Abstract
Cells can obtain energy through the oxygen-dependent pathway of oxidative phosphorylation (OXPHOS) and through the oxygen-independent pathway of glycolysis. Since OXPHOS is more efficient in generating ATP than glycolysis, it is recognized that the presence of oxygen results in the activation of OXPHOS and the inhibition of glycolysis (Pasteur effect). However, it has been known for many years that cancer cells and non-malignant proliferating cells can activate glycolysis in the presence of adequate oxygen levels (aerobic glycolysis or Warburg effect). Accumulating evidence suggests that the persistent activation of aerobic glycolysis in tumor cells plays a crucial role in cancer development; the inhibition of the increased glycolytic capacity of malignant cells may therefore represent a key anticancer strategy. Although some important knowledge has been gained in the last few years on this growing field of research, the basis of the Warburg effect still remains poorly understood. This communication analyzes why cancer cells switch from OXPHOS to glycolysis in the presence of adequate oxygen levels, and how these cells manage to avoid the inhibition of glycolysis induced by oxygen. Several strategies and drugs that may interfere with the glycolytic metabolism of cancer cells are also shown. This information may help develop anticancer approaches that may have clinical relevance.
Keywords: Aerobic glycolysis, glycolysis inhibitors, metabolism, dysoxic metabolism, hypoxia-inducible factor 1, reactive oxygen species, hydrogen peroxide, superoxide anion
Anti-Cancer Agents in Medicinal Chemistry
Title: The Warburg Effect: Why and How Do Cancer Cells Activate Glycolysis in the Presence of Oxygen?
Volume: 8 Issue: 3
Author(s): Miguel Lopez-Lazaro
Affiliation:
Keywords: Aerobic glycolysis, glycolysis inhibitors, metabolism, dysoxic metabolism, hypoxia-inducible factor 1, reactive oxygen species, hydrogen peroxide, superoxide anion
Abstract: Cells can obtain energy through the oxygen-dependent pathway of oxidative phosphorylation (OXPHOS) and through the oxygen-independent pathway of glycolysis. Since OXPHOS is more efficient in generating ATP than glycolysis, it is recognized that the presence of oxygen results in the activation of OXPHOS and the inhibition of glycolysis (Pasteur effect). However, it has been known for many years that cancer cells and non-malignant proliferating cells can activate glycolysis in the presence of adequate oxygen levels (aerobic glycolysis or Warburg effect). Accumulating evidence suggests that the persistent activation of aerobic glycolysis in tumor cells plays a crucial role in cancer development; the inhibition of the increased glycolytic capacity of malignant cells may therefore represent a key anticancer strategy. Although some important knowledge has been gained in the last few years on this growing field of research, the basis of the Warburg effect still remains poorly understood. This communication analyzes why cancer cells switch from OXPHOS to glycolysis in the presence of adequate oxygen levels, and how these cells manage to avoid the inhibition of glycolysis induced by oxygen. Several strategies and drugs that may interfere with the glycolytic metabolism of cancer cells are also shown. This information may help develop anticancer approaches that may have clinical relevance.
Export Options
About this article
Cite this article as:
Lopez-Lazaro Miguel, The Warburg Effect: Why and How Do Cancer Cells Activate Glycolysis in the Presence of Oxygen?, Anti-Cancer Agents in Medicinal Chemistry 2008; 8 (3) . https://dx.doi.org/10.2174/187152008783961932
DOI https://dx.doi.org/10.2174/187152008783961932 |
Print ISSN 1871-5206 |
Publisher Name Bentham Science Publisher |
Online ISSN 1875-5992 |
Call for Papers in Thematic Issues
Advances in Nanomedicines and Targeted Therapies for Colorectal Cancer
Colorectal cancer remains a significant global health challenge, with high incidence and mortality rates despite advancements in treatment strategies. Conventional therapies often face limitations such as systemic toxicity, drug resistance, and suboptimal targeting. The advent of nanomedicines and innovative drug delivery systems offers new hope for overcoming these challenges and ...read more
Designing Novel Molecules for Anti-Cancer Enzyme Modulation: A Mechanistic and Therapeutic Perspective
The deficiencies or hyper functions of enzymes cause a number of diseases. Enzyme inhibition is an important area of pharmaceutical research since studies in this field have already led to the discovery of wide variety of drugs useful in a number of diseases. Specific inhibitors interact with enzymes and block ...read more
Discovery of Lead compounds targeting transcriptional regulation
Transcriptional regulation plays key physiological functions in body growth and development. Transcriptional dysregulation is one of the important biomarkers of tumor genesis and progression, which is involved in regulating tumor cell processes such as cell proliferation, differentiation, and apoptosis. Additionally, it plays a pivotal role in angiogenesis and promotes tumor ...read more
Heterocyclic Systems: Bridging Chemistry and Biology in Cancer Therapy
The thematic issue, "Heterocyclic Systems: Bridging Chemistry and Biology in Cancer Therapy," explores the critical role of heterocyclic compounds in advancing the frontiers of cancer treatment. Heterocycles serve as fundamental building blocks in medicinal chemistry due to their structural diversity and ability to interact with biological targets. This issue aims ...read more

- Author Guidelines
- Bentham Author Support Services (BASS)
- Graphical Abstracts
- Fabricating and Stating False Information
- Research Misconduct
- Post Publication Discussions and Corrections
- Publishing Ethics and Rectitude
- Increase Visibility of Your Article
- Archiving Policies
- Peer Review Workflow
- Order Your Article Before Print
- Promote Your Article
- Manuscript Transfer Facility
- Editorial Policies
- Allegations from Whistleblowers
Related Articles
-
Anticancer Drug Sensitivity Testing, a Historical Review and Future Perspectives
Current Drug Therapy Novel Epigenetic Targets in Lymphoproliferative Disorders
Current Cancer Drug Targets Targeting of Adhesion Molecules as a Therapeutic Strategy in Multiple Myeloma
Current Cancer Drug Targets Exploring Mechanisms of MicroRNA Downregulation in Cancer
MicroRNA Subject Index to Volume 5
Current Drug Targets Synthesis and Antiproliferative Activity Evaluation of B-norcholesterol-6- amide Compounds
Medicinal Chemistry The Promise of Plant Polyphenols as the Golden Standard Skin Anti-Inflammatory Agents
Current Drug Metabolism Hypertension and Angiogenesis
Current Pharmaceutical Design Pleuroparenchymal Fibroelastosis: Its Pathological Characteristics
Current Respiratory Medicine Reviews Size-tuneable Nanometric MRI Contrast Agents for the Imaging of Molecular Weight Dependent Transport Processes
Pharmaceutical Nanotechnology Anticancer Effect of Amygdalin (Vitamin B-17) on Hepatocellular Carcinoma Cell Line (HepG2) in the Presence and Absence of Zinc
Anti-Cancer Agents in Medicinal Chemistry Novel MicroRNA Binding Site SNPs and the Risk of Clear Cell Renal Cell Carcinoma (ccRCC): A Case-Control Study
Current Cancer Drug Targets Suppression of Erosive Arthritis by NF-κB Inhibitors
Current Rheumatology Reviews Monitoring the Switch: The Warburg Effect and Targeted Proteomic Analysis of Cancer Metabolism
Current Proteomics Synthesis and Biological Evaluation of New 4-Thiazolidinone Derivatives as Carbonic Anhydrase Inhibitors
Letters in Organic Chemistry Alterations in Homocysteine Metabolism Among Alcohol Dependent Patients - Clinical, Pathobiochemical and Genetic Aspects
Current Drug Abuse Reviews Pharmacogenetics of Estrogen Metabolism and Transport in Relation to Cancer
Current Drug Metabolism Aryltetralin-type Lignan of Podophyllum: A Comprehensive Review
The Natural Products Journal Inhibition of Aurora A Kinase by Alisertib Induces Autophagy and Cell Cycle Arrest and Increases Chemosensitivity in Human Hepatocellular Carcinoma HepG2 Cells
Current Cancer Drug Targets Microfluidic Paper-based Device for Medicinal Diagnosis
Current Topics in Medicinal Chemistry