441-442.
[127]
Wang, J.J.; Lei, K.F.; Han, F. Tumor microenvironment: Recent advances in various cancer treatments. Eur. Rev. Med. Pharmacol. Sci., 2018, 22(12), 3855-3864.
[http://dx.doi.org/10.26355/EURREV_201806_15270] [PMID: 29949179]
[128]
Schruefer, R.; Lutze, N.; Schymeinsky, J.; Walzog, B. Human neutrophils promote angiogenesis by a paracrine feedforward mechanism involving endothelial interleukin-8. Am. J. Physiol. Heart Circ. Physiol., 2005, 288(3), 57-3.
[129]
Sun, S.; Wang, Q.; Giang, A.; Cheng, C.; Soo, C.; Wang, C.Y.; Liau, L.M.; Chiu, R. Knockdown of CypA inhibits interleukin-8 (IL-8) and IL-8-mediated proliferation and tumor growth of glioblastoma cells through down-regulated NF-κB. J. Neurooncol., 2011, 101(1), 1-14.
[http://dx.doi.org/10.1007/s11060-010-0220-y] [PMID: 20454998]
[130]
Bambury, R.M.; Teo, M.Y.; Power, D.G.; Yusuf, A.; Murray, S.; Battley, J.E.; Drake, C.; O’Dea, P.; Bermingham, N.; Keohane, C.; Grossman, S.A.; Moylan, E.J.; O’Reilly, S. The association of pre-treatment neutrophil to lymphocyte ratio with overall survival in patients with glioblastoma multiforme. J. Neurooncol., 2013, 114(1), 149-154.
[http://dx.doi.org/10.1007/s11060-013-1164-9] [PMID: 23780645]
[131]
McNamara, M.G.; Lwin, Z.; Jiang, H.; Templeton, A.J.; Zadeh, G.; Bernstein, M.; Chung, C.; Millar, B.A.; Laperriere, N.; Mason, W.P. Factors impacting survival following second surgery in patients with glioblastoma in the temozolomide treatment era, incorporating neutrophil/lymphocyte ratio and time to first progression. J. Neurooncol., 2014, 117(1), 147-152.
[http://dx.doi.org/10.1007/s11060-014-1366-9] [PMID: 24469854]
[132]
Kast, R.E. Erlotinib augmentation with dapsone for rash mitigation and increased anti-cancer effectiveness. Springerplus, 2015, 4(1), 638.
[http://dx.doi.org/10.1186/s40064-015-1441-5] [PMID: 26543772]
[133]
Kast, R.E.; Hill, Q.A.; Wion, D.; Mellstedt, H.; Focosi, D.; Karpel-Massler, G.; Heiland, T.; Halatsch, M.E. Glioblastoma-synthesized g-csf and gm-csf contribute to growth and immunosuppression: Potential therapeutic benefit from dapsone, fenofibrate, and ribavirin. Tumour Biol., 2017, 39(5)1010428317699797
[134]
Karpel-Massler, G.; Kast, R.E.; Siegelin, M.D.; Dwucet, A.; Schneider, E.; Westhoff, M.A.; Wirtz, C.R.; Chen, X.Y.; Halatsch, M.E.; Bolm, C. Anti-glioma activity of dapsone and its enhancement by synthetic chemical modification. Neurochem. Res., 2017, 42(12), 3382-3389.
[http://dx.doi.org/10.1007/s11064-017-2378-6] [PMID: 28852934]
[135]
Meredith, A.M.; Dass, C.R. Increasing role of the cancer chemotherapeutic doxorubicin in cellular metabolism. J. Pharm. Pharmacol., 2016, 68(6), 729-741.
[136]
Tacar, O.; Sriamornsak, P.; Dass, C.R. Doxorubicin: An update on anticancer molecular action, toxicity and novel drug delivery systems. J. Pharm. Pharmacol., 2013, 65(2), 157-170.
[http://dx.doi.org/10.1111/j.2042-7158.2012.01567.x] [PMID: 23278683]
[137]
Sheibani, M.; Nezamoleslami, S.; Faghir-Ghanesefat, H.; Emami, A.H.; Dehpour, A.R. Cardioprotective effects of dapsone against doxorubicin-induced cardiotoxicity in rats. Cancer Chemother. Pharmacol., 2020, 85(3), 563-571.
[http://dx.doi.org/10.1007/s00280-019-04019-6] [PMID: 31915967]
[138]
Karaguzel, E.; Kadihasanoglu, M.; Kutlu, O. Mechanisms of testicular torsion and potential protective agents. Nat. Rev. Urol., 2014, 11(7), 391-399.
[139]
Anthony, Ta.; Arcy, F.T.D.; Hoag, N.; Arcy, J.D.P.; Lawrentschuk, N. Testicular torsion and the acute scrotum: Current emergency management. Eur. J. Emerg. Med., 2016, 23(3), 160-165.
[140]
Dejban, P.; Rahimi, N.; Takzare, N.; Jahansouz, M.; Haddadi, N.S.; Dehpour, A.R. Beneficial effects of dapsone on ischemia/reperfusion injury following torsion/detorsion in ipsilateral and contralateral testes in rat. Theriogenology, 2019, 140, 136-142.
[http://dx.doi.org/10.1016/j.theriogenology.2019.08.021] [PMID: 31473496]
[141]
Requião-Moura, L.R. Durão Junior, Mde.S.; Matos, A.C.; Pacheco-Silva, A. Ischemia and reperfusion injury in renal transplantation: Hemodynamic and immunological paradigms. Einstein (Sao Paulo), 2015, 13(1), 129-135.
[http://dx.doi.org/10.1590/S1679-45082015RW3161] [PMID: 25993079]
[142]
Salvadori, M.; Rosso, G.; Bertoni, E. Update on ischemia-reperfusion injury in kidney transplantation: Pathogenesis and treatment. World J. Transplant., 2015, 5(2), 52-67.
[http://dx.doi.org/10.5500/wjt.v5.i2.52] [PMID: 26131407]
[143]
Weight, S.C.; Bell, P.R.F.; Nicholson, M.L. Renal ischaemia--reperfusion injury. Br. J. Surg., 1996, 83(2), 162-170.
[http://dx.doi.org/10.1046/j.1365-2168.1996.02182.x] [PMID: 8689154]
[144]
Mochida, O.; Matsumoto, T.; Mizunoe, Y.; Sakumoto, M.; Abe, J.; Kumazawa, J. Preventive effect of dapsone on renal scarring following mannose-sensitive piliated bacterial infection. Chemotherapy, 1998, 44(1), 36-41.
[http://dx.doi.org/10.1159/000007088] [PMID: 9444407]
[145]
Nezamoleslami, S.; Sheibani, M.; Jahanshahi, F.; Mumtaz, F.; Abbasi, A.; Dehpour, A.R. Protective effect of dapsone against renal ischemia-reperfusion injury in rat. Immunopharmacol. Immunotoxicol., 2020, 42(3), 272-279.
[http://dx.doi.org/10.1080/08923973.2020.1755308] [PMID: 32321337]
[146]
Lan, C.C.E.; Wu, C.S.; Huang, S.M.; Wu, I.H.; Chen, G.S. High-glucose environment enhanced oxidative stress and increased interleukin-8 secretion from keratinocytes: New insights into impaired diabetic wound healing. Diabetes, 2013, 62(7), 2530-2538.
[http://dx.doi.org/10.2337/db12-1714] [PMID: 23423570]
[147]
Peterson, K.P.; Van Hirtum, M.; Peterson, C.M. Dapsone decreases the cumulative incidence of diabetes in non-obese diabetic female mice. Proc. Soc. Exp. Biol. Med., 1997, 215(3), 264-268.
[http://dx.doi.org/10.3181/00379727-215-44137] [PMID: 9207862]
[148]
Wang, X.; Elksnis, A.; Wikström, P.; Walum, E.; Welsh, N.; Carlsson, P.O. The novel NADPH oxidase 4 selective inhibitor GLX7013114 counteracts human islet cell death in vitro. PLoS One, 2018, 13(9)e0204271
[http://dx.doi.org/10.1371/journal.pone.0204271] [PMID: 30265686]
[149]
Geyfman, M.; Debabov, D.; Poloso, N.; Alvandi, N. Mechanistic insight into the activity of a sulfone compound dapsone on Propionibacterium (newly reclassified as cutibacterium) Acnes-mediated cytokine production. Exp. Dermatol., 2019, 28(2), 190-197.
[http://dx.doi.org/10.1111/exd.13869] [PMID: 30585659]
[150]
Rahman, I.; Adcock, I.M. Oxidative stress and redox regulation of lung inflammation in COPD. Eur. Respir. J., 2006, 28(1), 219-242.
[http://dx.doi.org/10.1183/09031936.06.00053805] [PMID: 16816350]
[151]
Cho, S.C.; Rhim, J.H.; Choi, H.R.; Son, Y.H.; Lee, S.J.; Song, K.Y.; Park, S.C. Protective effect of 4,4′-diaminodiphenylsulfone against paraquat-induced mouse lung injury. Exp. Mol. Med., 2011, 43(9), 525-537.
[http://dx.doi.org/10.3858/emm.2011.43.9.060] [PMID: 21765237]
[152]
Channappanavar, R.; Perlman, S. Pathogenic human coronavirus infections: Causes and consequences of cytokine storm and immunopathology. Semin. Immunopathol., 2017, 39(5), 529-539.
[153]
Zheng, Y.Y.; Ma, Y.T.; Zhang, J.Y.; Xie, X. Covid-19 and the cardiovascular system. Nat. Rev. Cardiol., 2020, 17(5), 259-260.
[154]
Merad, M.; Martin, J.C. Pathological inflammation in patients with covid-19: A key role for monocytes and macrophages. Nat. Rev. Immunol., 2020, 20(6), 355-362.
[155]
Iba, T.; Levy, J.H.; Connors, J.M.; Warkentin, T.E.; Thachil, J.; Levi, M. The unique characteristics of covid-19 coagulopathy. Crit. Care, 2020, 24(1), 360.
[156]
Moschonas, I.C.; Tselepis, A.D. SARS-CoV-2 infection and thrombotic complications: A narrative review. J. Thromb. Thrombolysis, 2021, 52(1), 111-123.
[http://dx.doi.org/10.1007/s11239-020-02374-3] [PMID: 33449290]
[157]
Zuo, Y.; Yalavarthi, S.; Shi, H.; Gockman, K.; Zuo, M.; Madison, J.A.; Blair, C.; Weber, A.; Barnes, B.J.; Egeblad, M.; Woods, R.J.; Kanthi, Y.; Knight, J.S. Neutrophil extracellular traps in COVID-19. JCI Insight, 2020, 5(11)138999
[http://dx.doi.org/10.1172/jci.insight.138999] [PMID: 32329756]
[158]
Huang, C.; Wang, Y.; Li, X.; Ren, L.; Zhao, J.; Hu, Y.; Zhang, L.; Fan, G.; Xu, J.; Gu, X.; Cheng, Z.; Yu, T.; Xia, J.; Wei, Y.; Wu, W.; Xie, X.; Yin, W.; Li, H.; Liu, M.; Xiao, Y.; Gao, H.; Guo, L.; Xie, J.; Wang, G.; Jiang, R.; Gao, Z.; Jin, Q.; Wang, J.; Cao, B. Clinical features of patients infected with 2019 novel coronavirus in Wuhan, China. Lancet, 2020, 395(10223), 497-506.
[http://dx.doi.org/10.1016/S0140-6736(20)30183-5] [PMID: 31986264]
[159]
Xu, Z.S.; Shu, T.; Kang, L.; Wu, D.; Zhou, X.; Liao, B.W.; Sun, X.L.; Zhou, X.; Wang, Y.Y. Temporal profiling of plasma cytokines, chemokines and growth factors from mild, severe and fatal covid-19 patients. Signal Transduc. Target. Ther. Springer Nature, 2020, 19(5), 100.
[160]
Goldust, M.; Hartmann, K.; Abdelmaksoud, A.; Navarini, A.A. Utility and risk of dermatologic medications during the COVID-19 pandemic. Dermatol. Ther. (Heidelb.), 2020, 33(6)e13833
[http://dx.doi.org/10.1111/dth.13833] [PMID: 32537852]
[161]
El Farnawany, N. Dapsone old drug can be useful in management of covid-19.APIK J. Intern. Med., 2020, 8(3), 150-150.,
[http://dx.doi.org/10.4103/AJIM.AJIM_23_20]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy