Generic placeholder image

Current Nutraceuticals

Editor-in-Chief

ISSN (Print): 2665-9786
ISSN (Online): 2665-9794

Research Article

Redox Behavior and Radical Scavenging Capacity of Hepatoprotective Nutraceutical Preparations

Author(s): Douglas Vieira Thomaz* and Pierre Alexandre dos Santos

Volume 2, Issue 4, 2021

Published on: 15 June, 2021

Article ID: e150621194084 Pages: 7

DOI: 10.2174/2665978602666210615110653

Price: $65

Abstract

Background: Over-the-counter hepatoprotective nutraceuticals are highly commercialized preparations worldwide. However, their alleged antioxidant capacity and health benefits are still not fully understood.

Objective: This work showcased the first investigation of the redox behavior of hepatoprotective nutraceuticals by spectrophotometric and electrochemical approaches.

Method: The samples were segregated into two groups, namely: A, B, and C based on isolated compounds (IC); and D, E and F based on standardized herbal extracts (SHE).

Results: Results evidenced that IC showcase similar response and distinctions could be attributed to varying concentrations of choline. In SHE, the slopes showcased superimposition due to the presence of Peumus boldus. The electrochemical assays showcased that samples A and C exhibited a single anodic peak at Ep1a ≈ +0.7 V, which could be attributed to the oxidation of methionine; while samples D, E and F, showcased two anodic peaks at Ep1a ≈ +0.35V and Ep2a ≈ +0.7 V, suggesting the oxidation of phenolic and amine moieties respectively. Furthermore, the first two principal components explained 84.8% of all variance in the model, thereby suggesting statistical reproducibility.

Conclusion: This work showcased the first investigation of the redox behavior of hepatoprotective nutraceuticals, thereby shedding light on their antioxidant capacity and physical-chemistry.

Keywords: Thermodynamics, kinetics, antioxidant capacity, natural products, free radical, hepatoprotective nutraceuticals.

Graphical Abstract
[1]
Sharma, J.; Gairola, S.; Gaur, R.D.; Painuli, R.M. The treatment of jaundice with medicinal plants in indigenous communities of the Sub-Himalayan region of Uttarakhand, India. J. Ethnopharmacol., 2012, 143(1), 262-291.
[http://dx.doi.org/10.1016/j.jep.2012.06.034] [PMID: 22759701]
[2]
Speroni, E.; Cervellati, R.; Govoni, P.; Guizzardi, S.; Renzulli, C.; Guerra, M.C. Efficacy of different Cynara scolymus preparations on liver complaints. J. Ethnopharmacol., 2003, 86(2-3), 203-211.
[http://dx.doi.org/10.1016/S0378-8741(03)00076-X] [PMID: 12738088]
[3]
Pradhan, S.C.; Girish, C. Hepatoprotective herbal drug, silymarin from experimental pharmacology to clinical medicine. Indian J. Med. Res., 2006, 124(5), 491-504.
[PMID: 17213517]
[4]
Tedesco, D.; Tava, A.; Galletti, S.; Tameni, M.; Varisco, G.; Costa, A.; Steidler, S. Effects of silymarin, a natural hepatoprotector, in periparturient dairy cows. J. Dairy Sci., 2004, 87(7), 2239-2247.
[http://dx.doi.org/10.3168/jds.S0022-0302(04)70044-2] [PMID: 15328238]
[5]
Mohamed Saleem, TS; Madhusudhana Chetty, S; Ramkanth, S; Rajan, VST; Mahesh Kumar, K; Gauthaman, K Hepatoprotective herbs - a review. Int. J. Res. Pharm. Sci., 2010.
[6]
Jannu, V.; Baddam, P.G.; Boorgula, A.K.; Jambula, S.R. A review on hepatoprotective plants. Int. J. Drug Dev. Res., 2012, 4(3), 1-8.
[7]
Vargas-Mendoza, N.; Madrigal-Santillán, E.; Morales-González, A.; Esquivel-Soto, J.; Esquivel-Chirino, C.; García-Luna Y González-Rubio, M.; Gayosso-de-Lucio, J.A.; Morales-González, J.A. Hepatoprotective effect of silymarin. World J. Hepatol., 2014, 6(3), 144-149.
[http://dx.doi.org/10.4254/wjh.v6.i3.144] [PMID: 24672644]
[8]
Thomaz, D.V. Flavonoid chemistry and neuroprotection. Front Drug, Chem. Clin. Res. (Alex.), 2020, 3, 1-3.
[9]
Mato, J.M.; Martínez-Chantar, M.L.; Lu, S.C. Methionine metabolism and liver disease. Annu. Rev. Nutr., 2008, 28, 273-293.
[http://dx.doi.org/10.1146/annurev.nutr.28.061807.155438] [PMID: 18331185]
[10]
Wang, Z.; Yao, T.; Pini, M.; Zhou, Z.; Fantuzzi, G.; Song, Z. Betaine improved adipose tissue function in mice fed a high-fat diet: A mechanism for hepatoprotective effect of betaine in nonalcoholic fatty liver disease. Am. J. Physiol. Gastrointest. Liver Physiol., 2010, 298(5), G634-G642.
[http://dx.doi.org/10.1152/ajpgi.00249.2009] [PMID: 20203061]
[11]
de Oliveira, T.S.; Thomaz, D.V.; da Silva Neri, H.F.; Cerqueira, L.B.; Garcia, L.F.; Gil, H.P.V.; Pontarolo, R.; Campos, F.R.; Costa, E.A.; Dos Santos, F.C.A.; de Souza Gil, E.; Ghedini, P.C. Neuroprotective effect of caryocar brasiliense camb. leaves is associated with anticholinesterase and antioxidant properties. Oxid. Med. Cell. Longev., 2018, 2018, 9842908.
[http://dx.doi.org/10.1155/2018/9842908] [PMID: 30420910]
[12]
Willems, P.H.G.M.; Rossignol, R.; Dieteren, C.E.J.; Murphy, M.P.; Koopman, W.J.H. Redox homeostasis and mitochondrial dynamics. Cell Metab., 2015, 22(2), 207-218.
[http://dx.doi.org/10.1016/j.cmet.2015.06.006] [PMID: 26166745]
[13]
Trachootham, D.; Lu, W.; Ogasawara, M.A.; Nilsa, R.D.; Huang, P. Redox regulation of cell survival. Antioxid. Redox Signal., 2008, 10(8), 1343-1374.
[http://dx.doi.org/10.1089/ars.2007.1957] [PMID: 18522489]
[14]
Sharma, O.P.; Bhat, T.K. DPPH antioxidant assay revisited. Food Chem., 2009, 113(4), 1202-1205.
[http://dx.doi.org/10.1016/j.foodchem.2008.08.008]
[15]
Kedare, S.B.; Singh, R.P. Genesis and development of DPPH method of antioxidant assay. J. Food Sci. Technol., 2011, 48(4), 412-422.
[http://dx.doi.org/10.1007/s13197-011-0251-1] [PMID: 23572765]
[16]
Re, R.; Pellegrini, N.; Proteggente, A.; Pannala, A.; Yang, M.; Rice-Evans, C. Antioxidant activity applying an improved ABTS radical cation decolorization assay. Free Radic. Biol. Med., 1999, 26(9-10), 1231-1237.
[http://dx.doi.org/10.1016/S0891-5849(98)00315-3] [PMID: 10381194]
[17]
Leite, KC de S Antioxidant activity evaluation of dried herbal extracts: An electroanalytical approach. Rev. Bras. Farmacogn., 2018, 28(3), 325-332.
[http://dx.doi.org/10.1016/j.bjp.2018.04.004]
[18]
Moreno, E.K.G.; Thomaz, D.V.; Machado, F.B.; Leite, K.C.S.; Rodrigues, E.S.B.; Fernandes, M.A. Antioxidant study and electroanalytical investigation of selected herbal samples used in folk medicine. Int. J. Electrochem. Sci., 2019, 14, 838-847.
[http://dx.doi.org/10.20964/2019.01.82]
[19]
Thomaz, D.V.; Leite, K.C de S.; Moreno, E.K.G.; Garcia, L.F.; Alecrim, M.F.; Macêdo, I.Y.L. Electrochemical study of commercial black tea samples. Int. J. Electrochem. Sci., 2018, 13, 5433-5439.
[http://dx.doi.org/10.20964/2018.06.55]
[20]
Thomaz, D.V. How phytocomponents may be valuable against oxidative stress in brain tissue? Glob Drugs Ther., 2020, 1(1), 1-3.
[http://dx.doi.org/10.31487/j.GDT.2020.01.04]
[21]
Thomaz, D.V.; Peixoto, L.F.; de Oliveira, T.S.; Fajemiroye, J.O.; da Silva Neri, H.F.; Xavier, C.H.; Costa, E.A.; Dos Santos, F.C.A.; de Souza Gil, E.; Ghedini, P.C. Antioxidant and neuroprotective properties of eugenia dysenterica leaves. Oxid. Med. Cell. Longev., 2018, 2018, 3250908.
[http://dx.doi.org/10.1155/2018/3250908] [PMID: 30327710]
[22]
Thomaz, D.V.; de Oliveira, M.G.; Rodrigues, E.S.B.; da Silva, V.B.; Dos Santos, P.A. Physicochemical investigation of psoralen binding to double stranded dna through electroanalytical and cheminformatic approaches. Pharmaceuticals (Basel), 2020, 13(6), 1-11.
[http://dx.doi.org/10.3390/ph13060108] [PMID: 32481669]
[23]
Freire, E.; Mayorga, O.L.; Straume, M. Isothermal titration. Anal. Chem., 1990, 18, 950-959.
[http://dx.doi.org/10.1021/ac00217a002]
[24]
Burk, D. Enzyme kinetic constants: The double reciprocal plot. Trends Biochem. Sci., 1984, 9(4), 202-204.
[http://dx.doi.org/10.1016/0968-0004(84)90140-3]
[25]
Thomaz, D.V.; Couto, R.O.; Roberth, A de O.; Oliveira, L.A.R.; Leite, K.C de S.; Bara, M.T de F. Assessment of Noni (Morinda citrifolia L.) product authenticity by solid state voltammetry. Int. J. Electrochem. Sci., 2018, 13, 8983-8994.
[http://dx.doi.org/10.20964/2018.09.390]
[26]
López del Val, J.A.; Alonso Pérez de Agreda, J.P. Principal components analysis. Aten. Primaria, 1993, 12(6), 333-338.
[PMID: 8218814]
[27]
Bondet, V.; Brand-Williams, W.; Berset, C. Kinetics and mechanisms of antioxidant activity using the DPPH• free radical method. Lebensm. Wiss. Technol., 1997, 30(6), 609-615.
[http://dx.doi.org/10.1006/fstl.1997.0240]
[28]
Mehta, A.K.; Arora, N.; Gaur, S.N.; Singh, B.P. Choline supplementation reduces oxidative stress in mouse model of allergic airway disease. Eur. J. Clin. Invest., 2009, 39(10), 934-941.
[http://dx.doi.org/10.1111/j.1365-2362.2009.02190.x] [PMID: 19563446]
[29]
Kanter, M.M.; Williams, M.H. Antioxidants, carnitine, and choline as putative ergogenic aids. Int. J. Sport Nutr., 1995, 5(Suppl.), S120-S131.
[http://dx.doi.org/10.1123/ijsn.5.s1.s120] [PMID: 7550254]
[30]
Levine, R.L.; Mosoni, L.; Berlett, B.S.; Stadtman, E.R. Methionine residues as endogenous antioxidants in proteins. Proc. Natl. Acad. Sci. USA, 1996, 93(26), 15036-15040.
[http://dx.doi.org/10.1073/pnas.93.26.15036] [PMID: 8986759]
[31]
Levine, R.L.; Moskovitz, J.; Stadtman, E.R. Oxidation of methionine in proteins: Roles in antioxidant defense and cellular regulation. IUBMB Life, 2000, 50(4-5), 301-307.
[http://dx.doi.org/10.1080/15216540051081056] [PMID: 11327324]
[32]
Luo, S.; Levine, R.L. Methionine in proteins defends against oxidative stress. FASEB J., 2009, 23(2), 464-472.
[http://dx.doi.org/10.1096/fj.08-118414] [PMID: 18845767]
[33]
Gülçin, I. Antioxidant and antiradical activities of L-carnitine. Life Sci., 2006, 78(8), 803-811.
[http://dx.doi.org/10.1016/j.lfs.2005.05.103] [PMID: 16253281]
[34]
Ribas, G.S.; Vargas, C.R.; Wajner, M. L-carnitine supplementation as a potential antioxidant therapy for inherited neurometabolic disorders. Gene, 2014, 533(2), 469-476.
[http://dx.doi.org/10.1016/j.gene.2013.10.017] [PMID: 24148561]
[35]
Thomaz, D.V. The potential of nanostructured electrode materials in analytical sciences: A short commentary. Mater. Sci., 2019, 1(1), 1-5.
[36]
Thomaz, D.V.; Filho, A.M de A.; Macedo, I.Y.L.; Rodrigues, E.S.B.; Gil, E de S. Predictive modelling to study the electrochemical behaviour of pdo, tio2 and perovskite-type lafeo3 modified carbon paste electrodes. Path Sci., 2019, 5(4), 4001-4007.
[http://dx.doi.org/10.22178/pos.45-3]
[37]
Farr, J.P.G. Electroplating, electrode kinetics and electrocrystallisation. Trans Inst Met Finish., 2010, 88(5), 262-265.
[http://dx.doi.org/10.1179/174591910X1283856866260]
[38]
Stojek, Z. The electrical double layer and its structure. Electroanal methods guid to exp appl., 2010, 3-9.
[http://dx.doi.org/10.1007/978-3-642-02915-8_1]
[39]
Molaakbari, E.; Mostafavi, A.; Beitollahi, H. Simultaneous electrochemical determination of dopamine, melatonin, methionine and caffeine. Sens. Actuators B Chem., 2015, 208(1), 195-203.
[http://dx.doi.org/10.1016/j.snb.2014.10.130]
[40]
Cámara, C.I.; Bornancini, C.A.; Cabrera, J.L.; Ortega, M.G.; Yudi, L.M. Quantitative analysis of boldine alkaloid in natural extracts by cyclic voltammetry at a liquid-liquid interface and validation of the method by comparison with high performance liquid chromatography. Talanta, 2010, 83(2), 623-630.
[http://dx.doi.org/10.1016/j.talanta.2010.10.010] [PMID: 21111183]
[41]
Michael, D.J.; Wightman, R.M. Electrochemical monitoring of biogenic amine neurotransmission in real time. J. Pharm. Biomed. Anal., 1999, 19(1-2), 33-46.
[http://dx.doi.org/10.1016/S0731-7085(98)00145-9] [PMID: 10698566]
[42]
da Cunha, C.E.P.; Rodrigues, E.S.B.; Fernandes Alecrim, M.; Thomaz, D.V.; Macêdo, I.Y.L.; Garcia, L.F.; de Oliveira Neto, J.R.; Moreno, E.K.G.; Ballaminut, N.; de Souza Gil, E. Voltammetric evaluation of diclofenac tablets samples through carbon black-based electrodes. Pharmaceuticals (Basel), 2019, 12(2), 1-11.
[http://dx.doi.org/10.3390/ph12020083] [PMID: 31167398]
[43]
Antunes, R.S.; Ferraz, D.; Garcia, L.F.; Thomaz, D.V.; Luque, R.; Lobón, G.S.; Gil, E.S.; Lopes, F.M. Development of a polyphenol oxidase biosensor from Jenipapo fruit extract (Genipa americana L.) and determination of phenolic compounds in textile industrial effluents. Biosensors (Basel), 2018, 8(2), 1-9.
[http://dx.doi.org/10.3390/bios8020047] [PMID: 29762479]
[44]
Thomaz, D.V.; de Oliveira, M.T.; Lobón, G.S.; da Cunha, C.E.P.; Machado, F.B.; Moreno, E.K.G. Development of laccase-tio2@carbon paste biosensor for voltammetric determination of paracetamol. Int. J. Electrochem. Sci., 2018, 13, 10884-10893.
[http://dx.doi.org/10.20964/2018.11.61]
[45]
Enache, T.A.; Oliveira-Brett, A.M. Boron doped diamond and glassy carbon electrodes comparative study of the oxidation behaviour of cysteine and methionine. Bioelectrochemistry, 2011, 81(1), 46-52.
[http://dx.doi.org/10.1016/j.bioelechem.2011.02.001] [PMID: 21377428]

Rights & Permissions Print Export Cite as
© 2023 Bentham Science Publishers | Privacy Policy