Generic placeholder image

当代肿瘤药物靶点

Editor-in-Chief

ISSN (Print): 1568-0096
ISSN (Online): 1873-5576

Review Article

ZEB 家族成员在前列腺癌细胞增殖、转移和化学抗性中的作用:揭示信号网络

卷 21, 期 9, 2021

发表于: 01 June, 2021

页: [749 - 767] 页: 19

弟呕挨: 10.2174/1568009621666210601114631

价格: $65

摘要

前列腺癌 (PCa) 是全球主要的死亡原因之一。多种策略,包括手术、化学疗法、放射疗法和免疫疗法,被应用于 PCa 治疗。 PCa 细胞在早期阶段对治疗有反应,但它们可以在晚期获得抵抗力。此外,它们的迁移能力在晚期阶段很高。似乎遗传和表观遗传因素在这种情况下起着重要作用。锌指 E-box-binding homeobox (ZEB) 是一个转录家族,具有两个关键成员,包括 ZEB1 和 ZEB2。 ZEB 家族成员因参与通过 EMT 诱导促进癌症转移而闻名。最近的研究表明它们在癌症增殖和诱导治疗抵抗中的作用。在当前的审查中,我们重点揭示 ZEB1 和 ZEB2 在 PCa 中的作用。 ZEB 家族成员能够显着促进癌细胞的增殖和活力。 ZEB1 和 ZEB2 通过 EMT 诱导增强 PCa 细胞的迁移和侵袭。 ZEB1 和 ZEB2 的过表达与 PCa 的不良预后相关。 ZEB1 和 ZEB2 上调发生在 PCa 进展过程中,可以为癌细胞提供治疗抗性。 PRMT1、Smad2 和非编码 RNA 可以作为 ZEB 家族的上游介质。此外,Bax、Bcl-2、MRP1、Ncadherin 和 E-cadherin 可被视为 PCa 中 ZEB 家族的下游靶标。

关键词: 前列腺癌、锌指 E-box 结合同源框 (ZEB)、转移、化学抗性、增殖、上皮间质转化 (EMT)、microRNA、lncRNA。

图形摘要
[1]
Brockmueller, A.; Sameri, S.; Liskova, A.; Zhai, K.; Varghese, E.; Samuel, S.M.; Büsselberg, D.; Kubatka, P.; Shakibaei, M. Resveratrol’s anti-cancer effects through the modulation of tumor glucose metabolism. Cancers (Basel), 2021, 13(2), 188.
[http://dx.doi.org/10.3390/cancers13020188] [PMID: 33430318]
[2]
Kubatka, P.; Kello, M.; Kajo, K.; Samec, M.; Liskova, A.; Jasek, K.; Koklesova, L.; Kuruc, T.; Adamkov, M.; Smejkal, K.; Svajdlenka, E.; Solar, P.; Pec, M.; Büsselberg, D.; Sadlonova, V.; Mojzis, J. Rhus coriaria l. (sumac) demonstrates oncostatic activity in the therapeutic and preventive model of breast carcinoma. Int. J. Mol. Sci., 2020, 22(1), 183.
[http://dx.doi.org/10.3390/ijms22010183] [PMID: 33375383]
[3]
Zhai, K.; Brockmüller, A.; Kubatka, P.; Shakibaei, M.; Büsselberg, D. Curcumin’s beneficial effects on neuroblastoma: mechanisms, challenges, and potential solutions. Biomolecules, 2020, 10(11), 1469.
[http://dx.doi.org/10.3390/biom10111469] [PMID: 33105719]
[4]
Samec, M.; Liskova, A.; Koklesova, L.; Samuel, S.M.; Murin, R.; Zubor, P.; Bujnak, J.; Kwon, T.K.; Büsselberg, D.; Prosecky, R.; Caprnda, M.; Rodrigo, L.; Ciccocioppo, R.; Kruzliak, P.; Kubatka, P. The role of plant-derived natural substances as immunomodulatory agents in carcinogenesis. J. Cancer Res. Clin. Oncol., 2020, 146(12), 3137-3154.
[http://dx.doi.org/10.1007/s00432-020-03424-2] [PMID: 33063131]
[5]
Vadakekolathu, J.; Minden, M.D.; Hood, T.; Church, S.E.; Reeder, S.; Altmann, H.; Sullivan, A.H.; Viboch, E.J.; Patel, T.; Ibrahimova, N.; Warren, S.E.; Arruda, A.; Liang, Y.; Smith, T.H.; Foulds, G.A.; Bailey, M.D.; Gowen-MacDonald, J.; Muth, J.; Schmitz, M.; Cesano, A.; Pockley, A.G.; Valk, P.J.M.; Löwenberg, B.; Bornhäuser, M.; Tasian, S.K.; Rettig, M.P.; Davidson-Moncada, J.K.; DiPersio, J.F.; Rutella, S. Immune landscapes predict chemotherapy resistance and immunotherapy response in acute myeloid leukemia. Sci. Transl. Med., 2020, 12(546), 12.
[http://dx.doi.org/10.1126/scitranslmed.aaz0463] [PMID: 32493790]
[6]
Schoenfeld, A.J.; Hellmann, M.D. Acquired resistance to immune checkpoint inhibitors. Cancer Cell, 2020, 37(4), 443-455.
[http://dx.doi.org/10.1016/j.ccell.2020.03.017] [PMID: 32289269]
[7]
Ashrafizadeh, M.; Bakhoda, M.R.; Bahmanpour, Z.; Ilkhani, K.; Zarrabi, A.; Makvandi, P.; Khan, H.; Mazaheri, S.; Darvish, M.; Mirzaei, H. Apigenin as tumor suppressor in cancers: biotherapeutic activity, nanodelivery, and mechanisms with emphasis on pancreatic cancer. Front Chem., 2020, 8, 829.
[http://dx.doi.org/10.3389/fchem.2020.00829] [PMID: 33195038]
[8]
Ashrafizadeh, M.; Delfi, M.; Hashemi, F.; Zabolian, A.; Saleki, H.; Bagherian, M.; Azami, N.; Farahani, M.V.; Sharifzadeh, S.O.; Hamzehlou, S.; Hushmandi, K.; Makvandi, P.; Zarrabi, A.; Hamblin, M.R.; Varma, R.S. Biomedical application of chitosan-based nanoscale delivery systems: Potential usefulness in siRNA delivery for cancer therapy. Carbohydr. Polym., 2021, 260, 117809.
[http://dx.doi.org/10.1016/j.carbpol.2021.117809] [PMID: 33712155]
[9]
Culp, M.B.; Soerjomataram, I.; Efstathiou, J.A.; Bray, F.; Jemal, A. Recent global patterns in prostate cancer incidence and mortality rates. Eur. Urol., 2020, 77(1), 38-52.
[http://dx.doi.org/10.1016/j.eururo.2019.08.005] [PMID: 31493960]
[10]
Boettcher, A.N.; Usman, A.; Morgans, A.; VanderWeele, D.J.; Sosman, J.; Wu, J.D. Past, current, and future of immunotherapies for prostate cancer. Front. Oncol., 2019, 9, 884.
[http://dx.doi.org/10.3389/fonc.2019.00884] [PMID: 31572678]
[11]
Ferlay, J.; Ervik, M.; Lam, F.; Colombet, M.; Mery, L.; Piñeros, M.; Znaor, A.; Soerjomataram, I.; Bray, F. Global cancer observatory: Cancer today; International Agency for Research on Cancer: Lyon, France, 2018.
[12]
Siegel, R.L.; Miller, K.D.; Fuchs, H.E.; Jemal, A. Cancer statistics, 2021. CA Cancer J. Clin., 2021, 71(1), 7-33.
[http://dx.doi.org/10.3322/caac.21654] [PMID: 33433946]
[13]
Schottenfeld, D.; Fraumeni, J.F., Jr Cancer epidemiology and prevention; Oxford University Press, 2006.
[http://dx.doi.org/10.1093/acprof:oso/9780195149616.001.0001]
[14]
Hayes, R.B.; Ziegler, R.G.; Gridley, G.; Swanson, C.; Greenberg, R.S.; Swanson, G.M.; Schoenberg, J.B.; Silverman, D.T.; Brown, L.M.; Pottern, L.M.; Liff, J.; Schwartz, A.G.; Fraumeni, J.F., Jr; Hoover, R.N. Dietary factors and risks for prostate cancer among blacks and whites in the United States. Cancer Epidemiol. Biomarkers Prev., 1999, 8(1), 25-34.
[PMID: 9950236]
[15]
Haffner, M.C.; Zwart, W.; Roudier, M.P.; True, L.D.; Nelson, W.G.; Epstein, J.I.; De Marzo, A.M.; Nelson, P.S.; Yegnasubramanian, S. Genomic and phenotypic heterogeneity in prostate cancer. Nat. Rev. Urol., 2020, 1-14.
[PMID: 33328650]
[16]
Lan, M.; Zhu, L.; Wang, Y.; Shen, D.; Fang, K.; Liu, Y.; Peng, Y.; Qiao, B.; Guo, Y. Multifunctional nanobubbles carrying indocyanine green and paclitaxel for molecular imaging and the treatment of prostate cancer. J. Nanobiotechnol, 2020, 18(1), 121.
[http://dx.doi.org/10.1186/s12951-020-00650-1] [PMID: 32883330]
[17]
Marchioni, M.; Di Nicola, M.; Primiceri, G.; Novara, G.; Castellan, P.; Paul, A.K.; Veccia, A.; Autorino, R.; Cindolo, L.; Schips, L. New antiandrogen compounds compared to docetaxel for metastatic hormone sensitive prostate cancer: Results from a network meta-analysis. J. Urol., 2020, 203(4), 751-759.
[http://dx.doi.org/10.1097/JU.0000000000000636] [PMID: 31689158]
[18]
Yang, C.; Lee, M.; Song, G.; Lim, W. tRNAlys-derived fragment alleviates cisplatin-induced apoptosis in prostate cancer cells. Pharmaceutics, 2021, 13(1), 13.
[http://dx.doi.org/10.3390/pharmaceutics13010055] [PMID: 33406670]
[19]
Laber, D.A.; Eatrides, J.; Jaglal, M.V.; Haider, M.; Visweshwar, N.; Patel, A. A phase I/II study of docetaxel in combination with pegylated liposomal doxorubicin in metastatic castration-resistant prostate cancer. Med. Oncol., 2020, 37(10), 95.
[http://dx.doi.org/10.1007/s12032-020-01420-7] [PMID: 32979106]
[20]
Shore, N.D.; Antonarakis, E.S.; Cookson, M.S.; Crawford, E.D.; Morgans, A.K.; Albala, D.M.; Hafron, J.; Harris, R.G.; Saltzstein, D.; Brown, G.A.; Henderson, J.; Lowentritt, B.; Spier, J.M.; Concepcion, R. Optimizing the role of androgen deprivation therapy in advanced prostate cancer: Challenges beyond the guidelines. Prostate, 2020, 80(6), 527-544.
[http://dx.doi.org/10.1002/pros.23967] [PMID: 32130741]
[21]
Klein, E.A.; Li, J.; Milinovich, A.; Schold, J.D.; Sharifi, N.; Kattan, M.W.; Jehi, L. Androgen deprivation therapy in men with prostate cancer does not affect risk of infection with SARS-CoV-2. J. Urol., 2021, 205(2), 441-443.
[http://dx.doi.org/10.1097/JU.0000000000001338] [PMID: 32897764]
[22]
Shore, N.D.; Saad, F.; Cookson, M.S.; George, D.J.; Saltzstein, D.R.; Tutrone, R.; Akaza, H.; Bossi, A.; van Veenhuyzen, D.F.; Selby, B.; Fan, X.; Kang, V.; Walling, J.; Tombal, B. Oral relugolix for androgen-deprivation therapy in advanced prostate cancer. N. Engl. J. Med., 2020, 382(23), 2187-2196.
[http://dx.doi.org/10.1056/NEJMoa2004325] [PMID: 32469183]
[23]
Heidenreich, A.; Bastian, P.J.; Bellmunt, J.; Bolla, M.; Joniau, S.; van der Kwast, T.; Mason, M.; Matveev, V.; Wiegel, T.; Zattoni, F.; Mottet, N. EAU guidelines on prostate cancer. Part II: Treatment of advanced, relapsing, and castration-resistant prostate cancer. Eur. Urol., 2014, 65(2), 467-479.
[http://dx.doi.org/10.1016/j.eururo.2013.11.002] [PMID: 24321502]
[24]
Cetin, B.; Ozet, A. The Potential for chemotherapy-free strategies in advanced prostate cancer. Curr. Urol., 2019, 13(2), 57-63.
[http://dx.doi.org/10.1159/000499292] [PMID: 31768170]
[25]
Eisenberger, M.A.; Antonarakis, E.S. Hormonal therapy or chemotherapy for metastatic prostate cancer - playing the right CARD. N. Engl. J. Med., 2019, 381(26), 2564-2566.
[http://dx.doi.org/10.1056/NEJMe1912750] [PMID: 31881143]
[26]
Jung, S.I.; Kim, M.S.; Jeong, C.W.; Kwak, C.; Hong, S.K.; Kang, S.H.; Joung, J.Y.; Lee, S.H.; Yun, S.J.; Kim, T.H.; Park, S.W.; Jeon, S.S.; Kang, M.; Lee, J.Y.; Chung, B.H.; Hong, J.H.; Ahn, H.; Kim, C.S.; Kwon, D.D. Enzalutamide in chemotherapy-naive patients with metastatic castration-resistant prostate cancer: A retrospective Korean multicenter study in a real-world setting. Investig. Clin. Urol., 2020, 61(1), 19-27.
[http://dx.doi.org/10.4111/icu.2020.61.1.19] [PMID: 31942459]
[27]
Liu, N.; Ji, J.; Qiu, H.; Shao, Z.; Wen, X.; Chen, A.; Yao, S.; Zhang, X.; Yao, H.; Zhang, L. Improving radio-chemotherapy efficacy of prostate cancer by co-deliverying docetaxel and dbait with biodegradable nanoparticles. Artif. Cells Nanomed. Biotechnol., 2020, 48(1), 305-314.
[http://dx.doi.org/10.1080/21691401.2019.1703726] [PMID: 31858836]
[28]
Beltran, H.; Hruszkewycz, A.; Scher, H.I.; Hildesheim, J.; Isaacs, J.; Yu, E.Y.; Kelly, K.; Lin, D.; Dicker, A.; Arnold, J.; Hecht, T.; Wicha, M.; Sears, R.; Rowley, D.; White, R.; Gulley, J.L.; Lee, J.; Diaz Meco, M.; Small, E.J.; Shen, M.; Knudsen, K.; Goodrich, D.W.; Lotan, T.; Zoubeidi, A.; Sawyers, C.L.; Rudin, C.M.; Loda, M.; Thompson, T.; Rubin, M.A.; Tawab-Amiri, A.; Dahut, W.; Nelson, P.S. The role of lineage plasticity in prostate cancer therapy resistance. Clin. Cancer Res., 2019, 25(23), 6916-6924.
[http://dx.doi.org/10.1158/1078-0432.CCR-19-1423] [PMID: 31363002]
[29]
Shi, Q.; Zhu, Y.; Ma, J.; Chang, K.; Ding, D.; Bai, Y.; Gao, K.; Zhang, P.; Mo, R.; Feng, K.; Zhao, X.; Zhang, L.; Sun, H.; Jiao, D.; Chen, Y.; Sun, Y.; Zhao, S.M.; Huang, H.; Li, Y.; Ren, S.; Wang, C. Prostate cancer-associated SPOP mutations enhance cancer cell survival and docetaxel resistance by upregulating Caprin1-dependent stress granule assembly. Mol. Cancer, 2019, 18(1), 170.
[http://dx.doi.org/10.1186/s12943-019-1096-x] [PMID: 31771591]
[30]
Van den Broeck, T.; van den Bergh, R.C.N.; Briers, E.; Cornford, P.; Cumberbatch, M.; Tilki, D.; De Santis, M.; Fanti, S.; Fossati, N.; Gillessen, S.; Grummet, J.P.; Henry, A.M.; Lardas, M.; Liew, M.; Mason, M.; Moris, L.; Schoots, I.G.; van der Kwast, T.; van der Poel, H.; Wiegel, T.; Willemse, P.M.; Rouvière, O.; Lam, T.B.; Mottet, N. Biochemical recurrence in prostate cancer: The european association of urology prostate cancer guidelines panel recommendations. Eur. Urol. Focus, 2020, 6(2), 231-234.
[http://dx.doi.org/10.1016/j.euf.2019.06.004] [PMID: 31248850]
[31]
Henzler, C.; Li, Y.; Yang, R.; McBride, T.; Ho, Y.; Sprenger, C.; Liu, G.; Coleman, I.; Lakely, B.; Li, R.; Ma, S.; Landman, S.R.; Kumar, V.; Hwang, T.H.; Raj, G.V.; Higano, C.S.; Morrissey, C.; Nelson, P.S.; Plymate, S.R.; Dehm, S.M. Truncation and constitutive activation of the androgen receptor by diverse genomic rearrangements in prostate cancer. Nat. Commun., 2016, 7, 13668.
[http://dx.doi.org/10.1038/ncomms13668] [PMID: 27897170]
[32]
Antonarakis, E.S.; Lu, C.; Wang, H.; Luber, B.; Nakazawa, M.; Roeser, J.C.; Chen, Y.; Mohammad, T.A.; Chen, Y.; Fedor, H.L.; Lotan, T.L.; Zheng, Q.; De Marzo, A.M.; Isaacs, J.T.; Isaacs, W.B.; Nadal, R.; Paller, C.J.; Denmeade, S.R.; Carducci, M.A.; Eisenberger, M.A.; Luo, J. AR-V7 and resistance to enzalutamide and abiraterone in prostate cancer. N. Engl. J. Med., 2014, 371(11), 1028-1038.
[http://dx.doi.org/10.1056/NEJMoa1315815] [PMID: 25184630]
[33]
Mateo, J.; Seed, G.; Bertan, C.; Rescigno, P.; Dolling, D.; Figueiredo, I.; Miranda, S.; Nava Rodrigues, D.; Gurel, B.; Clarke, M.; Atkin, M.; Chandler, R.; Messina, C.; Sumanasuriya, S.; Bianchini, D.; Barrero, M.; Petermolo, A.; Zafeiriou, Z.; Fontes, M.; Perez-Lopez, R.; Tunariu, N.; Fulton, B.; Jones, R.; McGovern, U.; Ralph, C.; Varughese, M.; Parikh, O.; Jain, S.; Elliott, T.; Sandhu, S.; Porta, N.; Hall, E.; Yuan, W.; Carreira, S.; de Bono, J.S. Genomics of lethal prostate cancer at diagnosis and castration resistance. J. Clin. Invest., 2020, 130(4), 1743-1751.
[http://dx.doi.org/10.1172/JCI132031] [PMID: 31874108]
[34]
Isaacsson Velho, P.; Fu, W.; Wang, H.; Mirkheshti, N.; Qazi, F.; Lima, F.A.S.; Shaukat, F.; Carducci, M.A.; Denmeade, S.R.; Paller, C.J.; Markowski, M.C.; Marshall, C.H.; Eisenberger, M.A.; Antonarakis, E.S. Wnt-pathway activating mutations are associated with resistance to first-line abiraterone and enzalutamide in castration-resistant prostate cancer. Eur. Urol., 2020, 77(1), 14-21.
[http://dx.doi.org/10.1016/j.eururo.2019.05.032] [PMID: 31176623]
[35]
Lee, M.S.; Lee, J.; Kim, Y.M.; Lee, H. The metastasis suppressor CD82/KAI1 represses the TGF-β 1 and Wnt signalings inducing epithelial-to-mesenchymal transition linked to invasiveness of prostate cancer cells. Prostate, 2019, 79(12), 1400-1411.
[http://dx.doi.org/10.1002/pros.23837] [PMID: 31212375]
[36]
Cheaito, K.A.; Bahmad, H.F.; Hadadeh, O.; Saleh, E.; Dagher, C.; Hammoud, M.S.; Shahait, M.; Mrad, Z.A.; Nassif, S.; Tawil, A.; Bulbul, M.; Khauli, R.; Wazzan, W.; Nasr, R.; Shamseddine, A.; Temraz, S.; El-Sabban, M.E.; El-Hajj, A.; Mukherji, D.; Abou-Kheir, W. EMT markers in locally-advanced prostate cancer: Predicting recurrence? Front. Oncol., 2019, 9, 131.
[http://dx.doi.org/10.3389/fonc.2019.00131] [PMID: 30915272]
[37]
Tsai, Y.C.; Chen, W.Y.; Abou-Kheir, W.; Zeng, T.; Yin, J.J.; Bahmad, H.; Lee, Y.C.; Liu, Y.N. Androgen deprivation therapy-induced epithelial-mesenchymal transition of prostate cancer through downregulating SPDEF and activating CCL2. Biochim. Biophys. Acta Mol. Basis Dis., 2018, 1864(5 Pt A), 1717-1727.
[http://dx.doi.org/10.1016/j.bbadis.2018.02.016] [PMID: 29477409]
[38]
Cui, Y.; Yang, Y.; Ren, L.; Yang, J.; Wang, B.; Xing, T.; Chen, H.; Chen, M. miR-15a-3p suppresses prostate cancer cell proliferation and invasion by targeting slc39a7 via downregulating wnt/β- catenin signaling pathway. Cancer Biother. Radiopharm., 2019, 34(7), 472-479.
[http://dx.doi.org/10.1089/cbr.2018.2722] [PMID: 31135177]
[39]
Daouk, R.; Bahmad, H.F.; Saleh, E.; Monzer, A.; Ballout, F.; Kadara, H.; Abou-Kheir, W. Genome-wide gene expression analysis of a murine model of prostate cancer progression: Deciphering the roles of IL-6 and p38 MAPK as potential therapeutic targets. PLoS One, 2020, 15(8), e0237442.
[http://dx.doi.org/10.1371/journal.pone.0237442] [PMID: 32790767]
[40]
Stopsack, K.H.; Ebot, E.M.; Downer, M.K.; Gerke, T.A.; Rider, J.R.; Kantoff, P.W.; Mucci, L.A. Regular aspirin use and gene expression profiles in prostate cancer patients. Cancer Causes Control, 2018, 29(8), 775-784.
[http://dx.doi.org/10.1007/s10552-018-1049-5] [PMID: 29915914]
[41]
Conteduca, V.; Wetterskog, D.; Sharabiani, M.T.A.; Grande, E.; Fernandez-Perez, M.P.; Jayaram, A.; Salvi, S.; Castellano, D.; Romanel, A.; Lolli, C.; Casadio, V.; Gurioli, G.; Amadori, D.; Font, A.; Vazquez-Estevez, S.; González Del Alba, A.; Mellado, B.; Fernandez-Calvo, O.; Méndez-Vidal, M.J.; Climent, M.A.; Duran, I.; Gallardo, E.; Rodriguez, A.; Santander, C.; Sáez, M.I.; Puente, J.; Gasi Tandefelt, D.; Wingate, A.; Dearnaley, D.; Demichelis, F.; De Giorgi, U.; Gonzalez-Billalabeitia, E.; Attard, G. Androgen receptor gene status in plasma DNA associates with worse outcome on enzalutamide or abiraterone for castration-resistant prostate cancer: A multi-institution correlative biomarker study. Ann. Oncol., 2017, 28(7), 1508-1516.
[http://dx.doi.org/10.1093/annonc/mdx155] [PMID: 28472366]
[42]
Madany, M.; Thomas, T.; Edwards, L.A. The curious case of ZEB1. Discoveries (Craiova), 2018, 6(4), e86.
[http://dx.doi.org/10.15190/d.2018.7] [PMID: 32309604]
[43]
Kim, J.Y.; Cho, K.H.; Jeong, B.Y.; Park, C.G.; Lee, H.Y. Zeb1 for RCP-induced oral cancer cell invasion and its suppression by resveratrol. Exp. Mol. Med., 2020, 52(7), 1152-1163.
[http://dx.doi.org/10.1038/s12276-020-0474-1] [PMID: 32728068]
[44]
Sun, S.; Yang, X.; Qin, X.; Zhao, Y. TCF4 promotes colorectal cancer drug resistance and stemness via regulating ZEB1/ZEB2 expression. Protoplasma, 2020, 257(3), 921-930.
[http://dx.doi.org/10.1007/s00709-020-01480-6] [PMID: 31933004]
[45]
Drápela, S.; Bouchal, J.; Jolly, M.K.; Culig, Z.; Souček, K. ZEB1: A Critical regulator of cell plasticity, dna damage response, and therapy resistance. Front. Mol. Biosci., 2020, 7, 36.
[http://dx.doi.org/10.3389/fmolb.2020.00036] [PMID: 32266287]
[46]
Bruneel, K.; Verstappe, J.; Vandamme, N.; Berx, G. Intrinsic balance between zeb family members is important for melanocyte homeostasis and melanoma progression. Cancers (Basel), 2020, 12(8), 2248-2273.
[http://dx.doi.org/10.3390/cancers12082248] [PMID: 32796736]
[47]
Wu, H-T.; Zhong, H-T.; Li, G-W.; Shen, J-X.; Ye, Q-Q.; Zhang, M-L.; Liu, J. Oncogenic functions of the EMT-related transcription factor ZEB1 in breast cancer. J. Transl. Med., 2020, 18(1), 51.
[http://dx.doi.org/10.1186/s12967-020-02240-z] [PMID: 32014049]
[48]
Zhang, P.; Sun, Y.; Ma, L. ZEB1: at the crossroads of epithelial-mesenchymal transition, metastasis and therapy resistance. Cell Cycle, 2015, 14(4), 481-487.
[http://dx.doi.org/10.1080/15384101.2015.1006048] [PMID: 25607528]
[49]
Soen, B.; Vandamme, N.; Berx, G.; Schwaller, J.; Van Vlierberghe, P.; Goossens, S. ZEB proteins in leukemia: friends, foes, or friendly foes? HemaSphere, 2018, 2(3), e43.
[http://dx.doi.org/10.1097/HS9.0000000000000043] [PMID: 31723771]
[50]
Vandewalle, C.; Van Roy, F.; Berx, G. The role of the ZEB family of transcription factors in development and disease. Cell. Mol. Life Sci., 2009, 66(5), 773-787.
[http://dx.doi.org/10.1007/s00018-008-8465-8] [PMID: 19011757]
[51]
Zhang, Y.; Xu, L.; Li, A.; Han, X. The roles of ZEB1 in tumorigenic progression and epigenetic modifications. Biomed. Pharmacother., 2019, 110, 400-408.
[http://dx.doi.org/10.1016/j.biopha.2018.11.112] [PMID: 30530042]
[52]
Postigo, A.A.; Depp, J.L.; Taylor, J.J.; Kroll, K.L. Regulation of Smad signaling through a differential recruitment of coactivators and corepressors by ZEB proteins. EMBO J., 2003, 22(10), 2453-2462.
[http://dx.doi.org/10.1093/emboj/cdg226] [PMID: 12743039]
[53]
Clark, S.G.; Chiu, C. C. elegans ZAG-1, a Zn-finger-homeodomain protein, regulates axonal development and neuronal differentiation. Development, 2003, 130(16), 3781-3794.
[http://dx.doi.org/10.1242/dev.00571] [PMID: 12835394]
[54]
Fortini, M.E.; Lai, Z.C.; Rubin, G.M. The Drosophila zfh-1 and zfh-2 genes encode novel proteins containing both zinc-finger and homeodomain motifs. Mech. Dev., 1991, 34(2-3), 113-122.
[http://dx.doi.org/10.1016/0925-4773(91)90048-B] [PMID: 1680376]
[55]
Hegarty, S.V.; Sullivan, A.M.; O’Keeffe, G.W. Zeb2: A multifunctional regulator of nervous system development. Prog. Neurobiol., 2015, 132, 81-95.
[http://dx.doi.org/10.1016/j.pneurobio.2015.07.001] [PMID: 26193487]
[56]
Liang, T.C.; Fu, W.G.; Zhong, Y.S. MicroRNA-1236-3p inhibits proliferation and invasion of breast cancer cells by targeting ZEB1. Eur. Rev. Med. Pharmacol. Sci., 2019, 23(22), 9988-9995.
[PMID: 31799668]
[57]
Jiang, R.; Zhang, C.; Liu, G.; Gu, R.; Wu, H. MicroRNA-126 inhibits proliferation, migration, invasion, and emt in osteosarcoma by targeting ZEB1. J. Cell. Biochem., 2017, 118(11), 3765-3774.
[http://dx.doi.org/10.1002/jcb.26024] [PMID: 28379605]
[58]
Lin, Z.; Chen, Y.; Lin, Z.; Chen, C.; Dong, Y. Overexpressing PRMT1 inhibits proliferation and invasion in pancreatic cancer by inverse correlation of ZEB1. IUBMB Life, 2018, 70(10), 1032-1039.
[http://dx.doi.org/10.1002/iub.1917] [PMID: 30194893]
[59]
Zhang, C.; Xue, Q.; Xu, Z.; Lu, C. MiR-5702 suppresses proliferation and invasion in non-small-cell lung cancer cells via posttranscriptional suppression of ZEB1. J. Biochem. Mol. Toxicol., 2018, e22163.
[http://dx.doi.org/10.1002/jbt.22163] [PMID: 29975439]
[60]
Zhu, X.; Li, W.; Zhang, R.; Liu, Y. MicroRNA-342 inhibits cell proliferation and invasion in nasopharyngeal carcinoma by directly targeting ZEB1. Oncol. Lett., 2018, 16(1), 1298-1304.
[http://dx.doi.org/10.3892/ol.2018.8788] [PMID: 30061949]
[61]
Zhang, X.; Xu, X.; Ge, G.; Zang, X.; Shao, M.; Zou, S.; Zhang, Y.; Mao, Z.; Zhang, J.; Mao, F.; Qian, H.; Xu, W. miR-498 inhibits the growth and metastasis of liver cancer by targeting ZEB2. Oncol. Rep., 2019, 41(3), 1638-1648.
[PMID: 30592286]
[62]
Yan, Z.; Tian, X.; Wang, R.; Cheng, X.; Mi, J.; Xiong, L.; Wang, Y.; Deng, J.; Jia, M. Title Prognosis significance of zeb2 and tgf-β1 as well as other clinical characteristics in epithelial ovarian cancer. Int. J. Gynecol. Cancer, 2017, 27(7), 1343-1349.
[http://dx.doi.org/10.1097/IGC.0000000000001037] [PMID: 30814239]
[63]
Cui, J.; Pan, G.; He, Q.; Yin, L.; Guo, R.; Bi, H. MicroRNA-545 targets ZEB2 to inhibit the development of non-small cell lung cancer by inactivating Wnt/β-catenin pathway. Oncol. Lett., 2019, 18(3), 2931-2938.
[http://dx.doi.org/10.3892/ol.2019.10619] [PMID: 31452774]
[64]
Huang, L.; Liu, Z.; Hu, J.; Luo, Z.; Zhang, C.; Wang, L.; Wang, Z. MiR-377-3p suppresses colorectal cancer through negative regulation on Wnt/β-catenin signaling by targeting XIAP and ZEB2. Pharmacol. Res., 2020, 156, 104774.
[http://dx.doi.org/10.1016/j.phrs.2020.104774] [PMID: 32220639]
[65]
Li, X.; Liu, J.; Liu, M.; Xia, C.; Zhao, Q. The Lnc LINC00461/miR-30a-5p facilitates progression and malignancy in non-small cell lung cancer via regulating ZEB2. Cell Cycle, 2020, 19(7), 825-836.
[http://dx.doi.org/10.1080/15384101.2020.1731946] [PMID: 32106756]
[66]
Hu, Y.; Xie, H.; Liu, Y.; Liu, W.; Liu, M.; Tang, H. miR-484 suppresses proliferation and epithelial-mesenchymal transition by targeting ZEB1 and SMAD2 in cervical cancer cells. Cancer Cell Int., 2017, 17, 36.
[http://dx.doi.org/10.1186/s12935-017-0407-9] [PMID: 28286418]
[67]
He, J.; Xiang, D.; Lin, Y. MicroRNA-708 inhibits the proliferation and invasion of osteosarcoma cells by directly targeting ZEB1. Mol. Med. Rep., 2019, 19(5), 3948-3954.
[http://dx.doi.org/10.3892/mmr.2019.10013] [PMID: 30864726]
[68]
Ma, D.J.; Liu, H.S.; Li, S.Q.; Qin, Y.Z.; He, J.; Li, L.; Cui, Y.S. Correlations of the ZEB1 expression with the incidence and prognosis of non-small cell lung cancer. Eur. Rev. Med. Pharmacol. Sci., 2019, 23(4), 1528-1535.
[PMID: 30840275]
[69]
Zhu, L.; Liu, Z.; Dong, R.; Wang, X.; Zhang, M.; Guo, X.; Yu, N.; Zeng, A. MicroRNA-3662 targets ZEB1 and attenuates the invasion of the highly aggressive melanoma cell line A375. Cancer Manag. Res., 2019, 11, 5845-5856.
[http://dx.doi.org/10.2147/CMAR.S200540] [PMID: 31388313]
[70]
Qin, Y.; Yu, J.; Zhang, M.; Qin, F.; Lan, X. ZEB1 promotes tumorigenesis and metastasis in hepatocellular carcinoma by regulating the expression of vimentin. Mol. Med. Rep., 2019, 19(3), 2297-2306.
[http://dx.doi.org/10.3892/mmr.2019.9866] [PMID: 30664206]
[71]
Zheng, L.; Xu, M.; Xu, J.; Wu, K.; Fang, Q.; Liang, Y.; Zhou, S.; Cen, D.; Ji, L.; Han, W.; Cai, X. ELF3 promotes epithelial-mesenchymal transition by protecting ZEB1 from miR-141-3p-mediated silencing in hepatocellular carcinoma. Cell Death Dis., 2018, 9(3), 387.
[http://dx.doi.org/10.1038/s41419-018-0399-y] [PMID: 29523781]
[72]
Cao, G.; Chen, D.; Liu, G.; Pan, Y.; Liu, Q. CPEB4 promotes growth and metastasis of gastric cancer cells via ZEB1-mediated epithelial- mesenchymal transition. OncoTargets Ther., 2018, 11, 6153-6165.
[http://dx.doi.org/10.2147/OTT.S175428] [PMID: 30288051]
[73]
Zhu, W.; Luo, X.; Fu, H.; Liu, L.; Sun, P.; Wang, Z. MiR-3653 inhibits the metastasis and epithelial-mesenchymal transition of colon cancer by targeting Zeb2. Pathol. Res. Pract., 2019, 215(10), 152577.
[http://dx.doi.org/10.1016/j.prp.2019.152577] [PMID: 31405759]
[74]
Shi, D.; Li, Y.; Fan, L.; Zhao, Q.; Tan, B.; Cui, G. Upregulation of miR-153 inhibits triple-negative breast cancer progression by targeting ZEB2-mediated EMT and contributes to better prognosis. OncoTargets Ther., 2019, 12, 9611-9625.
[http://dx.doi.org/10.2147/OTT.S223598] [PMID: 32009797]
[75]
Xavier, P.L.P.; Cordeiro, Y.G.; Rochetti, A.L.; Sangalli, J.R.; Zuccari, D.A.P.C.; Silveira, J.C.; Bressan, F.F.; Fukumasu, H. ZEB1 and ZEB2 transcription factors are potential therapeutic targets of canine mammary cancer cells. Vet. Comp. Oncol., 2018, 16(4), 596-605.
[http://dx.doi.org/10.1111/vco.12427] [PMID: 30047225]
[76]
Zhang, W.Y.; Liu, Q.H.; Wang, T.J.; Zhao, J.; Cheng, X.H.; Wang, J.S. CircZFR serves as a prognostic marker to promote bladder cancer progression by regulating miR-377/ZEB2 signaling. Biosci. Rep., 2019, 39(12), 39.
[http://dx.doi.org/10.1042/BSR20192779] [PMID: 31746333]
[77]
Lazarova, D.; Bordonaro, M. ZEB1 mediates drug resistance and EMT in p300-deficient CRC. J. Cancer, 2017, 8(8), 1453-1459.
[http://dx.doi.org/10.7150/jca.18762] [PMID: 28638460]
[78]
Long, L.; Xiang, H.; Liu, J.; Zhang, Z.; Sun, L. ZEB1 mediates doxorubicin (Dox) resistance and mesenchymal characteristics of hepatocarcinoma cells. Exp. Mol. Pathol., 2019, 106, 116-122.
[http://dx.doi.org/10.1016/j.yexmp.2019.01.001] [PMID: 30615851]
[79]
Zhang, J.; Zhou, C.; Jiang, H.; Liang, L.; Shi, W.; Zhang, Q.; Sun, P.; Xiang, R.; Wang, Y.; Yang, S. ZEB1 induces ER-α promoter hypermethylation and confers antiestrogen resistance in breast cancer. Cell Death Dis., 2017, 8(4), e2732.
[http://dx.doi.org/10.1038/cddis.2017.154] [PMID: 28383555]
[80]
Zhang, X.; Zhang, Z.; Zhang, Q.; Zhang, Q.; Sun, P.; Xiang, R.; Ren, G.; Yang, S. ZEB1 confers chemotherapeutic resistance to breast cancer by activating ATM. Cell Death Dis., 2018, 9(2), 57.
[http://dx.doi.org/10.1038/s41419-017-0087-3] [PMID: 29352223]
[81]
Li, N.; Babaei-Jadidi, R.; Lorenzi, F.; Spencer-Dene, B.; Clarke, P.; Domingo, E.; Tulchinsky, E.; Vries, R.G.J.; Kerr, D.; Pan, Y.; He, Y.; Bates, D.O.; Tomlinson, I.; Clevers, H.; Nateri, A.S. An FBXW7-ZEB2 axis links EMT and tumour microenvironment to promote colorectal cancer stem cells and chemoresistance. Oncogenesis, 2019, 8(3), 13.
[http://dx.doi.org/10.1038/s41389-019-0125-3] [PMID: 30783098]
[82]
Wu, D.M.; Zhang, T.; Liu, Y.B.; Deng, S.H.; Han, R.; Liu, T.; Li, J.; Xu, Y. The PAX6-ZEB2 axis promotes metastasis and cisplatin resistance in non-small cell lung cancer through PI3K/AKT signaling. Cell Death Dis., 2019, 10(5), 349.
[http://dx.doi.org/10.1038/s41419-019-1591-4] [PMID: 31024010]
[83]
Depner, C.; Zum Buttel, H.; Böğürcü, N.; Cuesta, A.M.; Aburto, M.R.; Seidel, S.; Finkelmeier, F.; Foss, F.; Hofmann, J.; Kaulich, K.; Barbus, S.; Segarra, M.; Reifenberger, G.; Garvalov, B.K.; Acker, T.; Acker-Palmer, A. EphrinB2 repression through ZEB2 mediates tumour invasion and anti-angiogenic resistance. Nat. Commun., 2016, 7, 12329.
[http://dx.doi.org/10.1038/ncomms12329] [PMID: 27470974]
[84]
Jiang, T.; Dong, P.; Li, L.; Ma, X.; Xu, P.; Zhu, H.; Wang, Y.; Yang, B.; Liu, K.; Liu, J.; Xue, J.; Lv, R.; Su, P.; Kong, G.; Chang, Y.; Zhao, C.; Wang, L. MicroRNA-200c regulates cisplatin resistance by targeting ZEB2 in human gastric cancer cells. Oncol. Rep., 2017, 38(1), 151-158.
[http://dx.doi.org/10.3892/or.2017.5659] [PMID: 28534959]
[85]
Yang, J.; Cui, R.; Liu, Y. MicroRNA-212-3p inhibits paclitaxel resistance through regulating epithelial-mesenchymal transition, migration and invasion by targeting ZEB2 in human hepatocellular carcinoma. Oncol. Lett., 2020, 20(4), 23.
[PMID: 32774496]
[86]
Zhou, X.; Men, X.; Zhao, R.; Han, J.; Fan, Z.; Wang, Y.; Lv, Y.; Zuo, J.; Zhao, L.; Sang, M.; Liu, X.D.; Shan, B. miR-200c inhibits TGF-β-induced-EMT to restore trastuzumab sensitivity by targeting ZEB1 and ZEB2 in gastric cancer. Cancer Gene Ther., 2018, 25(3-4), 68-76.
[http://dx.doi.org/10.1038/s41417-017-0005-y] [PMID: 29302045]
[87]
Wang, J.; Li, X.; Xiao, Z.; Wang, Y.; Han, Y.; Li, J.; Zhu, W.; Leng, Q.; Wen, Y.; Wen, X. MicroRNA-488 inhibits proliferation and glycolysis in human prostate cancer cells by regulating PFKFB3. FEBS Open Bio, 2019, 9(10), 1798-1807.
[http://dx.doi.org/10.1002/2211-5463.12718] [PMID: 31410981]
[88]
You, Z.; Liu, C.; Wang, C.; Ling, Z.; Wang, Y.; Wang, Y.; Zhang, M.; Chen, S.; Xu, B.; Guan, H.; Chen, M. LncRNA CCAT1 promotes prostate cancer cell proliferation by interacting with DDX5 and MIR-28-5P. Mol. Cancer Ther., 2019, 18(12), 2469-2479.
[http://dx.doi.org/10.1158/1535-7163.MCT-19-0095] [PMID: 31387890]
[89]
Li, T.; Sun, X.; Chen, L. Exosome circ_0044516 promotes prostate cancer cell proliferation and metastasis as a potential biomarker. J. Cell. Biochem., 2020, 121(3), 2118-2126.
[http://dx.doi.org/10.1002/jcb.28239] [PMID: 31625175]
[90]
Sun, D.Y.; Wu, J.Q.; He, Z.H.; He, M.F.; Sun, H.B. Cancer-associated fibroblast regulate proliferation and migration of prostate cancer cells through TGF-β signaling pathway. Life Sci., 2019, 235, 116791.
[http://dx.doi.org/10.1016/j.lfs.2019.116791] [PMID: 31465732]
[91]
Lee, S.Y.; Jeong, E.K.; Ju, M.K.; Jeon, H.M.; Kim, M.Y.; Kim, C.H.; Park, H.G.; Han, S.I.; Kang, H.S. Induction of metastasis, cancer stem cell phenotype, and oncogenic metabolism in cancer cells by ionizing radiation. Mol. Cancer, 2017, 16(1), 10.
[http://dx.doi.org/10.1186/s12943-016-0577-4] [PMID: 28137309]
[92]
Li, L.; Zhao, L-M.; Dai, S.L.; Cui, W-X.; Lv, H-L.; Chen, L.; Shan, B-E. Periplocin extracted from cortex periplocae induced apoptosis of gastric cancer cells via the ERK1/2-EGR1 pathway. Cell. Physiol. Biochem., 2016, 38(5), 1939-1951.
[http://dx.doi.org/10.1159/000445555] [PMID: 27160973]
[93]
Dai, T.; Hu, Y.; Zheng, H. Hypoxia increases expression of CXC chemokine receptor 4 via activation of PI3K/Akt leading to enhanced migration of endothelial progenitor cells. Eur. Rev. Med. Pharmacol. Sci., 2017, 21(8), 1820-1827.
[PMID: 28485797]
[94]
Cheng, Z.; Li, X.; Hou, S.; Wu, Y.; Sun, Y.; Liu, B. K-Ras-ERK1/2 accelerates lung cancer cell development via mediating H3K18ac through the MDM2-GCN5-SIRT7 axis. Pharm. Biol., 2019, 57(1), 701-709.
[http://dx.doi.org/10.1080/13880209.2019.1672756] [PMID: 31613681]
[95]
Zhang, J.; Liu, M.; Liu, W.; Wang, W. Ras-ERK1/2 signalling promotes the development of osteosarcoma through regulation of H4K12ac through HAT1. Artif. Cells Nanomed. Biotechnol., 2019, 47(1), 1207-1215.
[http://dx.doi.org/10.1080/21691401.2019.1593857] [PMID: 30942624]
[96]
Song, X.F.; Chang, H.; Liang, Q.; Guo, Z.F.; Wu, J.W. ZEB1 promotes prostate cancer proliferation and invasion through ERK1/2 signaling pathway. Eur. Rev. Med. Pharmacol. Sci., 2017, 21(18), 4032-4038.
[PMID: 29028100]
[97]
Wang, X.; Chen, Q.; Wang, X.; Li, W.; Yu, G.; Zhu, Z.; Zhang, W. ZEB1 activated-VPS9D1-AS1 promotes the tumorigenesis and progression of prostate cancer by sponging miR-4739 to upregulate MEF2D. Biomed. Pharmacother., 2020, 122, 109557.
[http://dx.doi.org/10.1016/j.biopha.2019.109557] [PMID: 31918265]
[98]
Student, S.; Hejmo, T.; Poterała-Hejmo, A.; Leśniak, A.; Bułdak, R. Anti-androgen hormonal therapy for cancer and other diseases. Eur. J. Pharmacol., 2020, 866, 172783.
[http://dx.doi.org/10.1016/j.ejphar.2019.172783] [PMID: 31712062]
[99]
Brawer, M.K. Hormonal therapy for prostate cancer. Rev. Urol., 2006, 8(Suppl. 2), S35-S47.
[PMID: 17021641]
[100]
Li, P.; Wang, J.; Chu, M.; Zhang, K.; Yang, R.; Gao, W.Q. Zeb1 promotes androgen independence of prostate cancer via induction of stem cell-like properties. Exp. Biol. Med. (Maywood), 2014, 239(7), 813-822.
[http://dx.doi.org/10.1177/1535370214538727] [PMID: 24912507]
[101]
Herrera, D.; Orellana-Serradell, O.; Villar, P.; Torres, M.J.; Paciucci, R.; Castellón, E.A.; Contreras, H.R. Silencing of the transcriptional factor ZEB1 alters the steroidogenic pathway, and increases the concentration of testosterone and DHT in DU145 cells. Oncol. Rep., 2019, 41(2), 1275-1283.
[PMID: 30483800]
[102]
Anose, B.M.; Sanders, M.M. Androgen receptor regulates transcription of the ZEB1 transcription factor. Int. J. Endocrinol., 2011, 2011, 903918.
[http://dx.doi.org/10.1155/2011/903918] [PMID: 22190929]
[103]
Mooney, S.M.; Parsana, P.; Hernandez, J.R.; Liu, X.; Verdone, J.E.; Torga, G.; Harberg, C.A.; Pienta, K.J. The presence of androgen receptor elements regulates ZEB1 expression in the absence of androgen receptor. J. Cell. Biochem., 2015, 116(1), 115-123.
[http://dx.doi.org/10.1002/jcb.24948] [PMID: 25160502]
[104]
Yang, Q.; Lang, C.; Wu, Z.; Dai, Y.; He, S.; Guo, W.; Huang, S.; Du, H.; Ren, D.; Peng, X. MAZ promotes prostate cancer bone metastasis through transcriptionally activating the KRas-dependent RalGEFs pathway. J. Exp. Clin. Cancer Res., 2019, 38(1), 391.
[http://dx.doi.org/10.1186/s13046-019-1374-x] [PMID: 31488180]
[105]
Zhang, X. Interactions between cancer cells and bone microenvironment promote bone metastasis in prostate cancer. Cancer Commun (Lond), 2019, 39(1), 76.
[http://dx.doi.org/10.1186/s40880-019-0425-1] [PMID: 31753020]
[106]
Wang, Y.H.; Huang, J.T.; Chen, W.L.; Wang, R.H.; Kao, M.C.; Pan, Y.R.; Chan, S.H.; Tsai, K.W.; Kung, H.J.; Lin, K.T.; Wang, L.H. Dysregulation of cystathionine γ-lyase promotes prostate cancer progression and metastasis. EMBO Rep., 2019, 20(10), e45986.
[http://dx.doi.org/10.15252/embr.201845986] [PMID: 31468690]
[107]
Bidarra, D.; Constâncio, V.; Barros-Silva, D.; Ramalho-Carvalho, J.; Moreira-Barbosa, C.; Antunes, L.; Maurício, J.; Oliveira, J.; Henrique, R.; Jerónimo, C. Circulating micrornas as biomarkers for prostate cancer detection and metastasis development prediction. Front. Oncol., 2019, 9, 900.
[http://dx.doi.org/10.3389/fonc.2019.00900] [PMID: 31572685]
[108]
Beauvais, D.M.; Rapraeger, A.C. Syndecans in tumor cell adhesion and signaling. Reprod. Biol. Endocrinol., 2004, 2, 3.
[http://dx.doi.org/10.1186/1477-7827-2-3] [PMID: 14711376]
[109]
Tumova, S.; Woods, A.; Couchman, J.R. Heparan sulfate proteoglycans on the cell surface: versatile coordinators of cellular functions. Int. J. Biochem. Cell Biol., 2000, 32(3), 269-288.
[http://dx.doi.org/10.1016/S1357-2725(99)00116-8] [PMID: 10716625]
[110]
Couchman, J.R.; Chen, L.; Woods, A. Syndecans and cell adhesion. Int. Rev. Cytol., 2001, 207, 113-150.
[http://dx.doi.org/10.1016/S0074-7696(01)07004-8] [PMID: 11352265]
[111]
Farfán, N.; Ocarez, N.; Castellón, E.A.; Mejía, N.; de Herreros, A.G.; Contreras, H.R. The transcriptional factor ZEB1 represses Syndecan 1 expression in prostate cancer. Sci. Rep., 2018, 8(1), 11467.
[http://dx.doi.org/10.1038/s41598-018-29829-1] [PMID: 30065348]
[112]
Orellana-Serradell, O.; Herrera, D.; Castellon, E.A.; Contreras, H.R. The transcription factor ZEB1 promotes an aggressive phenotype in prostate cancer cell lines. Asian J. Androl., 2018, 20(3), 294-299.
[http://dx.doi.org/10.4103/aja.aja_61_17] [PMID: 29271397]
[113]
Collak, F.K.; Demir, U.; Sagir, F. YAP1 is involved in tumorigenic properties of prostate cancer cells. Pathol. Oncol. Res., 2020, 26(2), 867-876.
[http://dx.doi.org/10.1007/s12253-019-00634-z] [PMID: 30859486]
[114]
Collak, F.K.; Demir, U.; Ozkanli, S.; Kurum, E.; Zerk, P.E. Increased expression of YAP1 in prostate cancer correlates with extraprostatic extension. Cancer Biol. Med., 2017, 14(4), 405-413.
[http://dx.doi.org/10.20892/j.issn.2095-3941.2017.0083] [PMID: 29372107]
[115]
Shen, T.; Li, Y.; Zhu, S.; Yu, J.; Zhang, B.; Chen, X.; Zhang, Z.; Ma, Y.; Niu, Y.; Shang, Z. YAP1 plays a key role of the conversion of normal fibroblasts into cancer-associated fibroblasts that contribute to prostate cancer progression. J. Exp. Clin. Cancer Res., 2020, 39(1), 36.
[http://dx.doi.org/10.1186/s13046-020-1542-z] [PMID: 32066485]
[116]
Jiang, N.; Ke, B.; Hjort-Jensen, K.; Iglesias-Gato, D.; Wang, Z.; Chang, P.; Zhao, Y.; Niu, X.; Wu, T.; Peng, B.; Jiang, M.; Li, X.; Shang, Z.; Wang, Q.; Chang, C.; Flores-Morales, A.; Niu, Y. YAP1 regulates prostate cancer stem cell-like characteristics to promote castration resistant growth. Oncotarget, 2017, 8(70), 115054-115067.
[http://dx.doi.org/10.18632/oncotarget.23014] [PMID: 29383141]
[117]
Selth, L.A.; Das, R.; Townley, S.L.; Coutinho, I.; Hanson, A.R.; Centenera, M.M.; Stylianou, N.; Sweeney, K.; Soekmadji, C.; Jovanovic, L.; Nelson, C.C.; Zoubeidi, A.; Butler, L.M.; Goodall, G.J.; Hollier, B.G.; Gregory, P.A.; Tilley, W.D.A. A ZEB1-miR-375-YAP1 pathway regulates epithelial plasticity in prostate cancer. Oncogene, 2017, 36(1), 24-34.
[http://dx.doi.org/10.1038/onc.2016.185] [PMID: 27270433]
[118]
Moiola, C.P.; De Luca, P.; Zalazar, F.; Cotignola, J.; Rodríguez-Seguí, S.A.; Gardner, K.; Meiss, R.; Vallecorsa, P.; Pignataro, O.; Mazza, O.; Vazquez, E.S.; De Siervi, A. Prostate tumor growth is impaired by CtBP1 depletion in high-fat diet-fed mice. Clin. Cancer Res., 2014, 20(15), 4086-4095.
[http://dx.doi.org/10.1158/1078-0432.CCR-14-0322] [PMID: 24842953]
[119]
De Luca, P.; Dalton, G.N.; Scalise, G.D.; Moiola, C.P.; Porretti, J.; Massillo, C.; Kordon, E.; Gardner, K.; Zalazar, F.; Flumian, C.; Todaro, L.; Vazquez, E.S.; Meiss, R.; De Siervi, A. CtBP1 associates metabolic syndrome and breast carcinogenesis targeting multiple miRNAs. Oncotarget, 2016, 7(14), 18798-18811.
[http://dx.doi.org/10.18632/oncotarget.7711] [PMID: 26933806]
[120]
Elble, R.C.; Walia, V.; Cheng, H.C.; Connon, C.J.; Mundhenk, L.; Gruber, A.D.; Pauli, B.U. The putative chloride channel hCLCA2 has a single C-terminal transmembrane segment. J. Biol. Chem., 2006, 281(40), 29448-29454.
[http://dx.doi.org/10.1074/jbc.M605919200] [PMID: 16873362]
[121]
Gruber, A.D.; Pauli, B.U. Tumorigenicity of human breast cancer is associated with loss of the Ca2+-activated chloride channel CLCA2. Cancer Res., 1999, 59(21), 5488-5491.
[PMID: 10554024]
[122]
Li, X.; Cowell, J.K.; Sossey-Alaoui, K. CLCA2 tumour suppressor gene in 1p31 is epigenetically regulated in breast cancer. Oncogene, 2004, 23(7), 1474-1480.
[http://dx.doi.org/10.1038/sj.onc.1207249] [PMID: 14973555]
[123]
Bustin, S.A.; Li, S.R.; Dorudi, S. Expression of the Ca2+-activated chloride channel genes CLCA1 and CLCA2 is downregulated in human colorectal cancer. DNA Cell Biol., 2001, 20(6), 331-338.
[http://dx.doi.org/10.1089/10445490152122442] [PMID: 11445004]
[124]
Tanikawa, C.; Nakagawa, H.; Furukawa, Y.; Nakamura, Y.; Matsuda, K. CLCA2 as a p53-inducible senescence mediator. Neoplasia, 2012, 14(2), 141-149.
[http://dx.doi.org/10.1593/neo.111700] [PMID: 22431922]
[125]
Porretti, J.; Dalton, G.N.; Massillo, C.; Scalise, G.D.; Farré, P.L.; Elble, R.; Gerez, E.N.; Accialini, P.; Cabanillas, A.M.; Gardner, K.; De Luca, P.; De Siervi, A. CLCA2 epigenetic regulation by CTBP1, HDACs, ZEB1, EP300 and miR-196b-5p impacts prostate cancer cell adhesion and EMT in metabolic syndrome disease. Int. J. Cancer, 2018, 143(4), 897-906.
[http://dx.doi.org/10.1002/ijc.31379] [PMID: 29536528]
[126]
Yeh, H.W.; Hsu, E.C.; Lee, S.S.; Lang, Y.D.; Lin, Y.C.; Chang, C.Y.; Lee, S.Y.; Gu, D.L.; Shih, J.H.; Ho, C.M.; Chen, C.F.; Chen, C.T.; Tu, P.H.; Cheng, C.F.; Chen, R.H.; Yang, R.B.; Jou, Y.S. PSPC1 mediates TGF-β1 autocrine signalling and Smad2/3 target switching to promote EMT, stemness and metastasis. Nat. Cell Biol., 2018, 20(4), 479-491.
[http://dx.doi.org/10.1038/s41556-018-0062-y] [PMID: 29593326]
[127]
Kang, J.H.; Jung, M.Y.; Leof, E.B. B7-1 drives TGF-β stimulated pancreatic carcinoma cell migration and expression of EMT target genes. PLoS One, 2019, 14(9), e0222083.
[http://dx.doi.org/10.1371/journal.pone.0222083] [PMID: 31483844]
[128]
Dai, Y.; Wu, Z.; Lang, C.; Zhang, X.; He, S.; Yang, Q.; Guo, W.; Lai, Y.; Du, H.; Peng, X.; Ren, D. Copy number gain of ZEB1 mediates a double-negative feedback loop with miR-33a-5p that regulates EMT and bone metastasis of prostate cancer dependent on TGF-β signaling. Theranostics, 2019, 9(21), 6063-6079.
[http://dx.doi.org/10.7150/thno.36735] [PMID: 31534537]
[129]
Couture, J.F.; Collazo, E.; Brunzelle, J.S.; Trievel, R.C. Structural and functional analysis of SET8, a histone H4 Lys-20 methyltransferase. Genes Dev., 2005, 19(12), 1455-1465.
[http://dx.doi.org/10.1101/gad.1318405] [PMID: 15933070]
[130]
Fang, J.; Feng, Q.; Ketel, C.S.; Wang, H.; Cao, R.; Xia, L.; Erdjument-Bromage, H.; Tempst, P.; Simon, J.A.; Zhang, Y. Purification and functional characterization of SET8, a nucleosomal histone H4-lysine 20-specific methyltransferase. Curr. Biol., 2002, 12(13), 1086-1099.
[http://dx.doi.org/10.1016/S0960-9822(02)00924-7] [PMID: 12121615]
[131]
Yang, F.; Sun, L.; Li, Q.; Han, X.; Lei, L.; Zhang, H.; Shang, Y. SET8 promotes epithelial-mesenchymal transition and confers TWIST dual transcriptional activities. EMBO J., 2012, 31(1), 110-123.
[http://dx.doi.org/10.1038/emboj.2011.364] [PMID: 21983900]
[132]
Serrano-Gomez, S.J.; Maziveyi, M.; Alahari, S.K. Regulation of epithelial-mesenchymal transition through epigenetic and post- translational modifications. Mol. Cancer, 2016, 15, 18.
[http://dx.doi.org/10.1186/s12943-016-0502-x] [PMID: 26905733]
[133]
Hou, L.; Li, Q.; Yu, Y.; Li, M.; Zhang, D. SET8 induces epithelial‑mesenchymal transition and enhances prostate cancer cell metastasis by cooperating with ZEB1. Mol. Med. Rep., 2016, 13(2), 1681-1688.
[http://dx.doi.org/10.3892/mmr.2015.4733] [PMID: 26717907]
[134]
Yoshimoto, S.; Tanaka, F.; Morita, H.; Hiraki, A.; Hashimoto, S. Hypoxia-induced HIF-1α and ZEB1 are critical for the malignant transformation of ameloblastoma via TGF-β-dependent EMT. Cancer Med., 2019, 8(18), 7822-7832.
[http://dx.doi.org/10.1002/cam4.2667] [PMID: 31674718]
[135]
Zhang, D.; Yang, L.; Liu, X.; Gao, J.; Liu, T.; Yan, Q.; Yang, X. Hypoxia modulates stem cell properties and induces EMT through N-glycosylation of EpCAM in breast cancer cells. J. Cell. Physiol., 2020, 235(4), 3626-3633.
[http://dx.doi.org/10.1002/jcp.29252] [PMID: 31584203]
[136]
Zhang, J.; Jin, H.Y.; Wu, Y.; Zheng, Z.C.; Guo, S.; Wang, Y.; Yang, D.; Meng, X.Y.; Xu, X.; Zhao, Y. Hypoxia-induced LncRNA PCGEM1 promotes invasion and metastasis of gastric cancer through regulating SNAI1. Clin. Transl. Oncol., 2019, 21(9), 1142-1151.
[http://dx.doi.org/10.1007/s12094-019-02035-9] [PMID: 30690667]
[137]
Bery, F.; Figiel, S.; Kouba, S.; Fontaine, D.; Guéguinou, M.; Potier-Cartereau, M.; Vandier, C.; Guibon, R.; Bruyère, F.; Fromont, G.; Mahéo, K. Hypoxia promotes prostate cancer aggressiveness by upregulating emt-activator zeb1 and sk3 channel expression. Int. J. Mol. Sci., 2020, 21(13), 21.
[http://dx.doi.org/10.3390/ijms21134786] [PMID: 32640738]
[138]
Putzke, A.P.; Ventura, A.P.; Bailey, A.M.; Akture, C.; Opoku-Ansah, J.; Celiktaş, M.; Hwang, M.S.; Darling, D.S.; Coleman, I.M.; Nelson, P.S.; Nguyen, H.M.; Corey, E.; Tewari, M.; Morrissey, C.; Vessella, R.L.; Knudsen, B.S. Metastatic progression of prostate cancer and e-cadherin regulation by zeb1 and SRC family kinases. Am. J. Pathol., 2011, 179(1), 400-410.
[http://dx.doi.org/10.1016/j.ajpath.2011.03.028] [PMID: 21703419]
[139]
Drake, J.M.; Strohbehn, G.; Bair, T.B.; Moreland, J.G.; Henry, M.D. ZEB1 enhances transendothelial migration and represses the epithelial phenotype of prostate cancer cells. Mol. Biol. Cell, 2009, 20(8), 2207-2217.
[http://dx.doi.org/10.1091/mbc.e08-10-1076] [PMID: 19225155]
[140]
Wang, H.; Huang, B.; Li, B.M.; Cao, K.Y.; Mo, C.Q.; Jiang, S.J.; Pan, J.C.; Wang, Z.R.; Lin, H.Y.; Wang, D.H.; Qiu, S.P. ZEB1- mediated vasculogenic mimicry formation associates with epithelial-mesenchymal transition and cancer stem cell phenotypes in prostate cancer. J. Cell. Mol. Med., 2018, 22, 3768-3781.
[http://dx.doi.org/10.1111/jcmm.13637] [PMID: 29754422]
[141]
Inamori, K.; Yoshida-Moriguchi, T.; Hara, Y.; Anderson, M.E.; Yu, L.; Campbell, K.P. Dystroglycan function requires xylosyl- and glucuronyltransferase activities of LARGE. Science, 2012, 335(6064), 93-96.
[http://dx.doi.org/10.1126/science.1214115] [PMID: 22223806]
[142]
de Bernabé, D.B.; Inamori, K.; Yoshida-Moriguchi, T.; Weydert, C.J.; Harper, H.A.; Willer, T.; Henry, M.D.; Campbell, K.P. Loss of alpha-dystroglycan laminin binding in epithelium-derived cancers is caused by silencing of LARGE. J. Biol. Chem., 2009, 284(17), 11279-11284.
[http://dx.doi.org/10.1074/jbc.C900007200] [PMID: 19244252]
[143]
Bao, X.; Kobayashi, M.; Hatakeyama, S.; Angata, K.; Gullberg, D.; Nakayama, J.; Fukuda, M.N.; Fukuda, M. Tumor suppressor function of laminin-binding alpha-dystroglycan requires a distinct beta3-N-acetylglucosaminyltransferase. Proc. Natl. Acad. Sci. USA, 2009, 106(29), 12109-12114.
[http://dx.doi.org/10.1073/pnas.0904515106] [PMID: 19587235]
[144]
Esser, A.K.; Miller, M.R.; Huang, Q.; Meier, M.M.; Beltran- Valero de Bernabé, D.; Stipp, C.S.; Campbell, K.P.; Lynch, C.F.; Smith, B.J.; Cohen, M.B.; Henry, M.D. Loss of LARGE2 disrupts functional glycosylation of α-dystroglycan in prostate cancer. J. Biol. Chem., 2013, 288(4), 2132-2142.
[http://dx.doi.org/10.1074/jbc.M112.432807] [PMID: 23223448]
[145]
Huang, Q.; Miller, M.R.; Schappet, J.; Henry, M.D. The glycosyltransferase LARGE2 is repressed by Snail and ZEB1 in prostate cancer. Cancer Biol. Ther., 2015, 16(1), 125-136.
[http://dx.doi.org/10.4161/15384047.2014.987078] [PMID: 25455932]
[146]
Yu, H.; Rohan, T. Role of the insulin-like growth factor family in cancer development and progression. J. Natl. Cancer Inst., 2000, 92(18), 1472-1489.
[http://dx.doi.org/10.1093/jnci/92.18.1472] [PMID: 10995803]
[147]
Wang, S.; Wang, N.; Yu, B.; Cao, M.; Wang, Y.; Guo, Y.; Zhang, Y.; Zhang, P.; Yu, X.; Wang, S.; Zeng, L.; Liang, B.; Li, X.; Wu, Y. Circulating IGF-1 promotes prostate adenocarcinoma via FOXO3A/BIM signaling in a double-transgenic mouse model. Oncogene, 2019, 38(36), 6338-6353.
[http://dx.doi.org/10.1038/s41388-019-0880-9] [PMID: 31312023]
[148]
Mansor, R.; Holly, J.; Barker, R.; Biernacka, K.; Zielinska, H.; Koupparis, A.; Rowe, E.; Oxley, J.; Sewell, A.; Martin, R.M.; Lane, A.; Hackshaw-McGeagh, L.; Perks, C. IGF-1 and hyperglycaemia-induced FOXA1 and IGFBP-2 affect epithelial to mesenchymal transition in prostate epithelial cells. Oncotarget, 2020, 11(26), 2543-2559.
[http://dx.doi.org/10.18632/oncotarget.27650] [PMID: 32655839]
[149]
Graham, T.R.; Zhau, H.E.; Odero-Marah, V.A.; Osunkoya, A.O.; Kimbro, K.S.; Tighiouart, M.; Liu, T.; Simons, J.W.; O’Regan, R.M. Insulin-like growth factor-I-dependent up-regulation of ZEB1 drives epithelial-to-mesenchymal transition in human prostate cancer cells. Cancer Res., 2008, 68(7), 2479-2488.
[http://dx.doi.org/10.1158/0008-5472.CAN-07-2559] [PMID: 18381457]
[150]
Hsieh, T.C.; Wu, J.M. Resveratrol suppresses prostate cancer epithelial cell scatter/invasion by targeting inhibition of hepatocyte growth factor (HGF) secretion by prostate stromal cells and upregulation of e-cadherin by prostate cancer epithelial cells. Int. J. Mol. Sci., 2020, 21(5), 21.
[http://dx.doi.org/10.3390/ijms21051760] [PMID: 32143478]
[151]
Han, Y.; Luo, Y.; Wang, Y.; Chen, Y.; Li, M.; Jiang, Y. Hepatocyte growth factor increases the invasive potential of PC-3 human prostate cancer cells via an ERK/MAPK and Zeb-1 signaling pathway. Oncol. Lett., 2016, 11(1), 753-759.
[http://dx.doi.org/10.3892/ol.2015.3943] [PMID: 26870279]
[152]
Drake, J.M.; Barnes, J.M.; Madsen, J.M.; Domann, F.E.; Stipp, C.S.; Henry, M.D. ZEB1 coordinately regulates laminin-332 and beta4 integrin expression altering the invasive phenotype of prostate cancer cells. J. Biol. Chem., 2010, 285(44), 33940-33948.
[http://dx.doi.org/10.1074/jbc.M110.136044] [PMID: 20729552]
[153]
Shen, Z.; Zhou, L.; Zhang, C.; Xu, J. Reduction of circular RNA Foxo3 promotes prostate cancer progression and chemoresistance to docetaxel. Cancer Lett., 2020, 468, 88-101.
[http://dx.doi.org/10.1016/j.canlet.2019.10.006] [PMID: 31593800]
[154]
Chen, L.; Cai, J.; Huang, Y.; Tan, X.; Guo, Q.; Lin, X.; Zhu, C.; Zeng, X.; Liu, H.; Wu, X. Identification of cofilin-1 as a novel mediator for the metastatic potentials and chemoresistance of the prostate cancer cells. Eur. J. Pharmacol., 2020, 880, 173100.
[http://dx.doi.org/10.1016/j.ejphar.2020.173100] [PMID: 32320704]
[155]
Liu, X.; Vaidya, A.M.; Sun, D.; Zhang, Y.; Ayat, N.; Schilb, A.; Lu, Z.R. Role of eIF4E on epithelial-mesenchymal transition, invasion, and chemoresistance of prostate cancer cells. Cancer Commun (Lond), 2020, 40(2-3), 126-131.
[http://dx.doi.org/10.1002/cac2.12011] [PMID: 32189455]
[156]
Luo, S.; Shao, L.; Chen, Z.; Hu, D.; Jiang, L.; Tang, W. NPRL2 promotes docetaxel chemoresistance in castration resistant prostate cancer cells by regulating autophagy through the mTOR pathway. Exp. Cell Res., 2020, 390(2), 111981.
[http://dx.doi.org/10.1016/j.yexcr.2020.111981] [PMID: 32234375]
[157]
Kawai, K.; Sakurai, M.; Sakai, T.; Misaki, M.; Kusano, I.; Shiraishi, T.; Yatani, R. Demonstration of MDR1 P-glycoprotein isoform expression in benign and malignant human prostate cells by isoform-specific monoclonal antibodies. Cancer Lett., 2000, 150(2), 147-153.
[http://dx.doi.org/10.1016/S0304-3835(99)00384-5] [PMID: 10704736]
[158]
David-Beabes, G.L.; Overman, M.J.; Petrofski, J.A.; Campbell, P.A.; de Marzo, A.M.; Nelson, W.G. Doxorubicin-resistant variants of human prostate cancer cell lines DU 145, PC-3, PPC-1, and TSU-PR1: characterization of biochemical determinants of antineoplastic drug sensitivity. Int. J. Oncol., 2000, 17(6), 1077-1086.
[http://dx.doi.org/10.3892/ijo.17.6.1077] [PMID: 11078791]
[159]
Orellana-Serradell, O.; Herrera, D.; Castellón, E.A.; Contreras, H.R. The transcription factor ZEB1 promotes chemoresistance in prostate cancer cell lines. Asian J. Androl., 2019, 21(5), 460-467.
[http://dx.doi.org/10.4103/aja.aja_1_19] [PMID: 30880686]
[160]
Lee, J.H.; Chinnathambi, A.; Alharbi, S.A.; Shair, O.H.M.; Sethi, G.; Ahn, K.S. Farnesol abrogates epithelial to mesenchymal transition process through regulating Akt/mTOR pathway. Pharmacol. Res., 2019, 150, 104504.
[http://dx.doi.org/10.1016/j.phrs.2019.104504] [PMID: 31678208]
[161]
Lee, J.H.; Mohan, C.D.; Deivasigamani, A.; Jung, Y.Y.; Rangappa, S.; Basappa, S.; Chinnathambi, A.; Alahmadi, T.A.; Alharbi, S.A.; Garg, M.; Lin, Z-X.; Rangappa, K.S.; Sethi, G.; Hui, K.M.; Ahn, K.S. Brusatol suppresses STAT3-driven metastasis by downregulating epithelial-mesenchymal transition in hepatocellular carcinoma. J. Adv. Res., 2020, 26, 83-94.
[http://dx.doi.org/10.1016/j.jare.2020.07.004] [PMID: 33133685]
[162]
Liu, L.; Zhu, H.; Liao, Y.; Wu, W.; Liu, L.; Liu, L.; Wu, Y.; Sun, F.; Lin, H.W. Inhibition of Wnt/β-catenin pathway reverses multi- drug resistance and EMT in Oct4+/Nanog+ NSCLC cells. Biomed. Pharmacother., 2020, 127, 110225.
[http://dx.doi.org/10.1016/j.biopha.2020.110225] [PMID: 32428834]
[163]
Hanrahan, K.; O’Neill, A.; Prencipe, M.; Bugler, J.; Murphy, L.; Fabre, A.; Puhr, M.; Culig, Z.; Murphy, K.; Watson, R.W. The role of epithelial-mesenchymal transition drivers ZEB1 and ZEB2 in mediating docetaxel-resistant prostate cancer. Mol. Oncol., 2017, 11(3), 251-265.
[http://dx.doi.org/10.1002/1878-0261.12030] [PMID: 28133913]
[164]
Jacob, S.; Nayak, S.; Fernandes, G.; Barai, R.S.; Menon, S.; Chaudhari, U.K.; Kholkute, S.D.; Sachdeva, G. Androgen receptor as a regulator of ZEB2 expression and its implications in epithelial-to-mesenchymal transition in prostate cancer. Endocr. Relat. Cancer, 2014, 21(3), 473-486.
[http://dx.doi.org/10.1530/ERC-13-0514] [PMID: 24812058]
[165]
Kumar-Sinha, C.; Tomlins, S.A.; Chinnaiyan, A.M. Recurrent gene fusions in prostate cancer. Nat. Rev. Cancer, 2008, 8(7), 497-511.
[http://dx.doi.org/10.1038/nrc2402] [PMID: 18563191]
[166]
Tomlins, S.A.; Laxman, B.; Varambally, S.; Cao, X.; Yu, J.; Helgeson, B.E.; Cao, Q.; Prensner, J.R.; Rubin, M.A.; Shah, R.B.; Mehra, R.; Chinnaiyan, A.M. Role of the TMPRSS2-ERG gene fusion in prostate cancer. Neoplasia, 2008, 10(2), 177-188.
[http://dx.doi.org/10.1593/neo.07822] [PMID: 18283340]
[167]
Carver, B.S.; Tran, J.; Chen, Z.; Carracedo-Perez, A.; Alimonti, A.; Nardella, C.; Gopalan, A.; Scardino, P.T.; Cordon-Cardo, C.; Gerald, W.; Pandolfi, P.P. ETS rearrangements and prostate cancer initiation. Nature, 2009, 457(7231), E1.
[http://dx.doi.org/10.1038/nature07738] [PMID: 19212347]
[168]
Saramäki, O.R.; Harjula, A.E.; Martikainen, P.M.; Vessella, R.L.; Tammela, T.L.; Visakorpi, T. TMPRSS2:ERG fusion identifies a subgroup of prostate cancers with a favorable prognosis. Clin. Cancer Res., 2008, 14(11), 3395-3400.
[http://dx.doi.org/10.1158/1078-0432.CCR-07-2051] [PMID: 18519769]
[169]
Wang, J.; Cai, Y.; Yu, W.; Ren, C.; Spencer, D.M.; Ittmann, M. Pleiotropic biological activities of alternatively spliced TMPRSS2/ERG fusion gene transcripts. Cancer Res., 2008, 68(20), 8516-8524.
[http://dx.doi.org/10.1158/0008-5472.CAN-08-1147] [PMID: 18922926]
[170]
Demichelis, F.; Fall, K.; Perner, S.; Andrén, O.; Schmidt, F.; Setlur, S.R.; Hoshida, Y.; Mosquera, J.M.; Pawitan, Y.; Lee, C.; Adami, H.O.; Mucci, L.A.; Kantoff, P.W.; Andersson, S.O.; Chinnaiyan, A.M.; Johansson, J.E.; Rubin, M.A. TMPRSS2:ERG gene fusion associated with lethal prostate cancer in a watchful waiting cohort. Oncogene, 2007, 26(31), 4596-4599.
[http://dx.doi.org/10.1038/sj.onc.1210237] [PMID: 17237811]
[171]
Attard, G.; Clark, J.; Ambroisine, L.; Fisher, G.; Kovacs, G.; Flohr, P.; Berney, D.; Foster, C.S.; Fletcher, A.; Gerald, W.L.; Moller, H.; Reuter, V.; De Bono, J.S.; Scardino, P.; Cuzick, J.; Cooper, C.S. Duplication of the fusion of TMPRSS2 to ERG sequences identifies fatal human prostate cancer. Oncogene, 2008, 27(3), 253-263.
[http://dx.doi.org/10.1038/sj.onc.1210640] [PMID: 17637754]
[172]
Leshem, O.; Madar, S.; Kogan-Sakin, I.; Kamer, I.; Goldstein, I.; Brosh, R.; Cohen, Y.; Jacob-Hirsch, J.; Ehrlich, M.; Ben-Sasson, S.; Goldfinger, N.; Loewenthal, R.; Gazit, E.; Rotter, V.; Berger, R. TMPRSS2/ERG promotes epithelial to mesenchymal transition through the ZEB1/ZEB2 axis in a prostate cancer model. PLoS One, 2011, 6(7), e21650.
[http://dx.doi.org/10.1371/journal.pone.0021650] [PMID: 21747944]
[173]
Mottet, N.; Bellmunt, J.; Bolla, M.; Briers, E.; Cumberbatch, M.G.; De Santis, M.; Fossati, N.; Gross, T.; Henry, A.M.; Joniau, S.; Lam, T.B.; Mason, M.D.; Matveev, V.B.; Moldovan, P.C.; van den Bergh, R.C.N.; Van den Broeck, T.; van der Poel, H.G.; van der Kwast, T.H.; Rouvière, O.; Schoots, I.G.; Wiegel, T.; Cornford, P. EAU-ESTRO-SIOG guidelines on prostate cancer. Part 1: screening, diagnosis, and local treatment with curative intent. Eur. Urol., 2017, 71(4), 618-629.
[http://dx.doi.org/10.1016/j.eururo.2016.08.003] [PMID: 27568654]
[174]
Zhong, Q.; Chen, Y.; Chen, Z. LncRNA MINCR regulates irradiation resistance in nasopharyngeal carcinoma cells via the microRNA-223/ZEB1 axis. Cell Cycle, 2020, 19(1), 53-66.
[http://dx.doi.org/10.1080/15384101.2019.1692176] [PMID: 31760895]
[175]
Zhang, P.; Wei, Y.; Wang, L.; Debeb, B.G.; Yuan, Y.; Zhang, J.; Yuan, J.; Wang, M.; Chen, D.; Sun, Y.; Woodward, W.A.; Liu, Y.; Dean, D.C.; Liang, H.; Hu, Y.; Ang, K.K.; Hung, M.C.; Chen, J.; Ma, L. ATM-mediated stabilization of ZEB1 promotes DNA damage response and radioresistance through CHK1. Nat. Cell Biol., 2014, 16(9), 864-875.
[http://dx.doi.org/10.1038/ncb3013] [PMID: 25086746]
[176]
Kowalski-Chauvel, A.; Modesto, A.; Gouaze-Andersson, V.; Baricault, L.; Gilhodes, J.; Delmas, C.; Lemarie, A.; Toulas, C.; Cohen-Jonathan-Moyal, E.; Seva, C. Alpha-6 integrin promotes radioresistance of glioblastoma by modulating DNA damage response and the transcription factor Zeb1. Cell Death Dis., 2018, 9(9), 872.
[http://dx.doi.org/10.1038/s41419-018-0853-x] [PMID: 30158599]
[177]
El Bezawy, R.; Tinelli, S.; Tortoreto, M.; Doldi, V.; Zuco, V.; Folini, M.; Stucchi, C.; Rancati, T.; Valdagni, R.; Gandellini, P.; Zaffaroni, N. miR-205 enhances radiation sensitivity of prostate cancer cells by impairing DNA damage repair through PKCε and ZEB1 inhibition. J. Exp. Clin. Cancer Res., 2019, 38(1), 51.
[http://dx.doi.org/10.1186/s13046-019-1060-z] [PMID: 30717752]
[178]
El Bezawy, R.; Cominetti, D.; Fenderico, N.; Zuco, V.; Beretta, G.L.; Dugo, M.; Arrighetti, N.; Stucchi, C.; Rancati, T.; Valdagni, R.; Zaffaroni, N.; Gandellini, P. miR-875-5p counteracts epithelial-to-mesenchymal transition and enhances radiation response in prostate cancer through repression of the EGFR-ZEB1 axis. Cancer Lett., 2017, 395, 53-62.
[http://dx.doi.org/10.1016/j.canlet.2017.02.033] [PMID: 28274892]
[179]
Chen, D.; Chou, F.J.; Chen, Y.; Tian, H.; Wang, Y.; You, B.; Niu, Y.; Huang, C.P.; Yeh, S.; Xing, N.; Chang, C. Targeting the radiation-induced TR4 nuclear receptor-mediated QKI/circZEB1/miR-141-3p/ZEB1 signaling increases prostate cancer radiosensitivity. Cancer Lett., 2020, 495, 100-111.
[http://dx.doi.org/10.1016/j.canlet.2020.07.040] [PMID: 32768524]
[180]
Jin, M.; Zhang, T.; Liu, C.; Badeaux, M.A.; Liu, B.; Liu, R.; Jeter, C.; Chen, X.; Vlassov, A.V.; Tang, D.G. miRNA-128 suppresses prostate cancer by inhibiting BMI-1 to inhibit tumor-initiating cells. Cancer Res., 2014, 74(15), 4183-4195.
[http://dx.doi.org/10.1158/0008-5472.CAN-14-0404] [PMID: 24903149]
[181]
Sun, X.; Yang, Z.; Zhang, Y.; He, J.; Wang, F.; Su, P.; Han, J.; Song, Z.; Fei, Y. Prognostic implications of tissue and serum levels of microRNA-128 in human prostate cancer. Int. J. Clin. Exp. Pathol., 2015, 8(7), 8394-8401.
[PMID: 26339409]
[182]
Sun, X.; Li, Y.; Yu, J.; Pei, H.; Luo, P.; Zhang, J. miR-128 modulates chemosensitivity and invasion of prostate cancer cells through targeting ZEB1. Jpn. J. Clin. Oncol., 2015, 45(5), 474-482.
[http://dx.doi.org/10.1093/jjco/hyv027] [PMID: 25921099]
[183]
Cha, Y.J.; Lee, J.H.; Han, H.H.; Kim, B.G.; Kang, S.; Choi, Y.D.; Cho, N.H. MicroRNA alteration and putative target genes in high- grade prostatic intraepithelial neoplasia and prostate cancer: STAT3 and ZEB1 are upregulated during prostate carcinogenesis. Prostate, 2016, 76(10), 937-947.
[http://dx.doi.org/10.1002/pros.23183] [PMID: 27017949]
[184]
Takeno, T.; Hasegawa, T.; Hasegawa, H.; Ueno, Y.; Hamataka, R.; Nakajima, A.; Okubo, J.; Sato, K.; Sakamaki, T. MicroRNA-205-5p inhibits three-dimensional spheroid proliferation of ErbB2-overexpressing breast epithelial cells through direct targeting of CLCN3. PeerJ, 2019, 7, e7799.
[http://dx.doi.org/10.7717/peerj.7799] [PMID: 31608175]
[185]
Ma, C.; Shi, X.; Guo, W.; Feng, F.; Wang, G. miR-205-5p downregulation decreases gemcitabine sensitivity of breast cancer cells via ERp29 upregulation. Exp. Ther. Med., 2019, 18(5), 3525-3533.
[http://dx.doi.org/10.3892/etm.2019.7962] [PMID: 31602229]
[186]
Li, L.; Li, S. miR-205-5p inhibits cell migration and invasion in prostatic carcinoma by targeting ZEB1. Oncol. Lett., 2018, 16(2), 1715-1721.
[http://dx.doi.org/10.3892/ol.2018.8862] [PMID: 30008858]
[187]
Liu, M.; Zhang, Y.; Yang, J.; Cui, X.; Zhou, Z.; Zhan, H.; Ding, K.; Tian, X.; Yang, Z.; Fung, K.A.; Edil, B.H.; Postier, R.G.; Bronze, M.S.; Fernandez-Zapico, M.E.; Stemmler, M.P.; Brabletz, T.; Li, Y.P.; Houchen, C.W.; Li, M. ZIP4 increases expression of transcription factor zeb1 to promote integrin α3β1 signaling and inhibit expression of the gemcitabine transporter ENT1 in pancreatic cancer cells. Gastroenterology, 2020, 158(3), 679-692.e1.
[http://dx.doi.org/10.1053/j.gastro.2019.10.038] [PMID: 31711924]
[188]
Sreekumar, R.; Emaduddin, M.; Al-Saihati, H.; Moutasim, K.; Chan, J.; Spampinato, M.; Bhome, R.; Yuen, H.M.; Mescoli, C.; Vitale, A.; Cillo, U.; Rugge, M.; Primrose, J.; Hilal, M.A.; Thirdborough, S.; Tulchinsky, E.; Thomas, G.; Mirnezami, A.; Sayan, A.E. Protein kinase C inhibitors override ZEB1-induced chemoresistance in HCC. Cell Death Dis., 2019, 10(10), 703.
[http://dx.doi.org/10.1038/s41419-019-1885-6] [PMID: 31543517]
[189]
Zhang, G.; Tian, X.; Li, Y.; Wang, Z.; Li, X.; Zhu, C. miR-27b and miR-34a enhance docetaxel sensitivity of prostate cancer cells through inhibiting epithelial-to-mesenchymal transition by targeting ZEB1. Biomed. Pharmacother., 2018, 97, 736-744.
[http://dx.doi.org/10.1016/j.biopha.2017.10.163] [PMID: 29102917]
[190]
Wu, G.; Wang, J.; Chen, G.; Zhao, X. microRNA-204 modulates chemosensitivity and apoptosis of prostate cancer cells by targeting zinc-finger E-box-binding homeobox 1 (ZEB1). Am. J. Transl. Res., 2017, 9(8), 3599-3610.
[PMID: 28861151]
[191]
Shermane Lim, Y.W.; Xiang, X.; Garg, M.; Le, M.T.N.; Li-Ann Wong, A.; Wang, L.; Goh, B-C. The double-edged sword of H19 lncRNA: Insights into cancer therapy. Cancer Lett., 2021, 500, 253-262.
[http://dx.doi.org/10.1016/j.canlet.2020.11.006] [PMID: 33221454]
[192]
Shen, C.; Yang, C.; Xia, B.; You, M. Long non-coding RNAs: Emerging regulators for chemo/immunotherapy resistance in cancer stem cells. Cancer Lett., 2021, 500, 244-252.
[http://dx.doi.org/10.1016/j.canlet.2020.11.010] [PMID: 33242560]
[193]
Wu, M.; Zhang, X.; Han, X.; Pandey, V.; Lobie, P.E.; Zhu, T. The potential of long noncoding RNAs for precision medicine in human cancer. Cancer Lett., 2021, 501, 12-19.
[http://dx.doi.org/10.1016/j.canlet.2020.11.040] [PMID: 33359450]
[194]
Robless, E.E.; Howard, J.A.; Casari, I.; Falasca, M. Exosomal long non-coding RNAs in the diagnosis and oncogenesis of pancreatic cancer. Cancer Lett., 2021, 501, 55-65.
[http://dx.doi.org/10.1016/j.canlet.2020.12.005] [PMID: 33359452]
[195]
Gala, K.; Khattar, E. Long non-coding RNAs at work on telomeres: Functions and implications in cancer therapy. Cancer Lett., 2021, 502, 120-132.
[http://dx.doi.org/10.1016/j.canlet.2020.12.036] [PMID: 33450357]
[196]
Bhardwaj, V.; Tan, Y.Q.; Wu, M.M.; Ma, L.; Zhu, T.; Lobie, P.E.; Pandey, V. Long non-coding RNAs in recurrent ovarian cancer: Theranostic perspectives. Cancer Lett., 2021, 502, 97-107.
[http://dx.doi.org/10.1016/j.canlet.2020.12.042] [PMID: 33429007]
[197]
Ma, T.; Chen, H.; Wang, P.; Yang, N.; Bao, J. Downregulation of lncRNA ZEB1-AS1 represses cell proliferation, migration, and invasion through mediating PI3K/AKT/mTOR signaling by miR-342-3p/CUL4B axis in prostate cancer. Cancer Biother. Radiopharm., 2020, 35(9), 661-672.
[http://dx.doi.org/10.1089/cbr.2019.3123] [PMID: 32275162]
[198]
Su, W.; Xu, M.; Chen, X.; Chen, N.; Gong, J.; Nie, L.; Li, L.; Li, X.; Zhang, M.; Zhou, Q. Long noncoding RNA ZEB1-AS1 epigenetically regulates the expressions of ZEB1 and downstream molecules in prostate cancer. Mol. Cancer, 2017, 16(1), 142.
[http://dx.doi.org/10.1186/s12943-017-0711-y] [PMID: 28830551]
[199]
Yuan, Q.; Chu, H.; Ge, Y.; Ma, G.; Du, M.; Wang, M.; Zhang, Z.; Zhang, W. LncRNA PCAT1 and its genetic variant rs1902432 are associated with prostate cancer risk. J. Cancer, 2018, 9(8), 1414-1420.
[http://dx.doi.org/10.7150/jca.23685] [PMID: 29721051]
[200]
Zhang, X.; Zhang, Y.; Mao, Y.; Ma, X. The lncRNA PCAT1 is correlated with poor prognosis and promotes cell proliferation, invasion, migration and EMT in osteosarcoma. OncoTargets Ther., 2018, 11, 629-638.
[http://dx.doi.org/10.2147/OTT.S152063] [PMID: 29430187]
[201]
Zhen, Q.; Gao, L.N.; Wang, R.F.; Chu, W.W.; Zhang, Y.X.; Zhao, X.J.; Lv, B.L.; Liu, J.B. LncRNA PCAT-1 promotes tumour growth and chemoresistance of oesophageal cancer to cisplatin. Cell Biochem. Funct., 2018, 36(1), 27-33.
[http://dx.doi.org/10.1002/cbf.3314] [PMID: 29314203]
[202]
Tian, R.; Zhang, C.; Xiong, F.; Chen, H. PCAT1/miR-129/ ABCB1 axis confers chemoresistance in non-small cell lung cancer. Front. Biosci., 2020, 25, 948-960.
[http://dx.doi.org/10.2741/4842] [PMID: 32114419]
[203]
Guo, Y.; Yue, P.; Wang, Y.; Chen, G.; Li, Y. PCAT-1 contributes to cisplatin resistance in gastric cancer through miR-128/ZEB1 axis. Biomed. Pharmacother., 2019, 118, 109255.
[http://dx.doi.org/10.1016/j.biopha.2019.109255] [PMID: 31352238]
[204]
Feng, X.; Wang, Z.; Fillmore, R.; Xi, Y. MiR-200, a new star miRNA in human cancer. Cancer Lett., 2014, 344(2), 166-173.
[http://dx.doi.org/10.1016/j.canlet.2013.11.004] [PMID: 24262661]
[205]
Wang, H.Y.; Liu, Y.N.; Wu, S.G.; Hsu, C.L.; Chang, T.H.; Tsai, M.F.; Lin, Y.T.; Shih, J.Y. MiR-200c-3p suppression is associated with development of acquired resistance to epidermal growth factor receptor (EGFR) tyrosine kinase inhibitors in EGFR mutant non-small cell lung cancer via a mediating epithelial-to-mesenchymal transition (EMT) process. Cancer Biomark., 2020, 28(3), 351-363.
[http://dx.doi.org/10.3233/CBM-191119] [PMID: 32417760]
[206]
Zhang, J.; Zhang, H.; Qin, Y.; Chen, C.; Yang, J.; Song, N.; Gu, M. MicroRNA-200c-3p/ZEB2 loop plays a crucial role in the tumor progression of prostate carcinoma. Ann. Transl. Med., 2019, 7(7), 141.
[http://dx.doi.org/10.21037/atm.2019.02.40] [PMID: 31157262]
[207]
Ren, D.; Wang, M.; Guo, W.; Huang, S.; Wang, Z.; Zhao, X.; Du, H.; Song, L.; Peng, X. Double-negative feedback loop between ZEB2 and miR-145 regulates epithelial-mesenchymal transition and stem cell properties in prostate cancer cells. Cell Tissue Res., 2014, 358(3), 763-778.
[http://dx.doi.org/10.1007/s00441-014-2001-y] [PMID: 25296715]
[208]
Zhang, P.; Wang, L.; Rodriguez-Aguayo, C.; Yuan, Y.; Debeb, B.G.; Chen, D.; Sun, Y.; You, M.J.; Liu, Y.; Dean, D.C.; Woodward, W.A.; Liang, H.; Yang, X.; Lopez-Berestein, G.; Sood, A.K.; Hu, Y.; Ang, K.K.; Chen, J.; Ma, L. miR-205 acts as a tumour radiosensitizer by targeting ZEB1 and Ubc13. Nat. Commun., 2014, 5, 5671.
[http://dx.doi.org/10.1038/ncomms6671] [PMID: 25476932]
[209]
Jiang, Y.; Jin, S.; Tan, S.; Shen, Q.; Xue, Y. MiR-203 acts as a radiosensitizer of gastric cancer cells by directly targeting ZEB1. OncoTargets Ther., 2019, 12, 6093-6104.
[http://dx.doi.org/10.2147/OTT.S197539] [PMID: 31440062]
[210]
Tanaudommongkon, I.; Tanaudommongkon, A.; Prathipati, P.; Nguyen, J.T.; Keller, E.T.; Dong, X. Curcumin nanoparticles and their cytotoxicity in docetaxel-resistant castration-resistant prostate cancer cells. Biomedicines, 2020, 8(8), 8.
[http://dx.doi.org/10.3390/biomedicines8080253] [PMID: 32751450]
[211]
Singh, C.K.; Chhabra, G.; Ndiaye, M.A.; Siddiqui, I.A.; Panackal, J.E.; Mintie, C.A.; Ahmad, N. Quercetin-resveratrol combination for prostate cancer management in TRAMP mice. Cancer (Basel), 2020, 12(8), 12.
[http://dx.doi.org/10.3390/cancers12082141] [PMID: 32748838]
[212]
Li, X.; Zhang, A.; Sun, H.; Liu, Z.; Zhang, T.; Qiu, S.; Liu, L.; Wang, X. Metabolic characterization and pathway analysis of berberine protects against prostate cancer. Oncotarget, 2017, 8(39), 65022-65041.
[http://dx.doi.org/10.18632/oncotarget.17531] [PMID: 29029409]
[213]
Ashrafizadeh, M.; Taeb, S.; Hushmandi, K.; Orouei, S.; Shahinozzaman, M.; Zabolian, A.; Moghadam, E.R.; Raei, M.; Zarrabi, A.; Khan, H.; Najafi, M. Cancer and SOX proteins: New insight into their role in ovarian cancer progression/inhibition. Pharmacol. Res., 2020, 161, 105159.
[http://dx.doi.org/10.1016/j.phrs.2020.105159] [PMID: 32818654]
[214]
Dehghan Esmatabadi, M.J.; Farhangi, B.; Safari, Z.; Kazerooni, H.; Shirzad, H.; Zolghadr, F.; Sadeghizadeh, M. Dendrosomal curcumin inhibits metastatic potential of human SW480 colon cancer cells through Down-regulation of Claudin1, Zeb1 and Hef1-1 gene expression. Asian Pac. J. Cancer Prev., 2015, 16(6), 2473-2481.
[http://dx.doi.org/10.7314/APJCP.2015.16.6.2473] [PMID: 25824783]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy