Generic placeholder image

Nanoscience & Nanotechnology-Asia

Editor-in-Chief

ISSN (Print): 2210-6812
ISSN (Online): 2210-6820

Review Article

The Impact of Hydrogenation Conditions on the Physical Properties of the Degenerated Ni/Al Co-doped Diluted Magnetic Semiconductor Anatase Nanoparticles

Author(s): Aqeel Aziz Dakhel*

Volume 12, Issue 1, 2022

Published on: 01 July, 2021

Article ID: e270521193638 Pages: 7

DOI: 10.2174/2210681211666210527110740

Price: $65

Abstract

Anatase (TiO2) nanoparticles co-doped with Ni/Al ions were synthesized by a thermoprecipitation method. The samples were characterized by using XRay diffraction and optical absorption spectroscopy. The structural/optical investigations established the development of substitutional solid solutions: TiO2:Ni:Al. The magnetization investigations were performed to study the generated stable ferromagnetic properties of the samples due to the Ni2+ doping. To boost the created ferromagnetic properties, Al ions co-dopings were employed to supply/densify the itinerant electrons. It was planned to decide on the suitable hydrogenation conditions and temperature (TH), which are necessary to create appreciable strength of ferromagnetic properties in the host co-doped samples based on TiO2 for practical uses. The results established that the ferromagnetic energy (Umag) was increased by ~240% and the saturation magnetization by ~140% with increasing of TH from 400 °C to 500°C. The obtained Msat was higher by ~50 times than that previously attained for Ni-doped TiO2. Such novel results were discussed and explained through the spin-spin Heisenberg interactions.

Keywords: Ni-Al co-doped TiO2, creation of ferromagnetism, hydrogenation, dilute magnetic semiconductors, anatase nanoparticles, Ni/Al ions.

Graphical Abstract
[1]
Rahimi, N.; Pax, R.A.; Mac, E.; Gray, A. Review of functional titanium oxides. I: TiO2 and its modifications. Prog. Solid State Chem., 2016, 44(3), 86-105.
[http://dx.doi.org/10.1016/j.progsolidstchem.2016.07.002]
[2]
Reyes-Coronado, D.; Rodrıguez-Gattorno, G.; Espinosa-Pesqueira, M.E.; Cab, C.; de Coss, R.; Oskam, G. Phase-pure TiO2 nanoparticles: Anatase, brookite and rutile. Nanotechnology, 2008, 19(145605), 10.
[3]
Balhamri, A.; Deraoui, A.; Bahou, Y.; Rattal, M.; Mouhsen, Az.; Harmouchi, M.; Tabyaoui, A.; Oualim, E.M. Surface and optical properties of zinc oxide doped with fluor synthesized by magnetron sputtering: Applications in transparent conductive oxides (TCO). Int. J. Thin. Fil. Sci. Tec., 2015, 4(3), 205-210.
[http://dx.doi.org/10.12785/ijtfst/040308]
[4]
Dong, J.; Han, J.; Liu, Y.; Nakajima, A.; Matsushita, S.; Wei, S.; Gao, W. Defective black TiO2 synthesized via anodization for visible-light photocatalysis. Appl. Mater. Inter., 2018, 6, 1385-1388.
[http://dx.doi.org/10.1021/am405549p]
[5]
Bavykin, D.V.; Parmon, V.N.; Lapkin, A.A.; Walsh, F.C. The effect of hydrothermal conditions on the mesoporous structure of TiO2 nanotubes. J. Mater. Chem., 2004, 14, 3370-3377.
[http://dx.doi.org/10.1039/b406378c]
[6]
Zhuang, H-F.; Lin, C-J.; Lai, Y-K.; Sun, L.; Li, J. Some critical structure factors of titanium oxide nanotube array in its photocatalytic activity. Environ. Sci. Technol., 2007, 41(13), 4735-4740.
[http://dx.doi.org/10.1021/es0702723] [PMID: 17695922]
[7]
Lu, X.; Zhao, T.; Gao, X.; Ren, J.; Yan, X.; La, P. Investigation of Mo-, Pt-, and Rh-doped rutile TiO2 based on first-principles calculations. AIP Adv., 2018, 8075014
[http://dx.doi.org/10.1063/1.5038776]
[8]
Gowri manohari, A.; Dhanapandian, S.; Santhosh Kumar, K.; Mahalingam, T. Optimization of deposition parameters on the physical properties of TiO2 thin films by spray prrolysis technique. Int. J. thin films Sci. Technol., 2014, 3(1), 1-6.
[http://dx.doi.org/10.12785/ijtfst/030101]
[9]
Tian, J.; Gao, H.; Deng, H.; Sun, L.; Kong, H.; Yang, P.; Chu, J. Structural, magnetic and optical properties of Ni-doped TiO2 thin films deposited on silicon (1 0 0) substrates by sol–gel process. J. Alloys Compd., 2013, 581, 318-323.
[http://dx.doi.org/10.1016/j.jallcom.2013.07.105]
[10]
A. Gowri manohari, S. Dhanapandian, K. Santhosh Kumar and T. Mahalingam, optimization of deposition parameters on the physical properties of TiO2 thin films by spray pyrolysis technique. Int. J. Thin Fil. Sci. Tec., 2014, 3, 1-6.
[http://dx.doi.org/10.12785/ijtfst/030101]
[11]
Chen, X.; Mao, S.S. Titanium dioxide nanomaterials: Synthesis, properties, modifications, and applications. Chem. Rev., 2007, 107(7), 2891-2959.
[http://dx.doi.org/10.1021/cr0500535] [PMID: 17590053]
[12]
Diebold, U. The surface science of titanium dioxide. Surf. Sci. Rep., 2003, 48, 53-229.
[http://dx.doi.org/10.1016/S0167-5729(02)00100-0]
[13]
Padilha, A.C.M.; Raebiger, H.; Rocha, A.R.; Dalpian, G.M. Charge storage in oxygen deficient phases of TiO2: Defect Physics without defects. Sci. Rep., 2016, 6(28871), 1-6.
[14]
Xu, Y.; Zhang, C.; Zhang, L.; Zhang, X.; Yao, H.; Shi, J. Pd-catalyzed instant hydrogenation of TiO2 with enhanced photocatalytic performance Energy. Environ. Sci. Technol., 2016, 9, 2410-2417.
[15]
Bououdina, M.; Dakhel, A.A.; El-Hilo, M.; Anjum, D.H.; Kanoun, M.B.; Goumri-Said, S. Revealing a room temperature ferromagnetism in cadmium oxide nanoparticles: An experimental and first-principles study. RSC Advances, 2015, 5, 33233-33238.
[http://dx.doi.org/10.1039/C5RA03069B]
[16]
Qi, B.; Olafsson, S.; Gislason, H.P. Vacancy defect-induced d0 ferromagnetism in Un-doped ZnO nanostructures: Controversial origin and challenges. Prog. Mater. Sci., 2017, 90, 45-74.
[http://dx.doi.org/10.1016/j.pmatsci.2017.07.002]
[17]
Gu, F.; Wang, S.; Cao, H.; Li, C. Synthesis and optical properties of SnO2 nanorods. Nanotechnology, 2008, 19(9)095708
[http://dx.doi.org/10.1088/0957-4484/19/9/095708] [PMID: 21817690]
[18]
Kumar, S.; Kim, Y.J.; Koo, B.H.; Gautam, S.; Chae, K.H.; Kumar, R.; Lee, C.G. Room temperature ferromagnetism in chemically synthesized ZnO rods. Mater. Lett., 2009, 63, 194-196.
[http://dx.doi.org/10.1016/j.matlet.2008.09.057]
[19]
Elfimov, I.S.; Yunoki, S.; Sawatzky, G.A. Possible path to a new class of ferromagnetic and half-metallic ferromagnetic materials. Phys. Rev. Lett., 2002, 89(21)216403
[http://dx.doi.org/10.1103/PhysRevLett.89.216403] [PMID: 12443438]
[20]
Zhou, S.; Cizmar, E.; Potzger, K.; Krause, M.; Talut, G.; Helm, M.; Fassbender, J.; Zvyagni, S.A.; Wasnitza, J.; Schmidt, H. Origin of magnetic moments in defective TiO2 single crystals. Phys. Rev. B Condens. Matter Mater. Phys., 2009, 79113201
[http://dx.doi.org/10.1103/PhysRevB.79.113201]
[21]
Dakhel, A.A.; Bououdina, M. Structural, optical, and magnetic properties of Cu- and Ni co-doped CdO dilute magnetic nanocrystalline semiconductor: Effect of hydrogen post-treatment. Appl. Phys., A Mater. Sci. Process., 2015, 119, 1053-1060.
[http://dx.doi.org/10.1007/s00339-015-9067-6]
[22]
Dakhel, A. A. Critical role of hydrogenation for creation of magnetic Cd–Cu co-incorporated TiO2 nanocrystallites. Appl. Phys. A Mater. Sci. Process.,, 2020, 126((1))
[http://dx.doi.org/doi.org/10.1007/s00339-019-3222-4. ]
[23]
Shannon, R.D. Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides. Acta Crystallogr. A, 1976, 32, 751-767.
[http://dx.doi.org/10.1107/S0567739476001551]
[24]
Pozzo, M.; Alfe, D. Hydrogen dissociation and diffusion on transition metal (Ti, Zr, V, Fe, Ru, Co, Rh, Ni, Pd, Cu, Ag)-doped Mg (0001) surface. Int. J. Hydrogen Energy, 2009, 34, 1922-1930.
[http://dx.doi.org/10.1016/j.ijhydene.2008.11.109]
[25]
Gupta, S.M.; Tripathi, M. A review of TiO2 nanoparticles. Chin. Sci. Bull., 2011, 56, 1639-1657.
[http://dx.doi.org/10.1007/s11434-011-4476-1]
[26]
Weller, M.; Overton, T.; Rourke, J. Inorganic Chemistry, 5th ed; Oxford University Press: London, England, 2010.
[27]
McCusker, L.B.; Von Dreele, R.B.; Cox, D.E.; Louer, D.; Scardi, P. Rietveld refinement guidelines. J. Appl. Cryst., 1999, 32, 36.
[http://dx.doi.org/10.1107/S0021889898009856]
[28]
Khorsand Zak, A.; Abd Majid, W.H.; Abrishami, M.E.; Yousefi, R. X-ray analysis of ZnO nanoparticles by Williamson–Hall and size–strain plot methods. Solid State Sci., 2011, 13, 251-256.
[http://dx.doi.org/10.1016/j.solidstatesciences.2010.11.024]
[29]
Morales, A.E.; Mora, E.S.; Pal, U. Use of diffuse reflectance spectroscopy for optical characterization of un-supported nanostructures. Rev. Mex. Fis., 2007, S53, 18-22.
[30]
Daniela, S.; Vesna, D.; Biljana, A.; Nadia, T.; Tatiana, G. Christos, trapalis photocatalytic degradation of mecoprop and clopyralid in aqueous suspensions of nanostructured N-doped TiO2. Molecules, 2010, 15, 2994-3009.
[http://dx.doi.org/10.3390/molecules15052994]
[31]
Anyaegbunam, F.N.C.; Augustine, C. A study of optical gap associated Urbach energy tail of chemically deposited metal oxides binary films. Dig. J. Nanomater. Biostruct., 2018, 13, 847-856.
[32]
Baker-Finch, S.C.; McIntosh, K.R.; Di Yan, K.C. Near-infrared free carrier absorption in heavily doped silicon. J. Appl. Phys., 2014, 116(063106), 12.
[33]
Dakhel, A.A.; Ali-Mohamed, A.Y. Optical and transport phenomena in CdO: La films prepared by sol-gel method. J. Sol-Gel Sci. Technol., 2007, 44, 241-247.
[http://dx.doi.org/10.1007/s10971-007-1615-x]
[34]
Hartnagel, H.L.; Dawar, A.L.; Jain, A.K.; Jagadish, G. Semiconducting Transparent Thin Films; IOP: Bristol, 1995, p. 226.
[35]
Qiao, Z.; Agashe, C.; Mergel, D. Dielectric modeling of transmittance spectra of thin ZnO. Al Films. Thin Solid Films, 2006, 496, 520.
[http://dx.doi.org/10.1016/j.tsf.2005.08.282]
[36]
Yuan, L.; Weng, X.; Zhou, M.; Zhang, Q.; Deng, L. Structural and visible-near infrared optical properties of Cr-doped TiO2 for colored cool pigments. Nanoscale Res. Lett., 2017, 12(1), 597.
[http://dx.doi.org/10.1186/s11671-017-2365-5] [PMID: 29149423]
[37]
Dakhel, A.A. Creation of room-temperature DMS carbon-incorporated ZnO. J. Optoelectron. Adv. Mater., 2021, 23(1-2), 58-62.
[http://dx.doi.org/10.1007/s10948-019-5111-7]
[38]
Wang, H.; Wei, J.; Xiong, R.; Shi, J. Enhanced ferromagnetic properties of Fe+N co-doped TiO2 anatase. J. Magn. Magn. Mater., 2012, 324, 2057-2061.
[http://dx.doi.org/10.1016/j.jmmm.2012.02.015]
[39]
Kumar, A.; Kashyap, M.K.; Sabharwal, N.; Kumar, S.; Kumar, A.; Kumar, P.K. Asokan, Structural, optical and weak magnetic properties of Co and Mn co-doped TiO2 nanoparticles. Solid State Sci., 2017, 73, 19-26.
[http://dx.doi.org/10.1016/j.solidstatesciences.2017.09.002]
[40]
The web page of the University of the West Indies at Mona, Jamaica, The Dept. of Chemistry. 2020. Available from: http://wwwchem.uwimona.edu.jm/spectra/MagMom.htmlaccessed May. 2020
[41]
Bergqvist, L.; Eriksson, O.; Kudrnovský, J.; Drchal, V.; Korzhavyi, P.; Turek, I. Magnetic percolation in diluted magnetic semiconductors. Phys. Rev. Lett., 2004, 93(13)137202
[http://dx.doi.org/10.1103/PhysRevLett.93.137202] [PMID: 15524754]
[42]
Seo, S-Y.; Kwak, C-H.; Kim, S-H.; Park, S-H.; Lee, I-J.; Han, S-W. Synthesis and characterization of ferromagnetic Zn1-xCoxO films. J. Cryst. Growth, 2012, 346, 56.
[http://dx.doi.org/10.1016/j.jcrysgro.2012.02.022]
[43]
Raghavan, V. Materials Science and Engineering: A first course 5th ed; Prentic-Hall of India private limited: New Delhi, 2004, p. 406
[44]
Sandeep, Kumar; Singh, Patel; Paramananda, Jena; N.S., Gajbhiye Structural and room-temperature ferromagnetic properties of pure and Ni-doped TiO2 nanotubes. Materials Today: Proceedings, 2019, 15, 388-393.
[45]
Wang, Q.; Liu, X.; Wei, X.; Dai, J.; Li, W. Ferromagnetic property of Co and Ni doped TiO2 nanoparticles. J. Nanomater,2015, 2015, 1-5.
[http://dx.doi.org/10.1155/2015/371582.]
[46]
Manzoor, M.; Rafiq, A.; Ikram, M.; Nafees, M.; Ali, S. Structural, optical, and magnetic study of Ni-doped TiO2 nanoparticles synthesized by sol–gel method. Int. Nano Lett., 2018, 8, 1-8.
[http://dx.doi.org/10.1007/s40089-018-0225-7]
[47]
Waseem, S.; Anjum, S.; Mustafa, L.; Zeeshan, T.; Kayani, Z.N.; Javed, K. Structural, magnetic and optical investigations of Fe and Ni co-doped TiO2 dilute magnetic semiconductors. Ceram. Int., 2018, 44, 17767-17774.
[http://dx.doi.org/10.1016/j.ceramint.2018.06.244]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy