Generic placeholder image

Letters in Drug Design & Discovery

Editor-in-Chief

ISSN (Print): 1570-1808
ISSN (Online): 1875-628X

Research Article

Design of Oleanolic Acid-based Hybrid Compounds as Potential Pharmaceutical Scaffolds

Author(s): Vuyolwethu Khwaza, Opeoluwa Oyehan Oyedeji, Blessing Atim Aderibigbe*, Eric Morifi, Youmbi Thierry Fonkui, Derek Tantoh Ndinteh, Margo Nell and Vanessa Steenkamp

Volume 19, Issue 1, 2022

Published on: 04 June, 2021

Page: [10 - 19] Pages: 10

DOI: 10.2174/1570180818666210604112451

Price: $65

Abstract

Background: Infectious diseases, as well as cancer, are the leading causes of death worldwide. Drug resistance usually results in their treatment requiring a combination of two or more drugs.

Objective: Oleanolic-based hybrid compounds were prepared via esterification and characterized using FTIR, NMR and LC-MS. In vitro antibacterial and in vitro cytotoxicity studies were performed.

Methods: Oleanolic acid was hybridized with selected known pharmaceutical scaffolds via the carboxylic acid functionality in order to develop therapeutics with increased biological activity. Antibacterial activity was determined using the micro-dilution assay against selected Gram-positive and Gram-negative bacteria and cytotoxicity using the sulforhodamine B assay.

Results: Compound 8 displayed potent antibacterial effect against five strains of bacteria, such as Bacillus subtilis, Staphylococcus aureus, Proteus vulgaris, Klebsiella oxytoca, and Escherichia coli, with MIC values of 1.25, 0.078, 0.078, 1.25, 1.25 mg/mL when compared to the control, oleanolic acid (MIC = 2.5 mg/mL). Furthermore, in vitro cytotoxicity, as determined using the SRB assay, against selected cancer cells revealed that compound 7 was the most cytotoxic on MDA, DU145, and MCF-7 cell lines with IC50 values of 69.87 ± 1.04, 73.2 ± 1.08, and 85.27 ± 1.02 μg/mL, respectively, compared to oleanolic acid with an IC50 > 200 μg/mL.

Conclusion: Hybridization of oleanolic acid was successful, and further development of these potential antibacterial compounds with reduced cytotoxicity is therefore warranted.

Keywords: Oleanolic acid, anticancer, antibacterial, hybrid compound, 4-aminosalicylic acid, curcumin.

Graphical Abstract
[1]
Walvekar, P.; Gannimani, R.; Govender, T. Combination drug therapy via nanocarriers against infectious diseases. Eur. J. Pharm. Sci., 2019, 127, 121-141.
[http://dx.doi.org/10.1016/j.ejps.2018.10.017] [PMID: 30342173]
[2]
Nichol, D.; Jeavons, P.; Fletcher, A.G.; Bonomo, R.A.; Maini, P.K.; Paul, J.L.; Gatenby, R.A.; Anderson, A.R.; Scott, J.G. Steering evolution with sequential therapy to prevent the emergence of bacterial antibiotic resistance. PLOS Comput. Biol., 2015, 11(9)e1004493
[http://dx.doi.org/10.1371/journal.pcbi.1004493] [PMID: 26360300]
[3]
Fair, R.J.; Tor, Y. Antibiotics and bacterial resistance in the 21st century. Perspect Medicin Chem. 2014, 6PMC-S14459
[4]
Taganna, J.C.; Quanico, J.P.; Perono, R.M.G.; Amor, E.C.; Rivera, W.L. Tannin-rich fraction from Terminalia catappa inhibits quorum sensing (QS) in Chromobacterium violaceum and the QS-controlled biofilm maturation and LasA staphylolytic activity in Pseudomonas aeruginosa. J. Ethnopharmacol., 2011, 134(3), 865-871.
[http://dx.doi.org/10.1016/j.jep.2011.01.028] [PMID: 21291979]
[5]
Morgan, D.J.; Okeke, I.N.; Laxminarayan, R.; Perencevich, E.N.; Weisenberg, S. Non-prescription antimicrobial use worldwide: a systematic review. Lancet Infect. Dis., 2011, 11(9), 692-701.
[http://dx.doi.org/10.1016/S1473-3099(11)70054-8] [PMID: 21659004]
[6]
Zhang, B. Comprehensive review on the anti-bacterial activity of 1,2,3-triazole hybrids. Eur. J. Med. Chem., 2019, 168, 357-372.
[http://dx.doi.org/10.1016/j.ejmech.2019.02.055] [PMID: 30826511]
[7]
Mundy, L.; Pendry, B.; Rahman, M. Antimicrobial resistance and synergy in herbal medicine. J. Herb. Med., 2016, 6(2), 53-58.
[http://dx.doi.org/10.1016/j.hermed.2016.03.001]
[8]
Belete, T.M. Novel targets to develop new antibacterial agents and novel alternatives to antibacterial agents. Hum. Microbiome J., 2019, 11100052
[http://dx.doi.org/10.1016/j.humic.2019.01.001]
[9]
Karagöz, A.Ç.; Leidenberger, M.; Hahn, F.; Hampel, F.; Friedrich, O.; Marschall, M.; Kappes, B.; Tsogoeva, S.B. Synthesis of new betulinic acid/betulin-derived dimers and hybrids with potent antimalarial and antiviral activities. Bioorg. Med. Chem., 2019, 27(1), 110-115.
[http://dx.doi.org/10.1016/j.bmc.2018.11.018] [PMID: 30503412]
[10]
Harvey, A.L. Natural products in drug discovery. Drug Discov. Today, 2008, 13(19-20), 894-901.
[http://dx.doi.org/10.1016/j.drudis.2008.07.004] [PMID: 18691670]
[11]
Ganesan, A. The impact of natural products upon modern drug discovery. Curr. Opin. Chem. Biol., 2008, 12(3), 306-317.
[http://dx.doi.org/10.1016/j.cbpa.2008.03.016] [PMID: 18423384]
[12]
Subbaiah, S.G.P.; Dakappa, S.S.; Lakshmikan, R.Y. Antibacterial and molecular docking studies of bioactive component from leaves of stachytarpheta cayennensis (Rich.). Vahl. Res. J. Phytochem., 2017, 11(1), 28-34.
[http://dx.doi.org/10.3923/rjphyto.2017.28.34]
[13]
Arulmozhi, P.; Vijayakumar, S.; Kumar, T. Phytochemical analysis and antimicrobial activity of some medicinal plants against selected pathogenic microorganisms. Microb. Pathog., 2018, 123, 219-226.
[http://dx.doi.org/10.1016/j.micpath.2018.07.009] [PMID: 30009969]
[14]
Vandal, J.; Abou-Zaid, M.M.; Ferroni, G.; Leduc, L.G. Antimicrobial activity of natural products from the flora of Northern Ontario, Canada. Pharm. Biol., 2015, 53(6), 800-806.
[http://dx.doi.org/10.3109/13880209.2014.942867] [PMID: 25697605]
[15]
Silva, N.C.; Fernandes Júnior, A.J. Biological properties of medicinal plants: a review of their antimicrobial activity. J. Venom. Anim. Toxins Incl. Trop. Dis., 2010, 16, 402-413.
[http://dx.doi.org/10.1590/S1678-91992010000300006]
[16]
Kurek, A.; Nadkowska, P.; Pliszka, S.; Wolska, K.I. Modulation of antibiotic resistance in bacterial pathogens by oleanolic acid and ursolic acid. Phytomedicine, 2012, 19(6), 515-519.
[http://dx.doi.org/10.1016/j.phymed.2011.12.009] [PMID: 22341643]
[17]
Kuźma, Ł.; Rózalski, M.; Walencka, E.; Rózalska, B.; Wysokińska, H. Antimicrobial activity of diterpenoids from hairy roots of Salvia sclarea L.: salvipisone as a potential anti-biofilm agent active against antibiotic resistant Staphylococci. Phytomedicine, 2007, 14(1), 31-35.
[http://dx.doi.org/10.1016/j.phymed.2005.10.008] [PMID: 17190643]
[18]
Wu, P.; Tu, B.; Liang, J.; Guo, S.; Cao, N.; Chen, S.; Luo, Z.; Li, J.; Zheng, W.; Tang, X.; Li, D.; Xu, X.; Liu, W.; Zheng, X.; Sheng, Z.; Roberts, A.P.; Zhang, K.; Hong, W.D. Synthesis and biological evaluation of pentacyclic triterpenoid derivatives as potential novel antibacterial agents. Bioorg. Chem., 2021, 109104692
[http://dx.doi.org/10.1016/j.bioorg.2021.104692] [PMID: 33626454]
[19]
Khwaza, V.; Oyedeji, O.O.; Aderibigbe, B.A. Antiviral activities of oleanolic acid and its analogues. Molecules, 2018, 23(9), 2300.
[http://dx.doi.org/10.3390/molecules23092300] [PMID: 30205592]
[20]
Hichri, F.; Ben, H.; Cheriaa, J.; Jegham, S.; Mighri, Z. Antibacterial activities of a few prepared derivatives of oleanolic acid and of other natural triterpenic compounds. C. R. Chim., 2003, 6, 473-483.
[http://dx.doi.org/10.1016/S1631-0748(03)00066-3]
[21]
Chouaïb, K.; Hichri, F.; Nguir, A.; Daami-Remadi, M.; Elie, N.; Touboul, D.; Ben Jannet, H.; Hamza, M.A. Semi-synthesis of new antimicrobial esters from the natural oleanolic and maslinic acids. Food Chem., 2015, 183, 8-17.
[http://dx.doi.org/10.1016/j.foodchem.2015.03.018] [PMID: 25863603]
[22]
Ye, M.; Liao, Y.; Wu, L.; Qi, W.; Choudhry, N.; Liu, Y.; Chen, W.; Song, G.; Chen, J. An oleanolic acid derivative inhibits hemagglutinin-mediated entry of influenza a virus. Viruses, 2020, 12(2), 225.
[http://dx.doi.org/10.3390/v12020225] [PMID: 32085430]
[23]
Kong, L.; Li, S.; Liao, Q.; Zhang, Y.; Sun, R.; Zhu, X.; Zhang, Q.; Wang, J.; Wu, X.; Fang, X.; Zhu, Y. Oleanolic acid and ursolic acid: Novel hepatitis C virus antivirals that inhibit NS5B activity. Antiviral Res., 2013, 98(1), 44-53.
[24]
Zhang, L.; Chen, Y.; Shi, R.; Kang, T.; Pang, G.; Wang, B.; Zhao, Y.; Zeng, X.; Zou, C.; Wu, P.; Li, J. Synthesis of hollow nanocages MOF-5 as drug delivery vehicle to solve the load-bearing problem of insoluble antitumor drug oleanolic acid (OA). Inorg. Chem. Commun., 2018, 96, 20-23.
[http://dx.doi.org/10.1016/j.inoche.2018.07.029]
[25]
Oprean, C.; Mioc, M.; Csányi, E.; Ambrus, R.; Bojin, F.; Tatu, C.; Cristea, M.; Ivan, A.; Danciu, C.; Dehelean, C.; Paunescu, V.; Soica, C. Improvement of ursolic and oleanolic acids’ antitumor activity by complexation with hydrophilic cyclodextrins. Biomed. Pharmacother., 2016, 83, 1095-1104.
[http://dx.doi.org/10.1016/j.biopha.2016.08.030] [PMID: 27551755]
[26]
Chouaïb, K.; Romdhane, A.; Delemasure, S.; Dutartre, P.; Elie, N.; Touboul, D. Regiospecific synthesis, anti-inflammatory and anticancer evaluation of novel 3, 5-disubstituted isoxazoles from the natural maslinic and oleanolic acids. Ind. Crops Prod., 2016, 85, 287-299.
[http://dx.doi.org/10.1016/j.indcrop.2016.03.024]
[27]
Rali, S.; Oyedeji, O.O.; Aremu, O.O.; Oyedeji, A.O.; Nkeh-Chungag, B.N. Semisynthesis of derivatives of oleanolic acid from Syzygium aromaticum and their antinociceptive and anti-inflammatory properties. Mediators Inflamm., 2016, 2016.
[28]
Yan, X.J.; Gong, L.H.; Zheng, F.Y.; Cheng, K.J.; Chen, Z.S.; Shi, Z. Triterpenoids as reversal agents for anticancer drug resistance treatment. Drug Discov. Today, 2014, 19(4), 482-488.
[http://dx.doi.org/10.1016/j.drudis.2013.07.018] [PMID: 23954181]
[29]
Ghante, M.H.; Jamkhande, P.G. Role of pentacyclic triterpenoids in chemoprevention and anticancer treatment: An overview on targets and underling mechanisms. J. Pharmacopuncture, 2019, 22(2), 55-67.
[PMID: 31338244]
[30]
Liby, K.T.; Sporn, M.B. Synthetic oleanane triterpenoids: multifunctional drugs with a broad range of applications for prevention and treatment of chronic disease. Pharmacol. Rev., 2012, 64(4), 972-1003.
[http://dx.doi.org/10.1124/pr.111.004846] [PMID: 22966038]
[31]
Suh, N.; Wang, Y.; Honda, T.; Gribble, G.W.; Dmitrovsky, E.; Hickey, W.F.; Maue, R.A.; Place, A.E.; Porter, D.M.; Spinella, M.J.; Williams, C.R.; Wu, G.; Dannenberg, A.J.; Flanders, K.C.; Letterio, J.J.; Mangelsdorf, D.J.; Nathan, C.F.; Nguyen, L.; Porter, W.W.; Ren, R.F.; Roberts, A.B.; Roche, N.S.; Subbaramaiah, K.; Sporn, M.B. A novel synthetic oleanane triterpenoid, 2-cyano-3,12-dioxoolean-1,9-dien-28-oic acid, with potent differentiating, antiproliferative, and anti-inflammatory activity. Cancer Res., 1999, 59(2), 336-341.
[PMID: 9927043]
[32]
Chen, J.; Liu, J.; Zhang, L.; Wu, G.; Hua, W.; Wu, X.; Sun, H. Pentacyclic triterpenes. Part 3: Synthesis and biological evaluation of oleanolic acid derivatives as novel inhibitors of glycogen phosphorylase. Bioorg. Med. Chem. Lett., 2006, 16(11), 2915-2919.
[http://dx.doi.org/10.1016/j.bmcl.2006.03.009] [PMID: 16546381]
[33]
Cheng, K.G.; Su, C.H.; Yang, L.D.; Liu, J.; Chen, Z.F. Synthesis of oleanolic acid dimers linked at C-28 and evaluation of anti-tumor activity. Eur. J. Med. Chem., 2015, 89, 480-489.
[http://dx.doi.org/10.1016/j.ejmech.2014.10.066] [PMID: 25462260]
[34]
Zhu, Y.M.; Shen, J.K.; Wang, H.K.; Cosentino, L.M.; Lee, K.H. Synthesis and anti-HIV activity of oleanolic acid derivatives. Bioorg. Med. Chem. Lett., 2001, 11(24), 3115-3118.
[http://dx.doi.org/10.1016/S0960-894X(01)00647-3] [PMID: 11720855]
[35]
Han, X.; Si, L.L.; Shi, Y.Y.; Fan, Z.B.; Wang, S.X.; Tian, Z.Y.; Li, M.; Sun, J.Q.; Jiao, P.X.; Ran, F.X.; Zhang, Y.M.; Zhou, D.M.; Xiao, S.L. Synthesis and in vitro anti-influenza virus evaluation of novel sialic acid (C-5 and C-9)-pentacyclic triterpene derivatives. Molecules, 2017, 22(7), 1018.
[http://dx.doi.org/10.3390/molecules22071018] [PMID: 28640212]
[36]
Wang, K.K.; Stone, L.K.; Lieberman, T.D.; Shavit, M.; Baasov, T.; Kishony, R. A hybrid drug limits resistance by evading the action of the multiple antibiotic resistance pathway. Mol. Biol. Evol., 2016, 33(2), 492-500.
[http://dx.doi.org/10.1093/molbev/msv243] [PMID: 26538141]
[37]
Kucuksayan, E.; Ozben, T. Hybrid compounds as multitarget directed anticancer agents. Curr. Top. Med. Chem., 2017, 17(8), 907-918.
[http://dx.doi.org/10.2174/1568026616666160927155515] [PMID: 27697050]
[38]
Sampath Kumar, H.M.; Herrmann, L.; Tsogoeva, S.B. Structural hybridization as a facile approach to new drug candidates. Bioorg. Med. Chem. Lett., 2020, 30(23)127514
[http://dx.doi.org/10.1016/j.bmcl.2020.127514] [PMID: 32860980]
[39]
Sandhu, S.; Bansal, Y.; Silakari, O.; Bansal, G. Coumarin hybrids as novel therapeutic agents. Bioorg. Med. Chem., 2014, 22(15), 3806-3814.
[http://dx.doi.org/10.1016/j.bmc.2014.05.032] [PMID: 24934993]
[40]
Xie, W.; Wu, Y.; Zhang, J.; Mei, Q.; Zhang, Y.; Zhu, N.; Liu, R.; Zhang, H. Design, synthesis and biological evaluations of novel pyridone-thiazole hybrid molecules as antitumor agents. Eur. J. Med. Chem., 2018, 145, 35-40.
[http://dx.doi.org/10.1016/j.ejmech.2017.12.038] [PMID: 29316536]
[41]
Chen, J.; Tang, Z.; Slominski, A.T.; Li, W.; Żmijewski, M.A.; Liu, Y.; Chen, J. Vitamin D and its analogs as anticancer and anti-inflammatory agents. Eur. J. Med. Chem., 2020, 207112738
[http://dx.doi.org/10.1016/j.ejmech.2020.112738] [PMID: 32829183]
[42]
Rodrigues, F.C.; Anil Kumar, N.V.; Thakur, G. Developments in the anticancer activity of structurally modified curcumin: An up-to-date review. Eur. J. Med. Chem., 2019, 177, 76-104.
[http://dx.doi.org/10.1016/j.ejmech.2019.04.058] [PMID: 31129455]
[43]
Maguene, G.M.; Lekana-Douki, J.B.; Mouray, E.; Bousquet, T.; Grellier, S.; Pellegrini, S.; Ndouo, F.S.T.; Lebibi, J.; Pélinski, L. Synthesis and in vitro antiplasmodial activity of ferrocenyl aminoquinoline derivatives. Eur. J. Med. Chem., 2015, 90, 519-525.
[44]
Sadeghi, F.; Eidizade, A.; Saremnejad, F.; Hadizadeh, F.; Khodaverdi, E.; Akhgari, A. Synthesis of a novel PEGylated colon-specific azo-based 4- aminosalicylic acid prodrug. Iran. J. Basic Med. Sci., 2020, 23(6), 781-787.
[PMID: 32695295]
[45]
Nkeh-Chungag, B.N.; Oyedeji, O.O.; Oyedeji, A.O.; Ndebia, E.J. Anti-inflammatory and membrane-stabilizing properties of two semisynthetic derivatives of oleanolic acid. Inflammation, 2015, 38(1), 61-69.
[http://dx.doi.org/10.1007/s10753-014-0007-y] [PMID: 25173889]
[46]
Hossain, M.A.; Ismail, Z. Isolation and characterization of triterpenes from the leaves of Orthosiphon stamineus. Arab. J. Chem., 2013, 6(3), 295-298.
[http://dx.doi.org/10.1016/j.arabjc.2010.10.009]
[47]
Jama, S.; Nqoro, X.; Morifi, E.; Aderibigbe, B.A. 4-Aminosalicylic acid-based hybrid compounds: synthesis and in vitro antiplasmodial evaluation. Lett. Drug Des. Discov., 2020, 17(1)
[http://dx.doi.org/10.2174/1570180817999200802031547]
[48]
Fonkui, T.Y.; Ikhile, M.I.; Muganza, F.M.; Fotsing, M.C.D.; Arderne, C.; Siwe-Noundou, X. Synthesis, characterization and biological applications of novel Schiff bases of 2-(trifluoromethoxy) aniline. J. Chin. Pharm. Sci., 2018, 27(5), 307-323.
[http://dx.doi.org/10.5246/jcps.2018.05.032]
[49]
Vichai, V.; Kirtikara, K. Sulforhodamine B colorimetric assay for cytotoxicity screening. Nat. Protoc., 2006, 1(3), 1112-1116.
[http://dx.doi.org/10.1038/nprot.2006.179] [PMID: 17406391]
[50]
Dang Thi, T.A.; Kim Tuyet, N.T. Pham The, C.; Thanh Nguyen, H.; Ba Thi, C.; Doan Duy, T.; D’hooghe, M.; Van Nguyen, T. Synthesis and cytotoxic evaluation of novel ester-triazole-linked triterpenoid-AZT conjugates. Bioorg. Med. Chem. Lett., 2014, 24(22), 5190-5194.
[http://dx.doi.org/10.1016/j.bmcl.2014.09.079] [PMID: 25442310]
[51]
DeRuiter, J. J. Esters and related carboxylic acid derivatives. Principles of Drug Action 1, Spring, 2005.Esters. http://webhome.auburn.edu/~deruija/pda1_esters.pdf ccessed 03 January 2021.
[http://dx.doi.org/10.14205/2309-4435.2015.03.01.4]
[52]
Jornada, D.H.; dos Santos Fernandes, G.F.; Chiba, D.E.; de Melo, T.R.F.; dos Santos, J.L.; Chung, M.C. The prodrug approach: A successful tool for improving drug solubility. Molecules, 2015, 21(1), 42.
[http://dx.doi.org/10.3390/molecules21010042] [PMID: 26729077]
[53]
Pawełczyk, A.; Sowa-Kasprzak, K.; Olender, D.; Zaprutko, L. Molecular consortia-various structural and synthetic concepts for more effective therapeutics synthesis. Int. J. Mol. Sci., 2018, 19(4), 1104.
[http://dx.doi.org/10.3390/ijms19041104] [PMID: 29642417]
[54]
Blanco-Cabra, N.; Vega-Granados, K.; Moya-Andérico, L.; Vukomanovic, M.; Parra, A.; Álvarez de Cienfuegos, L.; Torrents, E. Novel oleanolic and maslinic acid derivatives as a promising treatment against bacterial biofilm in nosocomial infections: An in vitro and in vivo Study. ACS Infect. Dis., 2019, 5(9), 1581-1589.
[http://dx.doi.org/10.1021/acsinfecdis.9b00125] [PMID: 31268675]
[55]
Gu, W.; Hao, Y.; Zhang, G.; Wang, S.F.; Miao, T.T.; Zhang, K.P. Synthesis, in vitro antimicrobial and cytotoxic activities of new carbazole derivatives of ursolic acid. Bioorg. Med. Chem. Lett., 2015, 25(3), 554-557.
[http://dx.doi.org/10.1016/j.bmcl.2014.12.021] [PMID: 25537271]
[56]
do Nascimento, P.G.; Lemos, T.L.; Bizerra, A.M.; Arriaga, Â.M.; Ferreira, D.A.; Santiago, G.M.; Braz-Filho, R.; Costa, J.G.M. Antibacterial and antioxidant activities of ursolic acid and derivatives. Molecules, 2014, 19(1), 1317-1327.
[http://dx.doi.org/10.3390/molecules19011317] [PMID: 24451251]
[57]
Domalaon, R.; Yang, X.; Lyu, Y.; Zhanel, G.G.; Schweizer, F. Polymyxin B3-tobramycin hybrids with Pseudomonas aeruginosa-selective antibacterial activity and strong potentiation of rifampicin, minocycline, and vancomycin. ACS Infect. Dis., 2017, 3(12), 941-954.
[http://dx.doi.org/10.1021/acsinfecdis.7b00145] [PMID: 29045123]
[58]
Saifullah, B.; El Zowalaty, M.E.; Arulselvan, P.; Fakurazi, S.; Webster, T.J.; Geilich, B.M.; Hussein, M.Z. Antimycobacterial, antimicrobial, and biocompatibility properties of para-aminosalicylic acid with zinc layered hydroxide and Zn/Al layered double hydroxide nanocomposites. Drug Des. Devel. Ther., 2014, 8, 1029-1036.
[PMID: 25114509]
[59]
Zheng, J.; Rubin, E.J.; Bifani, P.; Mathys, V.; Lim, V.; Au, M.; Jang, J.; Nam, J.; Dick, T.; Walker, J.R.; Pethe, K.; Camacho, L.R. para-Aminosalicylic acid is a prodrug targeting dihydrofolate reductase in Mycobacterium tuberculosis. J. Biol. Chem., 2013, 288(32), 23447-23456.
[http://dx.doi.org/10.1074/jbc.M113.475798] [PMID: 23779105]
[60]
Tintino, S.R.; Morais-Tintino, C.D.; Campina, F.F.; Pereira, R.L. Costa, Mdo.S.; Braga, M.F.B.; Limaverde, P.W.; Andrade, J.C.; Siqueira-Junior, J.P.; Coutinho, H.D.M.; Balbino, V.Q.; Leal-Balbino, T.C.; Ribeiro-Filho, J.; Quintans-Júnior, L.J. Action of cholecalciferol and alpha-tocopherol on Staphylococcus aureus efflux pumps. EXCLI J., 2016, 15, 315-322.
[PMID: 27298617]
[61]
Trump, D.L.; Aragon-Ching, J.B. Vitamin D in prostate cancer. Asian J. Androl., 2018, 20(3), 244-252.
[http://dx.doi.org/10.4103/aja.aja_14_18] [PMID: 29667615]
[62]
Nagy, L.I.; Fehér, L.Z.; Szebeni, G.J.; Gyuris, M.; Sipos, P.; Alföldi, R.; Ózsvári, B.; Hackler, L.; Balázs, A.; Batár, P.; Kanizsai, I. Curcumin and its analogue induce apoptosis in leukemia cells and have additive effects with bortezomib in cellular and xenograft models. Biomed Res. Int, 2015, 2015
[http://dx.doi.org/10.1155/2015/968981]
[63]
Allegra, A.; Innao, V.; Russo, S.; Gerace, D.; Alonci, A.; Musolino, C. Anticancer activity of curcumin and its analogues: Preclinical and clinical studies. Cancer Invest., 2017, 35(1), 1-22.
[http://dx.doi.org/10.1080/07357907.2016.1247166] [PMID: 27996308]
[64]
Wei, X.; Du, Z.Y.; Zheng, X.; Cui, X.X.; Conney, A.H.; Zhang, K. Synthesis and evaluation of curcumin-related compounds for anticancer activity. Eur. J. Med. Chem., 2012, 53, 235-245.
[http://dx.doi.org/10.1016/j.ejmech.2012.04.005] [PMID: 22551677]
[65]
Zeljic, K.; Supic, G.; Magic, Z. New insights into vitamin D anticancer properties: focus on miRNA modulation. Mol. Genet. Genomics, 2017, 292(3), 511-524.
[http://dx.doi.org/10.1007/s00438-017-1301-9] [PMID: 28243735]
[66]
Song, X.; Liu, C.C.; Hong, Y.R.; Zhu, X.C. Anticancer activity of novel oleanolic acid methyl ester derivative in HeLa cervical cancer cells is mediated through apoptosis induction and reactive oxygen species production. Bangladesh J. Pharmacol., 2015, 10(4), 896-902.
[http://dx.doi.org/10.3329/bjp.v10i4.23709]
[67]
Fortin, S.; Bérubé, G. Advances in the development of hybrid anticancer drugs. Expert Opin. Drug Discov., 2013, 8(8), 1029-1047.
[http://dx.doi.org/10.1517/17460441.2013.798296] [PMID: 23646979]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy