Review Article

MicroRNAs: Key Regulators in Lung Cancer

Author(s): Younes El Founini, Imane Chaoui*, Hind Dehbi, Mohammed El Mzibri, Roger Abounader and Fadila Guessous

Volume 10 , Issue 2 , 2021

Published on: 26 May, 2021

Page: [109 - 122] Pages: 14

DOI: 10.2174/2211536610666210527102522

Price: $65

Abstract

Noncoding RNAs have emerged as key regulators of the genome upon gene expression profiling and genome-wide sequencing. Among these noncoding RNAs, microRNAs are short noncoding RNAs that regulate a plethora of functions, biological processes and human diseases by targeting the messenger RNA stability through 3’UTR binding, leading to either mRNA cleavage or translation repression, depending on microRNA-mRNA complementarity degree. Additionally, strong evidence has suggested that dysregulation of miRNAs contributes to the etiology and progression of human cancers, such as lung cancer, the most common and deadliest cancer worldwide. Indeed, by acting as oncogenes or tumor suppressors, microRNAs control all aspects of lung cancer malignancy, including cell proliferation, survival, migration, invasion, angiogenesis, cancer stem cells, immune-surveillance escape, and therapy resistance; and their expressions are often associated with clinical parameters. Moreover, several deregulated microRNAs in lung cancer are carried by exosomes and microvesicles and secreted in body fluids, mainly the circulation, where they conserve their stable forms. Subsequently, seminal efforts have been focused on extracellular microRNAs levels as noninvasive diagnostic and prognostic biomarkers in lung cancer. In this review, focusing on recent literature, we summarize the deregulation, mechanisms of action, functions and highlight clinical applications of miRNAs for better management and design of future lung cancer targeted therapies.

Keywords: miRNAs, lung cancer, NSCLC, immune response, therapeutics, key regulations.

Graphical Abstract
[1]
de Groot PM, Wu CC, Carter BW, Munden RF. The epidemiology of lung cancer. Transl Lung Cancer Res 2018; 7(3): 220-33.
[http://dx.doi.org/10.21037/tlcr.2018.05.06] [PMID: 30050761]
[2]
Bray F, Ferlay J, Soerjomataram I, Siegel RL, Torre LA, Jemal A. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin 2018; 68(6): 394-424.
[http://dx.doi.org/10.3322/caac.21492] [PMID: 30207593]
[3]
Fougère B. Influence of age and tobacco on the early genotoxic and epigenetic mechanisms of bronchopulmonary carcinogenesis in response to urban particulate pollution 2014. Available from: https://tel.archives-ouvertes.fr/tel-01288911
[4]
Mao Y, Yang D, He J, Krasna MJ. Epidemiology of lung cancer. Surg Oncol Clin N Am 2016; 25(3): 439-45.
[http://dx.doi.org/10.1016/j.soc.2016.02.001] [PMID: 27261907]
[5]
Akhtar N, Bansal JG. Risk factors of lung cancer in nonsmoker. Curr Probl Cancer 2017; 41(5): 328-39.
[http://dx.doi.org/10.1016/j.currproblcancer.2017.07.002] [PMID: 28823540]
[6]
Cooper WA, Lam DC, O’Toole SA, Minna JD. Molecular biology of lung cancer. J Thorac Dis 2013; 5(5): S479-90.
[PMID: 24163741]
[7]
Zhuang X, Zhao C, Li J, et al. Clinical features and therapeutic options in non-small cell lung cancer patients with concomitant mutations of EGFR, ALK, ROS1, KRAS or BRAF. Cancer Med 2019; 8(6): 2858-66.
[http://dx.doi.org/10.1002/cam4.2183] [PMID: 31016879]
[8]
PDQ Adult Treatment Editorial Board. Non-Small cell lung cancer treatment (PDQ®): health professional version. In: PDQ cancer information summaries. Bethesda (MD): National Cancer Institute (US) 2002.
[PMID: 26389304]
[9]
Castro D, Moreira M, Gouveia AM, Pozza DH, De Mello RA. MicroRNAs in lung cancer. Oncotarget 2017; 8(46): 81679-85.
[http://dx.doi.org/10.18632/oncotarget.20955] [PMID: 29113423]
[10]
Osada H, Takahashi T. Let-7 and miR-17-92: Small-sized major players in lung cancer development. Cancer Sci 2011; 102(1): 9-17.
[http://dx.doi.org/10.1111/j.1349-7006.2010.01707.x] [PMID: 20735434]
[11]
Yanaihara N, Caplen N, Bowman E, et al. Unique microRNA molecular profiles in lung cancer diagnosis and prognosis. Cancer Cell 2006; 9(3): 189-98.
[http://dx.doi.org/10.1016/j.ccr.2006.01.025] [PMID: 16530703]
[12]
Zhang Y, Cruickshanks N, Pahuski M, et al. Noncoding RNAs in Glioblastoma. Glioblastoma. Brisbane, Australia: Exon Publications 2017; pp. 95-130.
[http://dx.doi.org/10.15586/codon.glioblastoma.2017.ch6]
[13]
Calin GA, Sevignani C, Dumitru CD, et al. Human microRNA genes are frequently located at fragile sites and genomic regions involved in cancers. Proc Natl Acad Sci USA 2004; 101(9): 2999-3004.
[http://dx.doi.org/10.1073/pnas.0307323101] [PMID: 14973191]
[14]
Johnson CD, Esquela-Kerscher A, Stefani G, et al. The let-7 microRNA represses cell proliferation pathways in human cells. Cancer Res 2007; 67(16): 7713-22.
[http://dx.doi.org/10.1158/0008-5472.CAN-07-1083] [PMID: 17699775]
[15]
Hayashita Y, Osada H, Tatematsu Y, et al. A polycistronic microRNA cluster, miR-17-92, is overexpressed in human lung cancers and enhances cell proliferation. Cancer Res 2005; 65(21): 9628-32.
[http://dx.doi.org/10.1158/0008-5472.CAN-05-2352] [PMID: 16266980]
[16]
Zhang Q, Li Y, Zhao M, et al. MiR-494 acts as a tumor promoter by targeting CASP2 in non-small cell lung cancer. Sci Rep 2019; 9(1): 3008.
[http://dx.doi.org/10.1038/s41598-019-39453-2] [PMID: 30816202]
[17]
Zhou Q, Huang SX, Zhang F, et al. MicroRNAs: A novel potential biomarker for diagnosis and therapy in patients with non-small cell lung cancer. Cell Prolif 2017; 50(6): 12394.
[http://dx.doi.org/10.1111/cpr.12394] [PMID: 28990243]
[18]
Xia W, Chen Q, Wang J, et al. DNA methylation mediated silencing of microRNA-145 is a potential prognostic marker in patients with lung adenocarcinoma. Sci Rep 2015; 5(1): 16901.
[http://dx.doi.org/10.1038/srep16901] [PMID: 26582602]
[19]
Wozniak MB, Scelo G, Muller DC, Mukeria A, Zaridze D, Brennan P. Circulating microRNAs as non-invasive biomarkers for early detection of non-small-cell lung cancer. PLoS One 2015; 10(5): 0125026.
[http://dx.doi.org/10.1371/journal.pone.0125026] [PMID: 25965386]
[20]
Rani S, Gately K, Crown J, O’Byrne K, O’Driscoll L. Global analysis of serum microRNAs as potential biomarkers for lung adenocarcinoma. Cancer Biol Ther 2013; 14(12): 1104-12.
[http://dx.doi.org/10.4161/cbt.26370] [PMID: 24025412]
[21]
Hamamoto J, Soejima K, Yoda S, et al. Identification of microRNAs differentially expressed between lung squamous cell carcinoma and lung adenocarcinoma. Mol Med Rep 2013; 8(2): 456-62.
[http://dx.doi.org/10.3892/mmr.2013.1517] [PMID: 23759980]
[22]
Bishop JA, Benjamin H, Cholakh H, Chajut A, Clark DP, Westra WH. Accurate classification of non-small cell lung carcinoma using a novel microRNA-based approach. Clin Cancer Res 2010; 16(2): 610-9.
[http://dx.doi.org/10.1158/1078-0432.CCR-09-2638] [PMID: 20068099]
[23]
Lebanony D, Benjamin H, Gilad S, et al. Diagnostic assay based on hsa-miR-205 expression distinguishes squamous from nonsquamous non-small-cell lung carcinoma. J Clin Oncol 2009; 27(12): 2030-7.
[http://dx.doi.org/10.1200/JCO.2008.19.4134] [PMID: 19273703]
[24]
Landi MT, Zhao Y, Rotunno M, et al. MicroRNA expression differentiates histology and predicts survival of lung cancer. Clin Cancer Res 2010; 16(2): 430-41.
[http://dx.doi.org/10.1158/1078-0432.CCR-09-1736] [PMID: 20068076]
[25]
Patnaik S, Mallick R, Kannisto E, et al. MiR-205 and MiR-375 microRNA assays to distinguish squamous cell carcinoma from adenocarcinoma in lung cancer biopsies. J Thorac Oncol 2015; 10(3): 446-53.
[http://dx.doi.org/10.1097/JTO.0000000000000423] [PMID: 25695220]
[26]
Nishikawa E, Osada H, Okazaki Y, et al. miR-375 is activated by ASH1 and inhibits YAP1 in a lineage-dependent manner in lung cancer. Cancer Res 2011; 71(19): 6165-73.
[http://dx.doi.org/10.1158/0008-5472.CAN-11-1020] [PMID: 21856745]
[27]
Heegaard NHH, Schetter AJ, Welsh JA, Yoneda M, Bowman ED, Harris CC. Circulating micro-RNA expression profiles in early stage nonsmall cell lung cancer. Int J Cancer 2012; 130(6): 1378-86.
[http://dx.doi.org/10.1002/ijc.26153] [PMID: 21544802]
[28]
Chen X, Hu Z, Wang W, et al. Identification of ten serum microRNAs from a genome-wide serum microRNA expression profile as novel noninvasive biomarkers for nonsmall cell lung cancer diagnosis. Int J Cancer 2012; 130(7): 1620-8.
[http://dx.doi.org/10.1002/ijc.26177] [PMID: 21557218]
[29]
Geng Q, Fan T, Zhang B, Wang W, Xu Y, Hu H. Five microRNAs in plasma as novel biomarkers for screening of early-stage non-small cell lung cancer. Respir Res 2014; 15: 149.
[http://dx.doi.org/10.1186/s12931-014-0149-3] [PMID: 25421010]
[30]
Li W, Wang Y, Zhang Q, et al. MicroRNA-486 as a Biomarker for early diagnosis and recurrence of non-small cell lung cancer. PLoS One 2015; 10(8): 0134220.
[http://dx.doi.org/10.1371/journal.pone.0134220] [PMID: 26237047]
[31]
Shan X, Zhang H, Zhang L, et al. Identification of four plasma microRNAs as potential biomarkers in the diagnosis of male lung squamous cell carcinoma patients in China. Cancer Med 2018; 7(6): 2370-81.
[http://dx.doi.org/10.1002/cam4.1490] [PMID: 29673101]
[32]
Qin Y, Zhou X, Huang C, et al. Serum miR-342-3p is a novel diagnostic and prognostic biomarker for non-small cell lung cancer. Int J Clin Exp Pathol 2018; 11(5): 2742-8.
[PMID: 31938391]
[33]
Bao M, Pan S, Yang W, Chen S, Shan Y, Shi H. Serum miR-10a-5p and miR-196a-5p as non-invasive biomarkers in non-small cell lung cancer. Int J Clin Exp Pathol 2018; 11(2): 773-80.
[PMID: 31938164]
[34]
Wu Q, Yu L, Lin X, et al. Combination of serum miRNAs with serum exosomal miRNAs in early diagnosis for non-small-cell lung cancer. Cancer Manag Res 2020; 12: 485-95.
[http://dx.doi.org/10.2147/CMAR.S232383] [PMID: 32021461]
[35]
Li L, Feng T, Zhang W, et al. MicroRNA biomarker hsa-miR-195-5p for detecting the risk of lung cancer. Int J Genomics 2020; 2020: 7415909.
[http://dx.doi.org/10.1155/2020/7415909] [PMID: 31976313]
[36]
Markou A, Tsaroucha EG, Kaklamanis L, Fotinou M, Georgoulias V, Lianidou ES. Prognostic value of mature microRNA-21 and microRNA-205 overexpression in non-small cell lung cancer by quantitative real-time RT-PCR. Clin Chem 2008; 54(10): 1696-704.
[http://dx.doi.org/10.1373/clinchem.2007.101741] [PMID: 18719201]
[37]
Li M, Zhang Q, Wu L, et al. Serum miR-499 as a novel diagnostic and prognostic biomarker in non-small cell lung cancer. Oncol Rep 2014; 31(4): 1961-7.
[http://dx.doi.org/10.3892/or.2014.3029] [PMID: 24549225]
[38]
Zhu W-Y, Luo B, An JY, et al. Differential expression of miR-125a-5p and let-7e predicts the progression and prognosis of non-small cell lung cancer. Cancer Invest 2014; 32(8): 394-401.
[http://dx.doi.org/10.3109/07357907.2014.922569] [PMID: 24945821]
[39]
Guo W, Zhang Y, Zhang Y, et al. Decreased expression of miR-204 in plasma is associated with a poor prognosis in patients with non-small cell lung cancer. Int J Mol Med 2015; 36(6): 1720-6.
[http://dx.doi.org/10.3892/ijmm.2015.2388] [PMID: 26497897]
[40]
Liu B, Qu J, Xu F, et al. MiR-195 suppresses non-small cell lung cancer by targeting CHEK1. Oncotarget 2015; 6(11): 9445-56.
[http://dx.doi.org/10.18632/oncotarget.3255] [PMID: 25840419]
[41]
Shang AQ, Xie YN, Wang J, et al. Predicative values of serum microRNA-22 and microRNA-126 levels for non-small cell lung cancer development and metastasis: A case-control study. Neoplasma 2017; 64(3): 453-9.
[http://dx.doi.org/10.4149/neo_2017_317] [PMID: 28253725]
[42]
Gao X, Wang Y, Zhao H, et al. Plasma miR-324-3p and miR-1285 as diagnostic and prognostic biomarkers for early stage lung squamous cell carcinoma. Oncotarget 2016; 7(37): 59664-75.
[http://dx.doi.org/10.18632/oncotarget.11198] [PMID: 27517633]
[43]
Zhao Y. The diagnostic and prognostic role of circulating miR-141 expression in non-small-cell lung cancer patients. Int J Clin Exp Pathol 2018; 11(5): 2597-604.
[PMID: 31938373]
[44]
Sun B, Liu H-F, Ding Y, Li Z. Evaluating the diagnostic and prognostic value of serum miR-770 in non-small cell lung cancer. Eur Rev Med Pharmacol Sci 2018; 22(10): 3061-6.
[PMID: 29863251]
[45]
Tan M, Wu J, Cai Y. Suppression of Wnt signaling by the miR-29 family is mediated by demethylation of WIF-1 in non-small-cell lung cancer. Biochem Biophys Res Commun 2013; 438(4): 673-9.
[http://dx.doi.org/10.1016/j.bbrc.2013.07.123] [PMID: 23939044]
[46]
Luo W, Huang B, Li Z, et al. MicroRNA-449a is downregulated in non-small cell lung cancer and inhibits migration and invasion by targeting c-Met. PLoS One 2013; 8(5): 64759.
[http://dx.doi.org/10.1371/journal.pone.0064759] [PMID: 23734217]
[47]
Zhang Y, Yang X, Wu H, Zhou W, Liu Z. MicroRNA-145 inhibits migration and invasion via inhibition of fascin 1 protein expression in non-small-cell lung cancer cells. Mol Med Rep 2015; 12(4): 6193-8.
[http://dx.doi.org/10.3892/mmr.2015.4163] [PMID: 26238532]
[48]
Xiao P, Liu W, Zhou H. miR-200b inhibits migration and invasion in non-small cell lung cancer cells via targeting FSCN1. Mol Med Rep 2016; 14(2): 1835-40.
[http://dx.doi.org/10.3892/mmr.2016.5421] [PMID: 27356635]
[49]
Huang P, Ye B, Yang Y, Shi J, Zhao H. MicroRNA-181 functions as a tumor suppressor in Non-Small Cell Lung Cancer (NSCLC) by targeting Bcl-2. Tumour Biol 2015; 36(5): 3381-7.
[http://dx.doi.org/10.1007/s13277-014-2972-z] [PMID: 25524579]
[50]
Ren P, Gong F, Zhang Y, Jiang J, Zhang H. MicroRNA-92a promotes growth, metastasis, and chemoresistance in non-small cell lung cancer cells by targeting PTEN. Tumour Biol 2016; 37(3): 3215-25.
[http://dx.doi.org/10.1007/s13277-015-4150-3] [PMID: 26432332]
[51]
Lei L, Huang Y, Gong W. miR-205 promotes the growth, metastasis and chemoresistance of NSCLC cells by targeting PTEN. Oncol Rep 2013; 30(6): 2897-902.
[http://dx.doi.org/10.3892/or.2013.2755] [PMID: 24084898]
[52]
Yu T, Liu L, Li J, et al. MiRNA-10a is upregulated in NSCLC and may promote cancer by targeting PTEN. Oncotarget 2015; 6(30): 30239-50.
[http://dx.doi.org/10.18632/oncotarget.4972] [PMID: 26317552]
[53]
Xie X, Liu HT, Mei J, et al. miR-106a promotes growth and metastasis of non-small cell lung cancer by targeting PTEN. Int J Clin Exp Pathol 2015; 8(4): 3827-34.
[PMID: 26097565]
[54]
Wang H, Guan X, Tu Y, et al. MicroRNA-29b attenuates non-small cell lung cancer metastasis by targeting matrix metalloproteinase 2 and PTEN. J Exp Clin Cancer Res 2015; 34(1): 59.
[http://dx.doi.org/10.1186/s13046-015-0169-y] [PMID: 26063204]
[55]
Zhang JG, Wang JJ, Zhao F, Liu Q, Jiang K, Yang GH. MicroRNA-21 (miR-21) represses tumor suppressor PTEN and promotes growth and invasion in Non-Small Cell Lung Cancer (NSCLC). Clin Chim Acta 2010; 411(11-12): 846-52.
[http://dx.doi.org/10.1016/j.cca.2010.02.074] [PMID: 20223231]
[56]
Zhang X, Wang L, Liu Y, Huang W, Cheng D. MiR-760 enhances TRAIL sensitivity in non-small cell lung cancer via targeting the protein FOXA1. Biomed Pharmacother 2018; 99: 523-9.
[http://dx.doi.org/10.1016/j.biopha.2018.01.076] [PMID: 29665655]
[57]
Joshi P, Jeon Y-J, Laganà A, et al. MicroRNA-148a reduces tumorigenesis and increases TRAIL-induced apoptosis in NSCLC. Proc Natl Acad Sci USA 2015; 112(28): 8650-5.
[http://dx.doi.org/10.1073/pnas.1500886112] [PMID: 26124099]
[58]
Liu C, Yang H, Xu Z, et al. MicroRNA-548l is involved in the migration and invasion of non-small cell lung cancer by targeting the AKT1 signaling pathway. J Cancer Res Clin Oncol 2015; 141(3): 431-41.
[http://dx.doi.org/10.1007/s00432-014-1836-7] [PMID: 25245053]
[59]
Zhou Y, Li S, Li J, Wang D, Li Q. Effect of microRNA-135a on cell proliferation, migration, invasion, apoptosis and tumor angiogenesis through the IGF-1/PI3K/Akt signaling pathway in non-small cell lung cancer. Cell Physiol Biochem 2017; 42(4): 1431-46.
[http://dx.doi.org/10.1159/000479207] [PMID: 28715819]
[60]
Lu C, Shan Z, Hong J, Yang L. MicroRNA-92a promotes epithelial-mesenchymal transition through activation of PTEN/PI3K/AKT signaling pathway in non-small cell lung cancer metastasis. Int J Oncol 2017; 51(1): 235-44.
[http://dx.doi.org/10.3892/ijo.2017.3999] [PMID: 28534966]
[61]
Fan T, Wang W, Zhang B, et al. Regulatory mechanisms of microRNAs in lung cancer stem cells. Springerplus 2016; 5(1): 1762.
[http://dx.doi.org/10.1186/s40064-016-3425-5] [PMID: 27795904]
[62]
Garg M. Emerging role of microRNAs in cancer stem cells: Implications in cancer therapy. World J Stem Cells 2015; 7(8): 1078-89.
[http://dx.doi.org/10.4252/wjsc.v7.i8.1078] [PMID: 26435768]
[63]
Hu J, Qiu M, Jiang F, et al. MiR-145 regulates cancer stem-like properties and epithelial-to-mesenchymal transition in lung adenocarcinoma-initiating cells. Tumour Biol 2014; 35(9): 8953-61.
[http://dx.doi.org/10.1007/s13277-014-2158-8] [PMID: 24903381]
[64]
Chiou GY, Cherng JY, Hsu HS, et al. Cationic polyurethanes-short branch PEI-mediated delivery of Mir145 inhibited epithelial-mesenchymal transdifferentiation and cancer stem-like properties and in lung adenocarcinoma. J Control Release 2012; 159(2): 240-50.
[http://dx.doi.org/10.1016/j.jconrel.2012.01.014] [PMID: 22285547]
[65]
Xu W, Ji J, Xu Y, et al. MicroRNA-191, by promoting the EMT and increasing CSC-like properties, is involved in neoplastic and metastatic properties of transformed human bronchial epithelial cells. Mol Carcinog 2015; 54(1): E148-61.
[http://dx.doi.org/10.1002/mc.22221] [PMID: 25252218]
[66]
Hua S, Xiaotao X, Renhua G, et al. Reduced miR-31 and let-7 maintain the balance between differentiation and quiescence in lung cancer stem-like side population cells. Biomed Pharmacother 2012; 66(2): 89-97.
[http://dx.doi.org/10.1016/j.biopha.2011.09.013] [PMID: 22301433]
[67]
Xi S, Xu H, Shan J, et al. Cigarette smoke mediates epigenetic repression of miR-487b during pulmonary carcinogenesis. J Clin Invest 2013; 123(3): 1241-61.
[http://dx.doi.org/10.1172/JCI61271] [PMID: 23426183]
[68]
Yu F, Liu JB, Wu ZJ, et al. Tumor suppressive microRNA-124a inhibits stemness and enhances gefitinib sensitivity of non-small cell lung cancer cells by targeting ubiquitin-specific protease 14. Cancer Lett 2018; 427: 74-84.
[http://dx.doi.org/10.1016/j.canlet.2018.04.022] [PMID: 29702194]
[69]
Zhao M, Li L, Zhou J, et al. MiR-2861 behaves as a biomarker of lung cancer stem cells and regulates the HDAC5-ERK system genes. Cell Reprogram 2018; 20(2): 99-106.
[http://dx.doi.org/10.1089/cell.2017.0045] [PMID: 29620443]
[70]
Feliciano A, Garcia-Mayea Y, Jubierre L, et al. miR-99a reveals two novel oncogenic proteins E2F2 and EMR2 and represses stemness in lung cancer. Cell Death Dis 2017; 8(10): e3141.
[http://dx.doi.org/10.1038/cddis.2017.544] [PMID: 29072692]
[71]
Kim G, An HJ, Lee MJ, et al. Hsa-miR-1246 and hsa-miR-1290 are associated with stemness and invasiveness of non-small cell lung cancer. Lung Cancer 2016; 91: 15-22.
[http://dx.doi.org/10.1016/j.lungcan.2015.11.013] [PMID: 26711929]
[72]
Miao Y, Li J, Qiu X, Li Y, Wang Z, Luan Y. MiR-27a regulates the self renewal of the H446 small cell lung cancer cell line in vitro. Oncol Rep 2013; 29(1): 161-8.
[http://dx.doi.org/10.3892/or.2012.2095] [PMID: 23117485]
[73]
Shi Y, Liu C, Liu X, Tang DG, Wang J. The microRNA miR-34a inhibits non-small cell lung cancer (NSCLC) growth and the CD44hi stem-like NSCLC cells. PLoS One 2014; 9(3): e90022.
[http://dx.doi.org/10.1371/journal.pone.0090022] [PMID: 24595209]
[74]
Théry C, Zitvogel L, Amigorena S. Exosomes: composition, biogenesis and function. Nat Rev Immunol 2002; 2(8): 569-79.
[http://dx.doi.org/10.1038/nri855] [PMID: 12154376]
[75]
Srivastava A, Filant J, Moxley KM, Sood A, McMeekin S, Ramesh R. Exosomes: A role for naturally occurring nanovesicles in cancer growth, diagnosis and treatment. Curr Gene Ther 2015; 15(2): 182-92.
[http://dx.doi.org/10.2174/1566523214666141224100612] [PMID: 25537774]
[76]
Raposo G, Stoorvogel W. Extracellular vesicles: Exosomes, microvesicles, and friends. J Cell Biol 2013; 200(4): 373-83.
[http://dx.doi.org/10.1083/jcb.201211138] [PMID: 23420871]
[77]
Cazzoli R, Buttitta F, Di Nicola M, et al. MicroRNAs derived from circulating exosomes as noninvasive biomarkers for screening and diagnosing lung cancer. J Thorac Oncol 2013; 8(9): 1156-62.
[http://dx.doi.org/10.1097/JTO.0b013e318299ac32] [PMID: 23945385]
[78]
Jin X, Chen Y, Chen H, et al. Evaluation of tumor-derived exosomal miRNA as potential diagnostic biomarkers for early-stage non-small cell lung cancer using next-generation sequencing. Clin Cancer Res 2017; 23(17): 5311-9.
[http://dx.doi.org/10.1158/1078-0432.CCR-17-0577] [PMID: 28606918]
[79]
Dejima H, Iinuma H, Kanaoka R, Matsutani N, Kawamura M. Exosomal microRNA in plasma as a non-invasive biomarker for the recurrence of non-small cell lung cancer. Oncol Lett 2017; 13(3): 1256-63.
[http://dx.doi.org/10.3892/ol.2017.5569] [PMID: 28454243]
[80]
Kanaoka R, Iinuma H, Dejima H, et al. Usefulness of plasma exosomal microRNA-451a as a noninvasive biomarker for early prediction of recurrence and prognosis of non-small cell lung cancer. Oncology 2018; 94(5): 311-23.
[http://dx.doi.org/10.1159/000487006] [PMID: 29533963]
[81]
Liu Q, Yu Z, Yuan S, et al. Circulating exosomal microRNAs as prognostic biomarkers for non-small-cell lung cancer. Oncotarget 2017; 8(8): 13048-58.
[http://dx.doi.org/10.18632/oncotarget.14369] [PMID: 28055956]
[82]
Yuwen DL, Sheng BB, Liu J, Wenyu W, Shu YQ. MiR-146a-5p level in serum exosomes predicts therapeutic effect of cisplatin in non-small cell lung cancer. Eur Rev Med Pharmacol Sci 2017; 21(11): 2650-8.
[PMID: 28678319]
[83]
Qin X, Yu S, Xu X, Shen B, Feng J. Comparative analysis of microRNA expression profiles between A549, A549/DDP and their respective exosomes. Oncotarget 2017; 8(26): 42125-35.
[http://dx.doi.org/10.18632/oncotarget.15009] [PMID: 28178672]
[84]
Hsu Y-L, Hung JY, Chang WA, et al. Hypoxic lung cancer-secreted exosomal miR-23a increased angiogenesis and vascular permeability by targeting prolyl hydroxylase and tight junction protein ZO-1. Oncogene 2017; 36(34): 4929-42.
[http://dx.doi.org/10.1038/onc.2017.105] [PMID: 28436951]
[85]
Wu H, Zhou J, Mei S, et al. Circulating exosomal microRNA-96 promotes cell proliferation, migration and drug resistance by targeting LMO7. J Cell Mol Med 2017; 21(6): 1228-36.
[http://dx.doi.org/10.1111/jcmm.13056] [PMID: 28026121]
[86]
Grimolizzi F, Monaco F, Leoni F, et al. Exosomal miR-126 as a circulating biomarker in non-small-cell lung cancer regulating cancer progression. Sci Rep 2017; 7(1): 15277.
[http://dx.doi.org/10.1038/s41598-017-15475-6] [PMID: 29127370]
[87]
Zhang X, Sai B, Wang F, et al. Hypoxic BMSC-derived exosomal miRNAs promote metastasis of lung cancer cells via STAT3-induced EMT. Mol Cancer 2019; 18(1): 40.
[http://dx.doi.org/10.1186/s12943-019-0959-5] [PMID: 30866952]
[88]
Zhang C, Xiao X, Chen M, Aldharee H, Chen Y, Long W. Liver kinase B1 restoration promotes exosome secretion and motility of lung cancer cells. Oncol Rep 2018; 39(1): 376-82.
[http://dx.doi.org/10.3892/or.2016.4797] [PMID: 29138862]
[89]
Zhao B, Han H, Chen J, et al. MicroRNA let-7c inhibits migration and invasion of human non-small cell lung cancer by targeting ITGB3 and MAP4K3. Cancer Lett 2014; 342(1): 43-51.
[http://dx.doi.org/10.1016/j.canlet.2013.08.030] [PMID: 23981581]
[90]
Ma ZL, Hou PP, Li YL, et al. MicroRNA-34a inhibits the proliferation and promotes the apoptosis of non-small cell lung cancer H1299 cell line by targeting TGFβR2. Tumour Biol 2015; 36(4): 2481-90.
[http://dx.doi.org/10.1007/s13277-014-2861-5] [PMID: 25501507]
[91]
Li J, Wang H, Ke H, Ni S. MiR-129 regulates MMP9 to control metastasis of non-small cell lung cancer. Tumour Biol 2015; 36(8): 5785-90.
[http://dx.doi.org/10.1007/s13277-015-3247-z] [PMID: 25716201]
[92]
Sun CC, Li SJ, Zhang F, et al. The novel miR-9600 suppresses tumor progression and promotes paclitaxel sensitivity in non-small-cell lung cancer through altering STAT3 expression. Mol Ther Nucleic Acids 2016; 5(11): e387.
[http://dx.doi.org/10.1038/mtna.2016.96] [PMID: 27845771]
[93]
Huang T, She K, Peng G, et al. MicroRNA-186 suppresses cell proliferation and metastasis through targeting MAP3K2 in non-small cell lung cancer. Int J Oncol 2016; 49(4): 1437-44.
[http://dx.doi.org/10.3892/ijo.2016.3637] [PMID: 27498924]
[94]
Zhang X, He X, Liu Y, et al. MiR-101-3p inhibits the growth and metastasis of non-small cell lung cancer through blocking PI3K/AKT signal pathway by targeting MALAT-1. Biomed Pharmacother 2017; 93: 1065-73.
[http://dx.doi.org/10.1016/j.biopha.2017.07.005] [PMID: 28738500]
[95]
Ye Z, Fang B, Pan J, et al. miR-138 suppresses the proliferation, metastasis and autophagy of non-small cell lung cancer by targeting Sirt1. Oncol Rep 2017; 37(6): 3244-52.
[http://dx.doi.org/10.3892/or.2017.5619] [PMID: 28498463]
[96]
Tang T, Huan L, Zhang S, et al. MicroRNA-212 functions as a tumor-suppressor in human non-small cell lung cancer by targeting SOX4. Oncol Rep 2017; 38(4): 2243-50.
[http://dx.doi.org/10.3892/or.2017.5885] [PMID: 28791372]
[97]
Zhou YL, Xu YJ, Qiao CW. MiR-34c-3p suppresses the proliferation and invasion of Non-Small Cell Lung Cancer (NSCLC) by inhibiting PAC1/MAPK pathway. Int J Clin Exp Pathol 2015; 8(6): 6312-22.
[PMID: 26261507]
[98]
Zhang L, Quan H, Wang S, Li X, Che X. MiR-183 promotes growth of non-small cell lung cancer cells through FoxO1 inhibition. Tumour Biol 2015; 36(10): 8121-6.
[http://dx.doi.org/10.1007/s13277-015-3550-8] [PMID: 25983004]
[99]
Mao M, Wu Z, Chen J. MicroRNA-187-5p suppresses cancer cell progression in Non-Small Cell Lung Cancer (NSCLC) through down-regulation of CYP1B1. Biochem Biophys Res Commun 2016; 478(2): 649-55.
[http://dx.doi.org/10.1016/j.bbrc.2016.08.001] [PMID: 27495872]
[100]
Zhao J, Qiao CR, Ding Z, et al. A novel pathway in NSCLC cells: MiR‑191, targeting NFIA, is induced by chronic hypoxia, and promotes cell proliferation and migration. Mol Med Rep 2017; 15(3): 1319-25.
[http://dx.doi.org/10.3892/mmr.2017.6100] [PMID: 28075452]
[101]
Wang X, Chen Z. MicroRNA-19a functions as an oncogenic microRNA in non-small cell lung cancer by targeting the suppressor of cytokine signaling 1 and mediating STAT3 activation. Int J Mol Med 2015; 35(3): 839-46.
[http://dx.doi.org/10.3892/ijmm.2015.2071] [PMID: 25604748]
[102]
Kim H, Yang JM, Jin Y, et al. MicroRNA expression profiles and clinicopathological implications in lung adenocarcinoma according to EGFR, KRAS, and ALK status. Oncotarget 2017; 8(5): 8484-98.
[http://dx.doi.org/10.18632/oncotarget.14298] [PMID: 28035073]
[103]
Gasparini P, Cascione L, Landi L, et al. microRNA classifiers are powerful diagnostic/prognostic tools in ALK-, EGFR-, and KRAS-driven lung cancers. Proc Natl Acad Sci USA 2015; 112(48): 14924-9.
[http://dx.doi.org/10.1073/pnas.1520329112] [PMID: 26627242]
[104]
Sun Y, Campisi J, Higano C, et al. Treatment-induced damage to the tumor microenvironment promotes prostate cancer therapy resistance through WNT16B. Nat Med 2012; 18(9): 1359-68.
[http://dx.doi.org/10.1038/nm.2890] [PMID: 22863786]
[105]
Longley DB, Johnston PG. Molecular mechanisms of drug resistance. J Pathol 2005; 205(2): 275-92.
[http://dx.doi.org/10.1002/path.1706] [PMID: 15641020]
[106]
Feng B, Wang R, Song HZ, Chen LB. MicroRNA-200b reverses chemoresistance of docetaxel-resistant human lung adenocarcinoma cells by targeting E2F3. Cancer 2012; 118(13): 3365-76.
[http://dx.doi.org/10.1002/cncr.26560] [PMID: 22139708]
[107]
Feng B, Wang R, Chen LB. MiR-100 resensitizes docetaxel-resistant human lung adenocarcinoma cells (SPC-A1) to docetaxel by targeting Plk1. Cancer Lett 2012; 317(2): 184-91.
[http://dx.doi.org/10.1016/j.canlet.2011.11.024] [PMID: 22120675]
[108]
Huang JY, Cui SY, Chen YT, et al. MicroRNA-650 was a prognostic factor in human lung adenocarcinoma and confers the docetaxel chemoresistance of lung adenocarcinoma cells via regulating Bcl-2/Bax expression. PLoS One 2013; 8(8): e72615.
[http://dx.doi.org/10.1371/journal.pone.0072615] [PMID: 23991130]
[109]
Chatterjee A, Chattopadhyay D, Chakrabarti G. miR-17-5p downregulation contributes to paclitaxel resistance of lung cancer cells through altering beclin1 expression. PLoS One 2014; 9(4): e95716.
[http://dx.doi.org/10.1371/journal.pone.0095716] [PMID: 24755562]
[110]
Zhu X, Li H, Long L, et al. miR-126 enhances the sensitivity of non-small cell lung cancer cells to anticancer agents by targeting vascular endothelial growth factor A. Acta Biochim Biophys Sin (Shanghai) 2012; 44(6): 519-26.
[http://dx.doi.org/10.1093/abbs/gms026] [PMID: 22510476]
[111]
Du L, Subauste MC, DeSevo C, et al. miR-337-3p and its targets STAT3 and RAP1A modulate taxane sensitivity in non-small cell lung cancers. PLoS One 2012; 7(6): 39167.
[http://dx.doi.org/10.1371/journal.pone.0039167] [PMID: 22723956]
[112]
Zhan M, Qu Q, Wang G, Zhou H. Let-7c sensitizes acquired cisplatin-resistant A549 cells by targeting ABCC2 and Bcl-XL. Pharmazie 2013; 68(12): 955-61.
[PMID: 24400442]
[113]
Qiu T, Zhou L, Wang T, et al. miR-503 regulates the resistance of non-small cell lung cancer cells to cisplatin by targeting Bcl-2. Int J Mol Med 2013; 32(3): 593-8.
[http://dx.doi.org/10.3892/ijmm.2013.1439] [PMID: 23856992]
[114]
Li Y, Li L, Guan Y, Liu X, Meng Q, Guo Q. MiR-92b regulates the cell growth, cisplatin chemosensitivity of A549 non small cell lung cancer cell line and target PTEN. Biochem Biophys Res Commun 2013; 440(4): 604-10.
[http://dx.doi.org/10.1016/j.bbrc.2013.09.111] [PMID: 24099768]
[115]
Dong Z, Zhong Z, Yang L, Wang S, Gong Z. MicroRNA-31 inhibits cisplatin-induced apoptosis in non-small cell lung cancer cells by regulating the drug transporter ABCB9. Cancer Lett 2014; 343(2): 249-57.
[http://dx.doi.org/10.1016/j.canlet.2013.09.034] [PMID: 24099915]
[116]
Ning FL, Wang F, Li ML, Yu ZS, Hao YZ, Chen SS. MicroRNA-182 modulates chemosensitivity of human non-small cell lung cancer to cisplatin by targeting PDCD4. Diagn Pathol 2014; 9: 143.
[http://dx.doi.org/10.1186/1746-1596-9-143] [PMID: 25012722]
[117]
Li J, Wang Y, Song Y, Fu Z, Yu W. miR-27a regulates cisplatin resistance and metastasis by targeting RKIP in human lung adenocarcinoma cells. Mol Cancer 2014; 13: 193.
[http://dx.doi.org/10.1186/1476-4598-13-193] [PMID: 25128483]
[118]
Wang H, Zhu LJ, Yang YC, Wang ZX, Wang R. MiR-224 promotes the chemoresistance of human lung adenocarcinoma cells to cisplatin via regulating G₁/S transition and apoptosis by targeting p21(WAF1/CIP1). Br J Cancer 2014; 111(2): 339-54.
[http://dx.doi.org/10.1038/bjc.2014.157] [PMID: 24921914]
[119]
Liu J, Xing Y, Rong L. MiR-181 regulates cisplatin-resistant non-small cell lung cancer via downregulation of autophagy through the PTEN/PI3K/AKT pathway. 2018; 39(4): 1631-9.
[120]
Ma Y, Li X, Cheng S, Wei W, Li Y. MicroRNA-106a confers cisplatin resistance in non-small cell lung cancer A549 cells by targeting adenosine triphosphatase-binding cassette A1. Mol Med Rep 2015; 11(1): 625-32.
[http://dx.doi.org/10.3892/mmr.2014.2688] [PMID: 25339370]
[121]
Zhao Z, Zhang L, Yao Q, Tao Z. MiR-15b regulates cisplatin resistance and metastasis by targeting PEBP4 in human lung adenocarcinoma cells. Cancer Gene Ther 2015; 22(3): 108-14.
[http://dx.doi.org/10.1038/cgt.2014.73] [PMID: 25721211]
[122]
Zarogoulidis P, Petanidis S, Kioseoglou E, Domvri K, Anestakis D, Zarogoulidis K. MiR-205 and miR-218 expression is associated with carboplatin chemoresistance and regulation of apoptosis via Mcl-1 and survivin in lung cancer cells. Cell Signal 2015; 27(8): 1576-88.
[http://dx.doi.org/10.1016/j.cellsig.2015.04.009] [PMID: 25917317]
[123]
Fang S, Zeng X, Zhu W, Tang R, Chao Y, Guo L. Zinc finger E-box-binding homeobox 2 (ZEB2) regulated by miR-200b contributes to multi-drug resistance of small cell lung cancer. Exp Mol Pathol 2014; 96(3): 438-44.
[http://dx.doi.org/10.1016/j.yexmp.2014.04.008] [PMID: 24769353]
[124]
Gao Y, Fan X, Li W, Ping W, Deng Y, Fu X. MiR-138-5p reverses gefitinib resistance in non-small cell lung cancer cells via negatively regulating G protein-coupled receptor 124. Biochem Biophys Res Commun 2014; 446(1): 179-86.
[http://dx.doi.org/10.1016/j.bbrc.2014.02.073] [PMID: 24582749]
[125]
Hojbjerg JA, Ebert EBF, Clement MS, Winther-Larsen A, Meldgaard P, Sorensen B. Circulating miR-30b and miR-30c predict erlotinib response in EGFR-mutated non-small cell lung cancer patients. Lung Cancer 2019; 135: 92-6.
[http://dx.doi.org/10.1016/j.lungcan.2019.07.005] [PMID: 31447008]
[126]
Wang M, Yu F, Ding H, Wang Y, Li P, Wang K. Emerging function and clinical values of exosomal microRNAs in cancer. Mol Ther Nucleic Acids 2019; 16: 791-804.
[http://dx.doi.org/10.1016/j.omtn.2019.04.027] [PMID: 31163321]
[127]
Cao M, Seike M, Soeno C, et al. MiR-23a regulates TGF-β-induced epithelial-mesenchymal transition by targeting E-cadherin in lung cancer cells. Int J Oncol 2012; 41(3): 869-75.
[http://dx.doi.org/10.3892/ijo.2012.1535] [PMID: 22752005]
[128]
Lin R, Chen L, Chen G, et al. Targeting miR-23a in CD8+ cytotoxic T lymphocytes prevents tumor-dependent immunosuppression. J Clin Invest 2014; 124(12): 5352-67.
[http://dx.doi.org/10.1172/JCI76561] [PMID: 25347474]
[129]
Kosaka A, Ohkuri T, Ikeura M, Kohanbash G, Okada H. Transgene-derived overexpression of miR-17-92 in CD8+ T-cells confers enhanced cytotoxic activity. Biochem Biophys Res Commun 2015; 458(3): 549-54.
[http://dx.doi.org/10.1016/j.bbrc.2015.02.003] [PMID: 25677619]
[130]
Filipska M, Skrzypski M, Czetyrbok K, et al. MiR-192 and miR-662 enhance chemoresistance and invasiveness of squamous cell lung carcinoma. Lung Cancer 2018; 118: 111-8.
[http://dx.doi.org/10.1016/j.lungcan.2018.02.002] [PMID: 29571988]
[131]
Taguchi A, Yanagisawa K, Tanaka M, et al. Identification of hypoxia-inducible factor-1 α as a novel target for miR-17-92 microRNA cluster. Cancer Res 2008; 68(14): 5540-5.
[http://dx.doi.org/10.1158/0008-5472.CAN-07-6460] [PMID: 18632605]
[132]
Wan J, Ling X, Peng B, Ding G. MiR-142-5p regulates CD4+ T cells in human non-small cell lung cancer through PD-L1 expression via the PTEN pathway. Oncol Rep 2018; 40(1): 272-82.
[http://dx.doi.org/10.3892/or.2018.6439] [PMID: 29767245]
[133]
Fabbri M, Paone A, Calore F, et al. MicroRNAs bind to toll-like receptors to induce prometastatic inflammatory response. Proc Natl Acad Sci U S A 2012; 109(31): E2110-6.
[134]
Ren W, Hou J, Yang C, et al. Extracellular vesicles secreted by hypoxia pre-challenged mesenchymal stem cells promote non-small cell lung cancer cell growth and mobility as well as macrophage M2 polarization via miR-21-5p delivery. J Exp Clin Cancer Res 2019; 38(1): 62.
[http://dx.doi.org/10.1186/s13046-019-1027-0] [PMID: 30736829]
[135]
Li J, Lin TY, Chen L, et al. miR-19 regulates the expression of interferon-induced genes and MHC class I genes in human cancer cells. Int J Med Sci 2020; 17(7): 953-64.
[http://dx.doi.org/10.7150/ijms.44377] [PMID: 32308549]

Rights & Permissions Print Export Cite as
© 2022 Bentham Science Publishers | Privacy Policy