Generic placeholder image

Current Neuropharmacology

Editor-in-Chief

ISSN (Print): 1570-159X
ISSN (Online): 1875-6190

General Review Article

Whether Erythropoietin can be a Neuroprotective Agent against Premature Brain Injury: Cellular Mechanisms and Clinical Efficacy

Author(s): Xueling Ma and Yuan Shi*

Volume 20, Issue 3, 2022

Published on: 07 February, 2022

Page: [611 - 629] Pages: 19

DOI: 10.2174/1570159X19666210524154519

Price: $65

Abstract

Preterm infants are at high risk of brain injury. With more understanding of the preterm brain injury's pathogenesis, neuroscientists are looking for more effective methods to prevent and treat it, among which erythropoietin (Epo) is considered as a prime candidate. This review tries to clarify the possible mechanisms of Epo in preterm neuroprotection and summarize updated evidence considering Epo as a pharmacological neuroprotective strategy in animal models and clinical trials. To date, various animal models have validated that Epo is an anti-apoptotic, antiinflammatory, anti-oxidant, anti-excitotoxic, neurogenetic, erythropoietic, angiogenetic, and neurotrophic agent, thus preventing preterm brain injury. However, although the scientific rationale and preclinical data for Epo's neuroprotective effect are promising, when translated to bedside, the results vary in different studies, especially in its long-term efficacy. Based on existing evidence, it is still too early to recommend Epo as the standard treatment for preterm brain injury.

Keywords: Erythropoietin, neuroprotective agent, pre-myelinating oligodendrocytes, premature brain injury, white matter injury, perinatal neuroinflammation.

Graphical Abstract
[1]
Blencowe, H.; Cousens, S.; Chou, D.; Oestergaard, M.; Say, L.; Moller, A. B.; Kinney, M.; Lawn, J. Born too soon: The global epidemiology of 15 million preterm births. Reproductive health 2013, 10 Suppl 1(Suppl 1)S2.
[http://dx.doi.org/10.1186/1742-4755-10-S1-S2]
[2]
Boghossian, N.S.; Geraci, M.; Edwards, E.M.; Horbar, J.D. Morbidity and mortality in small for gestational age infants at 22 to 29 weeks’ gestation. Pediatrics, 2018, 141(2) ,e20172533
[http://dx.doi.org/10.1542/peds.2017-2533] [PMID: 29348195]
[3]
Cheong, J.L.Y.; Spittle, A.J.; Burnett, A.C.; Anderson, P.J.; Doyle, L.W. Have outcomes following extremely preterm birth improved over time? Semin. Fetal Neonatal Med., 2020, 25(3) ,101114
[http://dx.doi.org/10.1016/j.siny.2020.101114] [PMID: 32451304]
[4]
Back, S.A. White matter injury in the preterm infant: Pathology and mechanisms. Acta Neuropathol., 2017, 134(3), 331-349.
[http://dx.doi.org/10.1007/s00401-017-1718-6] [PMID: 28534077]
[5]
Chatagner, A.; Hüppi, P.S.; Ha-Vinh Leuchter, R.; Sizonenko, S. Erythropoietin and neuroprotection. Archives de Pediatrie, 2010, 17, 78-84.
[6]
Tsai, P.T.; Ohab, J.J.; Kertesz, N.; Groszer, M.; Matter, C.; Gao, J.; Liu, X.; Wu, H.; Carmichael, S.T. A critical role of erythropoietin receptor in neurogenesis and post-stroke recovery. J. Neurosci., 2006, 26(4), 1269-1274.
[http://dx.doi.org/10.1523/JNEUROSCI.4480-05.2006] [PMID: 16436614]
[7]
Jantzie, L.; Robinson, S. Neonatal erythropoietin reverses cognitive deficits in a preclinical model of encephalopathy of prematurity. FASEB J., 2017, 31(1)
[8]
Hierro-Bujalance, C.; Sánchez-Sotano, D.; Mengual-González, C.; Segado-Arenas, A.; Casado-Revuelta, A.; Del Marco, A.; Benavente-Ferndández, I.; Lubián-Lopez, S.; García-Alloza, M. Erythropoietin reduces central pathology and cognitive impairment in a murine model of intraventricular hemorrhage in the preterm newborn. J. Physiol. Biochem., 2018, 74, S80.
[9]
Rangarajan, V.; Juul, S.E. Erythropoietin: Emerging role of erythropoietin in neonatal neuroprotection. Pediatr. Neurol., 2014, 51(4), 481-488.
[http://dx.doi.org/10.1016/j.pediatrneurol.2014.06.008] [PMID: 25266611]
[10]
Fischer, H.S.; Reibel, N.J.; Bührer, C.; Dame, C. Prophylactic early erythropoietin for neuroprotection in preterm infants: A meta-analysis. Pediatrics, 2017, 139(5) ,e20164317
[http://dx.doi.org/10.1542/peds.2016-4317] [PMID: 28557760]
[11]
Juul, S.E.; Comstock, B.A.; Wadhawan, R.; Mayock, D.E.; Courtney, S.E.; Robinson, T.; Ahmad, K.A.; Bendel-Stenzel, E.; Baserga, M.; LaGamma, E.F.; Downey, L.C.; Rao, R.; Fahim, N.; Lampland, A.; Frantz Iii, I.D.; Khan, J.Y.; Weiss, M.; Gilmore, M.M.; Ohls, R.K.; Srinivasan, N.; Perez, J.E.; McKay, V.; Vu, P.T.; Lowe, J.; Kuban, K.; O’Shea, T.M.; Hartman, A.L.; Heagerty, P.J. A randomized trial of erythropoietin for neuroprotection in preterm infants. N. Engl. J. Med., 2020, 382(3), 233-243.
[http://dx.doi.org/10.1056/NEJMoa1907423] [PMID: 31940698]
[12]
Khwaja, O.; Volpe, J.J. Pathogenesis of cerebral white matter injury of prematurity. Arch. Dis. Child. Fetal Neonatal Ed., 2008, 93(2), F153-F161.
[http://dx.doi.org/10.1136/adc.2006.108837] [PMID: 18296574]
[13]
Volpe, J.J. Brain injury in premature infants: A complex amalgam of destructive and developmental disturbances. Lancet Neurol., 2009, 8(1), 110-124.
[http://dx.doi.org/10.1016/S1474-4422(08)70294-1] [PMID: 19081519]
[14]
Volpe, J.J. Dysmaturation of premature brain: Importance, cellular mechanisms, and potential interventions. Pediatr. Neurol., 2019, 95, 42-66.
[http://dx.doi.org/10.1016/j.pediatrneurol.2019.02.016] [PMID: 30975474]
[15]
Volpe, J.J.; Kinney, H.C.; Jensen, F.E.; Rosenberg, P.A. Reprint of “The developing oligodendrocyte: Key cellular target in brain injury in the premature infant”. Int. J. Dev. Neurosci., 2011, 29(6), 565-582.
[http://dx.doi.org/10.1016/j.ijdevneu.2011.07.008] [PMID: 21802506]
[16]
Back, S.A.; Luo, N.L.; Borenstein, N.S.; Levine, J.M.; Volpe, J.J.; Kinney, H.C. Late oligodendrocyte progenitors coincide with the developmental window of vulnerability for human perinatal white matter injury. J. Neurosci., 2001, 21(4), 1302-1312.
[http://dx.doi.org/10.1523/JNEUROSCI.21-04-01302.2001] [PMID: 11160401]
[17]
Buser, J.R.; Maire, J.; Riddle, A.; Gong, X.; Nguyen, T.; Nelson, K.; Luo, N.L.; Ren, J.; Struve, J.; Sherman, L.S.; Miller, S.P.; Chau, V.; Hendson, G.; Ballabh, P.; Grafe, M.R.; Back, S.A. Arrested preoligodendrocyte maturation contributes to myelination failure in premature infants. Ann. Neurol., 2012, 71(1), 93-109.
[http://dx.doi.org/10.1002/ana.22627] [PMID: 22275256]
[18]
Lee, Y.; Morrison, B.M.; Li, Y.; Lengacher, S.; Farah, M.H.; Hoffman, P.N.; Liu, Y.; Tsingalia, A.; Jin, L.; Zhang, P.W.; Pellerin, L.; Magistretti, P.J.; Rothstein, J.D. Oligodendroglia metabolically support axons and contribute to neurodegeneration. Nature, 2012, 487(7408), 443-448.
[http://dx.doi.org/10.1038/nature11314] [PMID: 22801498]
[19]
Berret, E.; Barron, T.; Xu, J.; Debner, E.; Kim, E.J.; Kim, J.H. Oligodendroglial excitability mediated by glutamatergic inputs and Nav1.2 activation. Nat. Commun., 2017, 8(1), 557.
[http://dx.doi.org/10.1038/s41467-017-00688-0] [PMID: 28916793]
[20]
Santos, A.K.; Vieira, M.S.; Vasconcellos, R.; Goulart, V.A.M.; Kihara, A.H.; Resende, R.R. Decoding cell signalling and regulation of oligodendrocyte differentiation. Semin. Cell Dev. Biol., 2019, 95, 54-73.
[http://dx.doi.org/10.1016/j.semcdb.2018.05.020] [PMID: 29782926]
[21]
Perrone, S.; Tataranno, L.M.; Stazzoni, G.; Ramenghi, L.; Buonocore, G. Brain susceptibility to oxidative stress in the perinatal period. J. Maternal. Neonatal Med., 2015, 28, 2291-2295.
[22]
Sheldon, R.A.; Jiang, X.; Francisco, C.; Christen, S.; Vexler, Z.S.; Täuber, M.G.; Ferriero, D.M. Manipulation of antioxidant pathways in neonatal murine brain. Pediatr. Res., 2004, 56(4), 656-662.
[http://dx.doi.org/10.1203/01.PDR.0000139413.27864.50] [PMID: 15295091]
[23]
Ozsurekci, Y.; Aykac, K. Oxidative stress related diseases in newborns. Oxid. Med. Cell. Longev., 2016, 2016 ,2768365
[http://dx.doi.org/10.1155/2016/2768365] [PMID: 27403229]
[24]
Sánchez-Alvarez, R.; Almeida, A.; Medina, J.M. Oxidative stress in preterm rat brain is due to mitochondrial dysfunction. Pediatr. Res., 2002, 51(1), 34-39.
[http://dx.doi.org/10.1203/00006450-200201000-00008] [PMID: 11756637]
[25]
Back, S.A.; Luo, N.L.; Mallinson, R.A.; O’Malley, J.P.; Wallen, L.D.; Frei, B.; Morrow, J.D.; Petito, C.K.; Roberts, C.T., Jr; Murdoch, G.H.; Montine, T.J. Selective vulnerability of preterm white matter to oxidative damage defined by F2-isoprostanes. Ann. Neurol., 2005, 58(1), 108-120.
[http://dx.doi.org/10.1002/ana.20530] [PMID: 15984031]
[26]
Lafemina, M.J.; Sheldon, R.A.; Ferriero, D.M. Acute hypoxia-ischemia results in hydrogen peroxide accumulation in neonatal but not adult mouse brain. Pediatr. Res., 2006, 59(5), 680-683.
[http://dx.doi.org/10.1203/01.pdr.0000214891.35363.6a] [PMID: 16627881]
[27]
Torres-Cuevas, I.; Corral-Debrinski, M.; Gressens, P. Brain oxidative damage in murine models of neonatal hypoxia/ischemia and reoxygenation. Free Radic. Biol. Med., 2019, 142, 3-15.
[http://dx.doi.org/10.1016/j.freeradbiomed.2019.06.011] [PMID: 31226400]
[28]
Buser, J.R.; Segovia, K.N.; Dean, J.M.; Nelson, K.; Beardsley, D.; Gong, X.; Luo, N.L.; Ren, J.; Wan, Y.; Riddle, A.; McClure, M.M.; Ji, X.; Derrick, M.; Hohimer, A.R.; Back, S.A.; Tan, S. Timing of appearance of late oligodendrocyte progenitors coincides with enhanced susceptibility of preterm rabbit cerebral white matter to hypoxia-ischemia. J. Cereb. Blood Flow Metab., 2010, 30(5), 1053-1065.
[http://dx.doi.org/10.1038/jcbfm.2009.286] [PMID: 20068573]
[29]
Dewald, L.E.; Rodriguez, J.P.; Levine, J.M. The RE1 binding protein REST regulates oligodendrocyte differentiation. J. Neurosci., 2011, 31(9), 3470-3483.
[http://dx.doi.org/10.1523/JNEUROSCI.2768-10.2011] [PMID: 21368059]
[30]
French, H.M.; Reid, M.; Mamontov, P.; Simmons, R.A.; Grinspan, J.B. Oxidative stress disrupts oligodendrocyte maturation. J. Neurosci. Res., 2009, 87(14), 3076-3087.
[http://dx.doi.org/10.1002/jnr.22139] [PMID: 19479983]
[31]
Alix, J.J.; Zammit, C.; Riddle, A.; Meshul, C.K.; Back, S.A.; Valentino, M.; Fern, R. Central axons preparing to myelinate are highly sensitive [corrected] to ischemic injury. Ann. Neurol., 2012, 72(6), 936-951.
[http://dx.doi.org/10.1002/ana.23690] [PMID: 23280842]
[32]
McKinnon, P.J. Maintaining genome stability in the nervous system. Nat. Neurosci., 2013, 16(11), 1523-1529.
[http://dx.doi.org/10.1038/nn.3537] [PMID: 24165679]
[33]
Cardoso-Moreira, M.; Halbert, J.; Valloton, D.; Velten, B.; Chen, C.; Shao, Y.; Liechti, A.; Ascenção, K.; Rummel, C.; Ovchinnikova, S.; Mazin, P.V.; Xenarios, I.; Harshman, K.; Mort, M.; Cooper, D.N.; Sandi, C.; Soares, M.J.; Ferreira, P.G.; Afonso, S.; Carneiro, M.; Turner, J.M.A.; VandeBerg, J.L.; Fallahshahroudi, A.; Jensen, P.; Behr, R.; Lisgo, S.; Lindsay, S.; Khaitovich, P.; Huber, W.; Baker, J.; Anders, S.; Zhang, Y.E.; Kaessmann, H. Gene expression across mammalian organ development. Nature, 2019, 571(7766), 505-509.
[http://dx.doi.org/10.1038/s41586-019-1338-5] [PMID: 31243369]
[34]
Lammert, C.R.; Frost, E.L.; Bellinger, C.E.; Bolte, A.C.; McKee, C.A.; Hurt, M.E.; Paysour, M.J.; Ennerfelt, H.E.; Lukens, J.R. AIM2 inflammasome surveillance of DNA damage shapes neurodevelopment. Nature, 2020, 580(7805), 647-652.
[http://dx.doi.org/10.1038/s41586-020-2174-3] [PMID: 32350463]
[35]
Squarzoni, P.; Oller, G.; Hoeffel, G.; Pont-Lezica, L.; Rostaing, P.; Low, D.; Bessis, A.; Ginhoux, F.; Garel, S. Microglia modulate wiring of the embryonic forebrain. Cell Rep., 2014, 8(5), 1271-1279.
[http://dx.doi.org/10.1016/j.celrep.2014.07.042] [PMID: 25159150]
[36]
Schafer, D.P.; Lehrman, E.K.; Kautzman, A.G.; Koyama, R.; Mardinly, A.R.; Yamasaki, R.; Ransohoff, R.M.; Greenberg, M.E.; Barres, B.A.; Stevens, B. Microglia sculpt postnatal neural circuits in an activity and complement-dependent manner. Neuron, 2012, 74(4), 691-705.
[http://dx.doi.org/10.1016/j.neuron.2012.03.026] [PMID: 22632727]
[37]
Wlodarczyk, A.; Holtman, I.R.; Krueger, M.; Yogev, N.; Bruttger, J.; Khorooshi, R.; Benmamar-Badel, A.; de Boer-Bergsma, J.J.; Martin, N.A.; Karram, K.; Kramer, I.; Boddeke, E.W.; Waisman, A.; Eggen, B.J.; Owens, T. A novel microglial subset plays a key role in myelinogenesis in developing brain. EMBO J., 2017, 36(22), 3292-3308.
[http://dx.doi.org/10.15252/embj.201696056] [PMID: 28963396]
[38]
Thion, M.S.; Ginhoux, F.; Garel, S. Microglia and early brain development: An intimate journey. Science, 2018, 362(6411), 185-189.
[http://dx.doi.org/10.1126/science.aat0474] [PMID: 30309946]
[39]
Monier, A.; Evrard, P.; Gressens, P.; Verney, C. Distribution and differentiation of microglia in the human encephalon during the first two trimesters of gestation. J. Comp. Neurol., 2006, 499(4), 565-582.
[http://dx.doi.org/10.1002/cne.21123] [PMID: 17029271]
[40]
Rezaie, P.; Dean, A.; Male, D.; Ulfig, N. Microglia in the cerebral wall of the human telencephalon at second trimester.In: Cerebral cortex; New York, N.Y; , 2005, 15, pp. (7)938-949.
[41]
Bokobza, C.; Van Steenwinckel, J.; Mani, S.; Mezger, V.; Fleiss, B.; Gressens, P. Neuroinflammation in preterm babies and autism spectrum disorders. Pediatr. Res., 2019, 85(2), 155-165.
[http://dx.doi.org/10.1038/s41390-018-0208-4] [PMID: 30446768]
[42]
Hammond, T.R.; Robinton, D.; Stevens, B. Microglia and the Brain: Complementary partners in development and disease. Annu. Rev. Cell Dev. Biol., 2018, 34, 523-544.
[http://dx.doi.org/10.1146/annurev-cellbio-100616-060509] [PMID: 30089221]
[43]
Hammond, T.R.; Dufort, C.; Dissing-Olesen, L.; Giera, S.; Young, A.; Wysoker, A.; Walker, A.J.; Gergits, F.; Segel, M.; Nemesh, J.; Marsh, S.E.; Saunders, A.; Macosko, E.; Ginhoux, F.; Chen, J.; Franklin, R.J.M.; Piao, X.; McCarroll, S.A.; Stevens, B. Single-Cell RNA sequencing of microglia throughout the mouse lifespan and in the injured brain reveals complex cell-state changes. Immunity, 2019, 50(1), 253-271.e6.
[http://dx.doi.org/10.1016/j.immuni.2018.11.004] [PMID: 30471926]
[44]
Hagberg, H.; Mallard, C.; Ferriero, D.M.; Vannucci, S.J.; Levison, S.W.; Vexler, Z.S.; Gressens, P. The role of inflammation in perinatal brain injury. Nat. Rev. Neurol., 2015, 11(4), 192-208.
[http://dx.doi.org/10.1038/nrneurol.2015.13] [PMID: 25686754]
[45]
Kuban, K.C.; Joseph, R.M.; O’Shea, T.M.; Heeren, T.; Fichorova, R.N.; Douglass, L.; Jara, H.; Frazier, J.A.; Hirtz, D.; Rollins, J.V.; Paneth, N. Circulating inflammatory-associated proteins in the first month of life and cognitive impairment at age 10 years in children born extremely preterm. J. Pediatr., 2017, 180, 116-123.e1.
[http://dx.doi.org/10.1016/j.jpeds.2016.09.054] [PMID: 27788929]
[46]
Sävman, K.; Heyes, M.P.; Svedin, P.; Karlsson, A. Microglia/macrophage-derived inflammatory mediators galectin-3 and quinolinic acid are elevated in cerebrospinal fluid from newborn infants after birth asphyxia. Transl. Stroke Res., 2013, 4(2), 228-235.
[http://dx.doi.org/10.1007/s12975-012-0216-3] [PMID: 23807898]
[47]
Dammann, O.; Leviton, A. Maternal intrauterine infection, cytokines, and brain damage in the preterm newborn. Pediatr. Res., 1997, 42(1), 1-8.
[http://dx.doi.org/10.1203/00006450-199707000-00001] [PMID: 9212029]
[48]
Hagberg, H.; Mallard, C.; Jacobsson, B. Role of cytokines in preterm labour and brain injury. BJOG, 2005, 112(Suppl. 1), 16-18.
[http://dx.doi.org/10.1111/j.1471-0528.2005.00578.x] [PMID: 15715588]
[49]
Hamilton, S.; Oomomian, Y.; Stephen, G.; Shynlova, O.; Tower, C.L.; Garrod, A.; Lye, S.J.; Jones, R.L. Macrophages infiltrate the human and rat decidua during term and preterm labor: Evidence that decidual inflammation precedes labor. Biol. Reprod., 2012, 86(2), 39.
[http://dx.doi.org/10.1095/biolreprod.111.095505] [PMID: 22011391]
[50]
Humberg, A.; Fortmann, I.; Siller, B.; Kopp, M.V.; Herting, E.; Göpel, W.; Härtel, C. Preterm birth and sustained inflammation: consequences for the neonate. Semin. Immunopathol., 2020, 42(4), 451-468.
[http://dx.doi.org/10.1007/s00281-020-00803-2] [PMID: 32661735]
[51]
Check Hayden, E. Experimental treatments aim to prevent brain damage in babies. Nature, 2016, 540(7631), 17-18.
[http://dx.doi.org/10.1038/540017a] [PMID: 27905464]
[52]
Maiese, K.; Li, F.; Chong, Z.Z. New avenues of exploration for erythropoietin. JAMA, 2005, 293(1), 90-95.
[http://dx.doi.org/10.1001/jama.293.1.90] [PMID: 15632341]
[53]
Sasaki, R.; Masuda, S.; Nagao, M. Erythropoietin: Multiple physiological functions and regulation of biosynthesis. Biosci. Biotechnol. Biochem., 2000, 64(9), 1775-1793.
[http://dx.doi.org/10.1271/bbb.64.1775] [PMID: 11055378]
[54]
Lombardero, M.; Kovacs, K.; Scheithauer, B.W. Erythropoietin: A hormone with multiple functions. Pathobiology, 2011, 78(1), 41-53.
[55]
Lappin, T. The cellular biology of erythropoietin receptors. Oncologist, 2003, 8(Suppl. 1), 15-18.
[http://dx.doi.org/10.1634/theoncologist.8-suppl_1-15] [PMID: 12626783]
[56]
Dame, C.; Fahnenstich, H.; Freitag, P.; Hofmann, D.; Abdul-Nour, T.; Bartmann, P.; Fandrey, J. Erythropoietin mRNA expression in human fetal and neonatal tissue. Blood, 1998, 92(9), 3218-3225.
[http://dx.doi.org/10.1182/blood.V92.9.3218] [PMID: 9787158]
[57]
Juul, S.; Felderhoff-Mueser, U. Epo and other hematopoietic factors. Semin. Fetal Neonatal Med., 2007, 12(4), 250-258.
[http://dx.doi.org/10.1016/j.siny.2007.01.015] [PMID: 17321813]
[58]
Ogunshola, O.O.; Bogdanova, A.Y. Epo and non-hematopoietic cells: what do we know? Methods Mol. Biol., 2013, 982, 13-41.
[http://dx.doi.org/10.1007/978-1-62703-308-4_2] [PMID: 23456860]
[59]
Ji, P. Pericytes: New EPO-producing cells in the brain. Blood, 2016, 128(21), 2483-2485.
[http://dx.doi.org/10.1182/blood-2016-10-743880] [PMID: 27884833]
[60]
Urrutia, A.A.; Afzal, A.; Nelson, J.; Davidoff, O.; Gross, K.W.; Haase, V.H. Prolyl-4-hydroxylase 2 and 3 coregulate murine erythropoietin in brain pericytes. Blood, 2016, 128(21), 2550-2560.
[http://dx.doi.org/10.1182/blood-2016-05-713545] [PMID: 27683416]
[61]
Simon, C.; Lickert, H.; Götz, M.; Dimou, L. Sox10-iCreERT2: A mouse line to inducibly trace the neural crest and oligodendrocyte lineage.Genesis (New York, N.Y. : 2000), 2012, 50(6), 506-515.
[62]
Pardridge, W.M. The blood-brain barrier: Bottleneck in brain drug development. NeuroRx, 2005, 2(1), 3-14.
[63]
Sirén, A.L.; Fratelli, M.; Brines, M.; Goemans, C.; Casagrande, S.; Lewczuk, P.; Keenan, S.; Gleiter, C.; Pasquali, C.; Capobianco, A.; Mennini, T.; Heumann, R.; Cerami, A.; Ehrenreich, H.; Ghezzi, P. Erythropoietin prevents neuronal apoptosis after cerebral ischemia and metabolic stress. Proc. Natl. Acad. Sci. USA, 2001, 98(7), 4044-4049.
[http://dx.doi.org/10.1073/pnas.051606598] [PMID: 11259643]
[64]
Lu, D.; Mahmood, A.; Qu, C.; Goussev, A.; Schallert, T.; Chopp, M. Erythropoietin enhances neurogenesis and restores spatial memory in rats after traumatic brain injury. J. Neurotrauma, 2005, 22(9), 1011-1017.
[http://dx.doi.org/10.1089/neu.2005.22.1011] [PMID: 16156716]
[65]
Shen, Y.; Yu, H.M.; Yuan, T.M.; Gu, W.Z.; Wu, Y.D. Erythropoietin attenuates white matter damage, proinflammatory cytokine and chemokine induction in developing rat brain after intra-uterine infection. Neuropathology, 2009.
[66]
Shein, N.A.; Horowitz, M.; Alexandrovich, A.G.; Tsenter, J.; Shohami, E. Heat acclimation increases hypoxia-inducible factor 1alpha and erythropoietin receptor expression: Implication for neuroprotection after closed head injury in mice. J. Cereb. Blood Flow Metab., 2005, 25(11), 1456-1465.
[http://dx.doi.org/10.1038/sj.jcbfm.9600142] [PMID: 15902197]
[67]
Fandrey, J. Oxygen-dependent and tissue-specific regulation of erythropoietin gene expression. Am. J. Physiol. Regul. Integr. Comp. Physiol., 2004, 286(6), R977-R988.
[http://dx.doi.org/10.1152/ajpregu.00577.2003] [PMID: 15142852]
[68]
Fandrey, J.; Bunn, H.F. In vivo and in vitro regulation of erythropoietin mRNA: Measurement by competitive polymerase chain reaction. Blood, 1993, 81(3), 617-623.
[http://dx.doi.org/10.1182/blood.V81.3.617.617] [PMID: 8381307]
[69]
Chikuma, M.; Masuda, S.; Kobayashi, T.; Nagao, M.; Sasaki, R. Tissue-specific regulation of erythropoietin production in the murine kidney, brain, and uterus. Am. J. Physiol. Endocrinol. Metab., 2000, 279(6), E1242-E1248.
[http://dx.doi.org/10.1152/ajpendo.2000.279.6.E1242] [PMID: 11093910]
[70]
Baserga, M.C.; Beachy, J.C.; Roberts, J.K.; Ward, R.M.; DiGeronimo, R.J.; Walsh, W.F.; Ohls, R.K.; Anderson, J.; Mayock, D.E.; Juul, S.E.; Christensen, R.D.; Loertscher, M.C.; Stockmann, C.; Sherwin, C.M.; Spigarelli, M.G.; Yoder, B.A. Darbepoetin administration to neonates undergoing cooling for encephalopathy: A safety and pharmacokinetic trial. Pediatr. Res., 2015, 78(3), 315-322.
[http://dx.doi.org/10.1038/pr.2015.101] [PMID: 25996892]
[71]
Ohls, R.K.; Cannon, D.C.; Phillips, J.; Caprihan, A.; Patel, S.; Winter, S.; Steffen, M.; Yeo, R.A.; Campbell, R.; Wiedmeier, S.; Baker, S.; Gonzales, S.; Lowe, J. Preschool assessment of preterm infants treated with darbepoetin and erythropoietin. Pediatrics, 2016, 137(3) ,e20153859
[http://dx.doi.org/10.1542/peds.2015-3859] [PMID: 26908704]
[72]
Lowe, J.R.; Rieger, R.E.; Moss, N.C.; Yeo, R.A.; Winter, S.; Patel, S.; Phillips, J.; Campbell, R.; Baker, S.; Gonzales, S.; Ohls, R.K. Impact of erythropoiesis-stimulating agents on behavioral measures in children born preterm. J. Pediatr., 2017, 184, 75-80.e1.
[http://dx.doi.org/10.1016/j.jpeds.2017.01.020] [PMID: 28185625]
[73]
Chamorro, M.E.; Wenker, S.D.; Vota, D.M.; Vittori, D.C.; Nesse, A.B. Signaling pathways of cell proliferation are involved in the differential effect of erythropoietin and its carbamylated derivative. Biochim. Biophys. Acta, 2013, 1833(8), 1960-1968.
[http://dx.doi.org/10.1016/j.bbamcr.2013.04.006] [PMID: 23602701]
[74]
Leist, M.; Ghezzi, P.; Grasso, G.; Bianchi, R.; Villa, P.; Fratelli, M.; Savino, C.; Bianchi, M.; Nielsen, J.; Gerwien, J.; Kallunki, P.; Larsen, A.K.; Helboe, L.; Christensen, S.; Pedersen, L.O.; Nielsen, M.; Torup, L.; Sager, T.; Sfacteria, A.; Erbayraktar, S.; Erbayraktar, Z.; Gokmen, N.; Yilmaz, O.; Cerami-Hand, C.; Xie, Q.W.; Coleman, T.; Cerami, A.; Brines, M. Derivatives of erythropoietin that are tissue protective but not erythropoietic. Science, 2004, 305(5681), 239-242.
[http://dx.doi.org/10.1126/science.1098313] [PMID: 15247477]
[75]
Matthews, D.J.; Topping, R.S.; Cass, R.T.; Giebel, L.B. A sequential dimerization mechanism for erythropoietin receptor activation. Proc. Natl. Acad. Sci. USA, 1996, 93(18), 9471-9476.
[http://dx.doi.org/10.1073/pnas.93.18.9471] [PMID: 8790354]
[76]
Zhang, Y.L.; Radhakrishnan, M.L.; Lu, X.; Gross, A.W.; Tidor, B.; Lodish, H.F. Symmetric signaling by an asymmetric 1 erythropoietin: 2 erythropoietin receptor complex. Mol. Cell, 2009, 33(2), 266-274.
[http://dx.doi.org/10.1016/j.molcel.2008.11.026] [PMID: 19187767]
[77]
Chong, Z.Z.; Li, F.; Maiese, K. Erythropoietin requires NF-kappaB and its nuclear translocation to prevent early and late apoptotic neuronal injury during beta-amyloid toxicity. Curr. Neurovasc. Res., 2005, 2(5), 387-399.
[http://dx.doi.org/10.2174/156720205774962683] [PMID: 16375720]
[78]
Myklebust, J.H.; Blomhoff, H.K.; Rusten, L.S.; Stokke, T.; Smeland, E.B. Activation of phosphatidylinositol 3-kinase is important for erythropoietin-induced erythropoiesis from CD34(+) hematopoietic progenitor cells. Exp. Hematol., 2002, 30(9), 990-1000.
[http://dx.doi.org/10.1016/S0301-472X(02)00868-8] [PMID: 12225790]
[79]
Cokic, V.P.; Bhattacharya, B.; Beleslin-Cokic, B.B.; Noguchi, C.T.; Puri, R.K.; Schechter, A.N. JAK-STAT and AKT pathway-coupled genes in erythroid progenitor cells through ontogeny. J. Transl. Med., 2012, 10, 116.
[http://dx.doi.org/10.1186/1479-5876-10-116] [PMID: 22676255]
[80]
Schmidt, E.K.; Fichelson, S.; Feller, S.M. PI3 kinase is important for Ras, MEK and Erk activation of Epo-stimulated human erythroid progenitors. BMC Biol., 2004, 2, 7.
[http://dx.doi.org/10.1186/1741-7007-2-7] [PMID: 15149544]
[81]
Wandzioch, E.; Edling, C.E.; Palmer, R.H.; Carlsson, L.; Hallberg, B. Activation of the MAP kinase pathway by c-Kit is PI-3 kinase dependent in hematopoietic progenitor/stem cell lines. Blood, 2004, 104(1), 51-57.
[http://dx.doi.org/10.1182/blood-2003-07-2554] [PMID: 14996702]
[82]
Witthuhn, B.A.; Quelle, F.W.; Silvennoinen, O.; Yi, T.; Tang, B.; Miura, O.; Ihle, J.N. JAK2 associates with the erythropoietin receptor and is tyrosine phosphorylated and activated following stimulation with erythropoietin. Cell, 1993, 74(2), 227-236.
[http://dx.doi.org/10.1016/0092-8674(93)90414-L] [PMID: 8343951]
[83]
Miura, O.; Nakamura, N.; Quelle, F.W.; Witthuhn, B.A.; Ihle, J.N.; Aoki, N. Erythropoietin induces association of the JAK2 protein tyrosine kinase with the erythropoietin receptor In vivo. Blood, 1994, 84(5), 1501-1507.
[http://dx.doi.org/10.1182/blood.V84.5.1501.1501] [PMID: 8068943]
[84]
Klingmüller, U.; Bergelson, S.; Hsiao, J.G.; Lodish, H.F. Multiple tyrosine residues in the cytosolic domain of the erythropoietin receptor promote activation of STAT5. Proc. Natl. Acad. Sci. USA, 1996, 93(16), 8324-8328.
[http://dx.doi.org/10.1073/pnas.93.16.8324] [PMID: 8710869]
[85]
Grebien, F.; Kerenyi, M.A.; Kovacic, B.; Kolbe, T.; Becker, V.; Dolznig, H.; Pfeffer, K.; Klingmüller, U.; Müller, M.; Beug, H.; Müllner, E.W.; Moriggl, R. Stat5 activation enables erythropoiesis in the absence of EpoR and Jak2. Blood, 2008, 111(9), 4511-4522.
[http://dx.doi.org/10.1182/blood-2007-07-102848] [PMID: 18239084]
[86]
Fisher, J.W. Erythropoietin: Physiology and pharmacology update. Exp. Biol. Med. (Maywood), 2003, 228(1), 1-14.
[http://dx.doi.org/10.1177/153537020322800101] [PMID: 12524467]
[87]
Villa, P.; Bigini, P.; Mennini, T.; Agnello, D.; Laragione, T.; Cagnotto, A.; Viviani, B.; Marinovich, M.; Cerami, A.; Coleman, T.R.; Brines, M.; Ghezzi, P. Erythropoietin selectively attenuates cytokine production and inflammation in cerebral ischemia by targeting neuronal apoptosis. J. Exp. Med., 2003, 198(6), 971-975.
[http://dx.doi.org/10.1084/jem.20021067] [PMID: 12975460]
[88]
Agnello, D.; Bigini, P.; Villa, P.; Mennini, T.; Cerami, A.; Brines, M.L.; Ghezzi, P. Erythropoietin exerts an anti-inflammatory effect on the CNS in a model of experimental autoimmune encephalomyelitis. Brain Res., 2002, 952(1), 128-134.
[http://dx.doi.org/10.1016/S0006-8993(02)03239-0] [PMID: 12363412]
[89]
Wang, H.; Fan, J.; Chen, M.; Yao, Q.; Gao, Z.; Zhang, G.; Wu, H.; Yu, X. rhEPO Enhances cellular anti-oxidant capacity to protect long-term cultured aging primary nerve cells. Journal of molecular neuroscience : MN, 2017, 62(3-4), 291-303.
[90]
Chateauvieux, S.; Grigorakaki, C.; Morceau, F.; Dicato, M.; Diederich, M. Erythropoietin, erythropoiesis and beyond. Biochem. Pharmacol., 2011, 82(10), 1291-1303.
[http://dx.doi.org/10.1016/j.bcp.2011.06.045] [PMID: 21782802]
[91]
Wakhloo, D.; Scharkowski, F.; Curto, Y.; Javed Butt, U.; Bansal, V.; Steixner-Kumar, A.A.; Wüstefeld, L.; Rajput, A.; Arinrad, S.; Zillmann, M.R.; Seelbach, A.; Hassouna, I.; Schneider, K.; Qadir Ibrahim, A.; Werner, H.B.; Martens, H.; Miskowiak, K.; Wojcik, S.M.; Bonn, S.; Nacher, J.; Nave, K.A.; Ehrenreich, H. Functional hypoxia drives neuroplasticity and neurogenesis via brain erythropoietin. Nat. Commun., 2020, 11(1), 1313.
[http://dx.doi.org/10.1038/s41467-020-15041-1] [PMID: 32152318]
[92]
Gonzalez, F.F.; Larpthaveesarp, A.; McQuillen, P.; Derugin, N.; Wendland, M.; Spadafora, R.; Ferriero, D.M. Erythropoietin increases neurogenesis and oligodendrogliosis of subventricular zone precursor cells after neonatal stroke. Stroke, 2013, 44(3), 753-758.
[http://dx.doi.org/10.1161/STROKEAHA.111.000104] [PMID: 23391775]
[93]
Jantzie, L.L.; Miller, R.H.; Robinson, S. Erythropoietin signaling promotes oligodendrocyte development following prenatal systemic hypoxic-ischemic brain injury. Pediatr. Res., 2013, 74(6), 658-667.
[http://dx.doi.org/10.1038/pr.2013.155] [PMID: 24108187]
[94]
Xiong, Y.; Mahmood, A.; Meng, Y.; Zhang, Y.; Qu, C.; Schallert, T.; Chopp, M. Delayed administration of erythropoietin reducing hippocampal cell loss, enhancing angiogenesis and neurogenesis, and improving functional outcome following traumatic brain injury in rats: comparison of treatment with single and triple dose. J. Neurosurg., 2010, 113(3), 598-608.
[http://dx.doi.org/10.3171/2009.9.JNS09844] [PMID: 19817538]
[95]
Zhang, H.; Fang, X.; Huang, D.; Luo, Q.; Zheng, M.; Wang, K.; Cao, L.; Yin, Z. Erythropoietin signaling increases neurogenesis and oligodendrogenesis of endogenous neural stem cells following spinal cord injury both in vivo and in vitro. Mol. Med. Rep., 2018, 17(1), 264-272.
[PMID: 29115443]
[96]
Juul, S.E.; Ferriero, D.M. Pharmacologic neuroprotective strategies in neonatal brain injury. Clin. Perinatol., 2014, 41(1), 119-131.
[http://dx.doi.org/10.1016/j.clp.2013.09.004] [PMID: 24524450]
[97]
Rey, F.; Balsari, A.; Giallongo, T.; Ottolenghi, S.; Di Giulio, A.M.; Samaja, M.; Carelli, S. Erythropoietin as a neuroprotective molecule: An Overview of its therapeutic potential in neurodegenerative diseases. ASN Neuro, 2019, 11 ,1759091419871420
[http://dx.doi.org/10.1177/1759091419871420] [PMID: 31450955]
[98]
Li, S.J.; Cui, K.F.; Fu, J.J.; Fu, X.J.; Gao, Y.F.; Zhang, D.; Lu, Z.F.; Zhang, Y.X.; Yu, L.; Wang, J.P. EPO promotes axonal sprouting via upregulating GDF10. Neurosci. Lett., 2019, 711 ,134412
[http://dx.doi.org/10.1016/j.neulet.2019.134412] [PMID: 31381959]
[99]
Hong, H.N.; Shim, J.H.; Won, Y.J.; Yoo, J.Y.; Hwang, C.H. Therapeutic time window for the effects of erythropoietin on astrogliosis and neurite outgrowth in an in vitro model of spinal cord injury. Medicine (Baltimore), 2018, 97(9) ,e9913
[http://dx.doi.org/10.1097/MD.0000000000009913] [PMID: 29489692]
[100]
Zhang, C.Y.; Du, J.; Zhang, R.; Jin, J.; Qiao, L.Y. Erythropoietin attenuates propofol-induced hippocampal neuronal cell injury in developing rats by inhibiting toll-like receptor 4 expression. Neurosci. Lett., 2020, 716 ,134647
[http://dx.doi.org/10.1016/j.neulet.2019.134647] [PMID: 31765729]
[101]
Schober, M.E.; Requena, D.F.; Rodesch, C.K. EPO improved neurologic outcome in rat pups late after traumatic brain injury. Brain Dev., 2018, 40(5), 367-375.
[http://dx.doi.org/10.1016/j.braindev.2018.01.003] [PMID: 29429559]
[102]
Acheson, A.; Conover, J.C.; Fandl, J.P.; DeChiara, T.M.; Russell, M.; Thadani, A.; Squinto, S.P.; Yancopoulos, G.D.; Lindsay, R.M. A BDNF autocrine loop in adult sensory neurons prevents cell death. Nature, 1995, 374(6521), 450-453.
[http://dx.doi.org/10.1038/374450a0] [PMID: 7700353]
[103]
Choi, Y.B.; Dunn-Meynell, A.A.; Marchese, M.; Blumberg, B.M.; Gaindh, D.; Dowling, P.C.; Lu, W. Erythropoietin-derived peptide treatment reduced neurological deficit and neuropathological changes in a mouse model of tauopathy. Alzheimers Res. Ther., 2021, 13(1), 32.
[http://dx.doi.org/10.1186/s13195-020-00766-4] [PMID: 33504364]
[104]
Wassink, G.; Davidson, J.O.; Fraser, M.; Yuill, C.A.; Bennet, L.; Gunn, A.J. Non-additive effects of adjunct erythropoietin therapy with therapeutic hypothermia after global cerebral ischaemia in near-term fetal sheep. J. Physiol., 2020, 598(5), 999-1015.
[http://dx.doi.org/10.1113/JP279131] [PMID: 31912503]
[105]
Wei, S.; Luo, C.; Yu, S.; Gao, J.; Liu, C.; Wei, Z.; Zhang, Z.; Wei, L.; Yi, B. Erythropoietin ameliorates early brain injury after subarachnoid haemorrhage by modulating microglia polarization via the EPOR/JAK2-STAT3 pathway. Exp. Cell Res., 2017, 361(2), 342-352.
[http://dx.doi.org/10.1016/j.yexcr.2017.11.002] [PMID: 29102603]
[106]
Wu, H.; Zhao, J.; Chen, M.; Wang, H.; Yao, Q.; Fan, J.; Zhang, M. The anti-aging effect of erythropoietin via the erk/nrf2-are pathway in aging rats. J. Mol. Neurosci., 2017, 61(3), 449-458.
[107]
Zhang, D.X.; Zhang, L.M.; Zhao, X.C.; Sun, W. Neuroprotective effects of erythropoietin against sevoflurane-induced neuronal apoptosis in primary rat cortical neurons involving the EPOR-Erk1/2-Nrf2/Bach1 signal pathway. Biomed. Pharmacother., 2017, 87, 332-341.
[108]
Zhang, J.; Zhu, Y.; Zhou, D.; Wang, Z.; Chen, G. Recombinant human erythropoietin (rhEPO) alleviates early brain injury following subarachnoid hemorrhage in rats: Possible involvement of Nrf2-ARE pathway. Cytokine, 2010, 52(3), 252-257.
[http://dx.doi.org/10.1016/j.cyto.2010.08.011] [PMID: 20864352]
[109]
Jin, W.; Ming, X.; Hou, X.; Zhu, T.; Yuan, B.; Wang, J.; Ni, H.; Jiang, J.; Wang, H.; Liang, W. Protective effects of erythropoietin in traumatic spinal cord injury by inducing the Nrf2 signaling pathway activation. J. Trauma Acute Care Surg., 2014, 76(5), 1228-1234.
[http://dx.doi.org/10.1097/TA.0000000000000211] [PMID: 24747453]
[110]
Mršić-Pelčić, J.; Pilipović, K.; Pelčić, G.; Vitezić, D.; Župan, G. Decrease in oxidative stress parameters after post-ischaemic recombinant human erythropoietin administration in the hippocampus of rats exposed to focal cerebral ischaemia. Basic Clin. Pharmacol. Toxicol., 2017, 121(6), 453-464.
[http://dx.doi.org/10.1111/bcpt.12833] [PMID: 28639431]
[111]
Genc, K.; Egrilmez, M.Y.; Genc, S. Erythropoietin induces nuclear translocation of Nrf2 and heme oxygenase-1 expression in SH-SY5Y cells. Cell Biochem. Funct., 2010, 28(3), 197-201.
[http://dx.doi.org/10.1002/cbf.1639] [PMID: 20229611]
[112]
Kensler, T.W.; Wakabayashi, N.; Biswal, S. Cell survival responses to environmental stresses via the Keap1-Nrf2-ARE pathway. Annu. Rev. Pharmacol. Toxicol., 2007, 47, 89-116.
[http://dx.doi.org/10.1146/annurev.pharmtox.46.120604.141046] [PMID: 16968214]
[113]
Zolnourian, A. A.-O. X.; Galea, I.; Bulters, D. A.-O. Neuroprotective role of the nrf2 pathway in subarachnoid haemorrhage and its therapeutic potential., 1942, 994
[114]
Sims, B.; Clarke, M.; Njah, W.; Hopkins, E.S.; Sontheimer, H. Erythropoietin-induced neuroprotection requires cystine glutamate exchanger activity. Brain Res., 2010, 1321, 88-95.
[http://dx.doi.org/10.1016/j.brainres.2010.01.040] [PMID: 20102705]
[115]
Jantzie, L.L.; Winer, J.L.; Corbett, C.J.; Robinson, S. Erythropoietin modulates cerebral and serum degradation products from excess calpain activation following prenatal hypoxia-ischemia. Dev. Neurosci., 2016, 38(1), 15-26.
[http://dx.doi.org/10.1159/000441024] [PMID: 26551007]
[116]
Garzón, F.; Coimbra, D.; Parcerisas, A.; Rodriguez, Y.; García, J.C.; Soriano, E.; Rama, R. NeuroEPO preserves neurons from glutamate-induced excitotoxicity. J. Alzheimers Dis., 2018, 65(4), 1469-1483.
[http://dx.doi.org/10.3233/JAD-180668] [PMID: 30175978]
[117]
Sollinger, C.; Lillis, J.; Malik, J.; Getman, M.; Proschel, C.; Steiner, L. Erythropoietin signaling regulates key epigenetic and transcription networks in fetal neural progenitor cells. Sci. Rep., 2017, 7(1), 14381.
[http://dx.doi.org/10.1038/s41598-017-14366-0] [PMID: 29084993]
[118]
Ng, T.; Marx, G.; Littlewood, T.; Macdougall, I. Recombinant erythropoietin in clinical practice. Postgrad. Med. J., 2003, 79(933), 367-376.
[http://dx.doi.org/10.1136/pmj.79.933.367] [PMID: 12897214]
[119]
Ohlsson, A.; Aher, S.M. Early erythropoiesis-stimulating agents in preterm or low birth weight infants. Cochrane Database Syst. Rev., 2017, 11(11) ,CD004863
[http://dx.doi.org/10.1002/14651858.CD004863.pub5] [PMID: 29145693]
[120]
Lopez, E.; Beuchée, A.; Truffert, P.; Pouvreau, N.; Patkai, J.; Baud, O.; Boubred, F.; Flamant, C.; Jarreau, P.H. Recombinant human erythropoietin in neonates: Guidelines for clinical practice from the French Society of Neonatology.Arch. Pediatr. 2015, 22(10), 1092-1097.
[121]
Juul, S. E. Erytropoietin concentrations in cerebrospinal fluid of nonhuman primates and fetal sheep following high-dose recombinant erythropoietin.,
[122]
Brines, M.L.; Ghezzi, P.; Keenan, S.; Agnello, D.; de Lanerolle, N.C.; Cerami, C.; Itri, L.M.; Cerami, A. Erythropoietin crosses the blood-brain barrier to protect against experimental brain injury. Proc. Natl. Acad. Sci. USA, 2000, 97(19), 10526-10531.
[http://dx.doi.org/10.1073/pnas.97.19.10526] [PMID: 10984541]
[123]
Mazur, M.; Miller, R.H.; Robinson, S. Postnatal erythropoietin treatment mitigates neural cell loss after systemic prenatal hypoxic-ischemic injury. J. Neurosurg. Pediatr., 2010, 6(3), 206-221.
[http://dx.doi.org/10.3171/2010.5.PEDS1032] [PMID: 20809703]
[124]
Chung, E.; Kong, X.; Goldberg, M.P.; Stowe, A.M.; Raman, L. Erythropoietin-mediated neuroprotection in a pediatric mouse model of chronic hypoxia. Neurosci. Lett., 2015, 597, 54-59.
[http://dx.doi.org/10.1016/j.neulet.2015.04.026] [PMID: 25899777]
[125]
Dewan, M.V.; Serdar, M.; van de Looij, Y.; Kowallick, M.; Hadamitzky, M.; Endesfelder, S.; Fandrey, J.; Sizonenko, S.V.; Herz, J.; Felderhoff-Müser, U.; Bendix, I. Repetitive erythropoietin treatment improves long-term neurocognitive outcome by attenuating hyperoxia-induced hypomyelination in the developing brain. Front. Neurol., 2020, 11, 804.
[http://dx.doi.org/10.3389/fneur.2020.00804] [PMID: 32903382]
[126]
Hierro-Bujalance, C.; Infante-Garcia, C.; Sanchez-Sotano, D.; Del Marco, A.; Casado-Revuelta, A.; Mengual-Gonzalez, C.M.; Lucena-Porras, C.; Bernal-Martin, M.; Benavente-Fernandez, I.; Lubian-Lopez, S.; Garcia-Alloza, M. Erythropoietin improves atrophy, bleeding and cognition in the newborn intraventricular hemorrhage. Front. Cell Dev. Biol., 2020, 8 ,571258
[http://dx.doi.org/10.3389/fcell.2020.571258] [PMID: 33043002]
[127]
Yu, X.; Shacka, J.J.; Eells, J.B.; Suarez-Quian, C.; Przygodzki, R.M.; Beleslin-Cokic, B.; Lin, C.S.; Nikodem, V.M.; Hempstead, B.; Flanders, K.C.; Costantini, F.; Noguchi, C.T. Erythropoietin receptor signalling is required for normal brain development. Development, 2002, 129(2), 505-516.
[http://dx.doi.org/10.1242/dev.129.2.505] [PMID: 11807041]
[128]
Rees, S.; Hale, N.; De Matteo, R.; Cardamone, L.; Tolcos, M.; Loeliger, M.; Mackintosh, A.; Shields, A.; Probyn, M.; Greenwood, D.; Harding, R. Erythropoietin is neuroprotective in a preterm ovine model of endotoxin-induced brain injury. J. Neuropathol. Exp. Neurol., 2010, 69(3), 306-319.
[http://dx.doi.org/10.1097/NEN.0b013e3181d27138] [PMID: 20142760]
[129]
Barton, S.K.; McDougall, A.R.; Melville, J.M.; Moss, T.J.; Zahra, V.A.; Lim, T.; Crossley, K.J.; Polglase, G.R.; Tolcos, M. Differential short-term regional effects of early high dose erythropoietin on white matter in preterm lambs after mechanical ventilation. J. Physiol., 2016, 594(5), 1437-1449.
[http://dx.doi.org/10.1113/JP271376] [PMID: 26332509]
[130]
Erbayraktar, S.; Grasso, G.; Sfacteria, A.; Xie, Q.W.; Coleman, T.; Kreilgaard, M.; Torup, L.; Sager, T.; Erbayraktar, Z.; Gokmen, N.; Yilmaz, O.; Ghezzi, P.; Villa, P.; Fratelli, M.; Casagrande, S.; Leist, M.; Helboe, L.; Gerwein, J.; Christensen, S.; Geist, M.A.; Pedersen, L.Ø.; Cerami-Hand, C.; Wuerth, J.P.; Cerami, A.; Brines, M. Asialoerythropoietin is a nonerythropoietic cytokine with broad neuroprotective activity In vivo. Proc. Natl. Acad. Sci. USA, 2003, 100(11), 6741-6746.
[http://dx.doi.org/10.1073/pnas.1031753100] [PMID: 12746497]
[131]
Wiessner, C.; Allegrini, P.R.; Ekatodramis, D.; Jewell, U.R.; Stallmach, T.; Gassmann, M. Increased cerebral infarct volumes in polyglobulic mice overexpressing erythropoietin. J. Cereb. Blood Flow Metab., 2001, 21(7), 857-864.
[http://dx.doi.org/10.1097/00004647-200107000-00011] [PMID: 11435798]
[132]
Wolf, R.F.; Gilmore, L.S.; Friese, P.; Downs, T.; Burstein, S.A.; Dale, G.L. Erythropoietin potentiates thrombus development in a canine arterio-venous shunt model. Thromb. Haemost., 1997, 77(5), 1020-1024.
[http://dx.doi.org/10.1055/s-0038-1656096] [PMID: 9184421]
[133]
Wolf, R.F.; Peng, J.; Friese, P.; Gilmore, L.S.; Burstein, S.A.; Dale, G.L. Erythropoietin administration increases production and reactivity of platelets in dogs. Thromb. Haemost., 1997, 78(6), 1505-1509.
[http://dx.doi.org/10.1055/s-0038-1665442] [PMID: 9423803]
[134]
Romagnoli, C.; Tesfagabir, M.G.; Giannantonio, C.; Papacci, P. Erythropoietin and retinopathy of prematurity. Early Hum. Dev., 2011, 87(Suppl. 1), S39-S42.
[http://dx.doi.org/10.1016/j.earlhumdev.2011.01.027] [PMID: 21303729]
[135]
Ohlsson, A.; Aher, S.M. Early erythropoietin for preventing red blood cell transfusion in preterm and/or low birth weight infants. Cochrane Database Syst. Rev., 2006, (3) ,CD004863
[http://dx.doi.org/10.1002/14651858.CD004863.pub2] [PMID: 16856062]
[136]
Hartnett, M.E.; Penn, J.S. Mechanisms and management of retinopathy of prematurity. N. Engl. J. Med., 2012, 367(26), 2515-2526.
[http://dx.doi.org/10.1056/NEJMra1208129] [PMID: 23268666]
[137]
Bretz, C.A.; Wang, H.; Becker, S.; Divoky, V.; Hartnett, M.E. Erythropoietin receptor signaling contributes to the development of pathologic retinal angiogenesis. Invest. Ophthalmol. Vis. Sci., 2016, 57(12), 3641.
[138]
Bretz, C.A.; Kunz, E.; Divoky, V.; Hartnett, M.E. EPOR signaling is important in neural retinal function following OIR. Invest. Ophthalmol. Vis. Sci., 2019, 60(9)
[139]
Bretz, C.A.; Simmons, A.B.; Kunz, E.; Ramshekar, A.; Kennedy, C.; Cardenas, I.; Hartnett, M.E. Erythropoietin receptor signaling supports retinal function after vascular injury. Am. J. Pathol., 2020, 190(3), 630-641.
[http://dx.doi.org/10.1016/j.ajpath.2019.11.009] [PMID: 32093902]
[140]
Mayock, D.E.; Xie, Z.; Comstock, B.A.; Heagerty, P.J.; Juul, S.E. High-dose erythropoietin in extremely low gestational age neonates does not alter risk of retinopathy of prematurity. Neonatology, 2020, 117(5), 650-657.
[http://dx.doi.org/10.1159/000511262] [PMID: 33113526]
[141]
Sun, H.; Song, J.; Kang, W.; Wang, Y.; Sun, X.; Zhou, C.; Xiong, H.; Xu, F.; Li, M.; Zhang, X.; Yu, Z.; Peng, X.; Li, B.; Xu, Y.; Xing, S.; Wang, X.; Zhu, C. Effect of early prophylactic low-dose recombinant human erythropoietin on retinopathy of prematurity in very preterm infants. J. Transl. Med., 2020, 18(1), 397.
[http://dx.doi.org/10.1186/s12967-020-02562-y] [PMID: 33076939]
[142]
LaRosa, D.A.; Barton, S.K.; Valerie Zahra, V.; Tolcos, M.; Melville, J.M.; Inocencio, I.M.; Barbuto, J.; Gill, A.W.; Kluckow, M.; Bennet, L.; Moss, T.J.M.; Polglase, G.R. Optimising erythropoietin dose to reduce ventilator-induced lung injury. J. Paediatr. Child Health, 2016, 52, 117.
[143]
Allison, B. J.; LaRosa, D. A.; Barton, S. K.; Hooper, S.; Zahra, V.; Tolcos, M.; Chan, K. Y. Y.; Barbuto, J.; Inocencio, I. M.; Moss, T. J.; Polglase, G. R. Dose-dependent exacerbation of ventilation-induced lung injury by erythropoietin in preterm newborn lambs., Journal of applied physiology (Bethesda, Md.: 1985),, 2019, 126(1), 44-50.
[144]
Polglase, G.R.; Barton, S.K.; Melville, J.M.; Zahra, V.; Wallace, M.J.; Siew, M.L.; Tolcos, M.; Moss, T.J. Prophylactic erythropoietin exacerbates ventilation-induced lung inflammation and injury in preterm lambs. J. Physiol., 2014, 592(9), 1993-2002.
[http://dx.doi.org/10.1113/jphysiol.2013.270348] [PMID: 24591575]
[145]
Frymoyer, A.; Juul, S.E.; Massaro, A.N.; Bammler, T.K.; Wu, Y.W. High-dose erythropoietin population pharmacokinetics in neonates with hypoxic-ischemic encephalopathy receiving hypothermia. Pediatr. Res., 2017, 81(6), 865-872.
[http://dx.doi.org/10.1038/pr.2017.15] [PMID: 28099423]
[146]
Juul, S.E.; McPherson, R.J.; Bauer, L.A.; Ledbetter, K.J.; Gleason, C.A.; Mayock, D.E. A phase I/II trial of high-dose erythropoietin in extremely low birth weight infants: Pharmacokinetics and safety. Pediatrics, 2008, 122(2), 383-391.
[http://dx.doi.org/10.1542/peds.2007-2711] [PMID: 18676557]
[147]
Wu, Y.W.; Bauer, L.A.; Ballard, R.A.; Ferriero, D.M.; Glidden, D.V.; Mayock, D.E.; Chang, T.; Durand, D.J.; Song, D.; Bonifacio, S.L.; Gonzalez, F.F.; Glass, H.C.; Juul, S.E. Erythropoietin for neuroprotection in neonatal encephalopathy: Safety and pharmacokinetics. Pediatrics, 2012, 130(4), 683-691.
[http://dx.doi.org/10.1542/peds.2012-0498] [PMID: 23008465]
[148]
Dame, C.; Langer, J.; Koller, B.M.; Fauchère, J.C.; Bucher, H.U. Urinary erythropoietin concentrations after early short-term infusion of high-dose recombinant epo for neuroprotection in preterm neonates. Neonatology, 2012, 102(3), 172-177.
[http://dx.doi.org/10.1159/000339283] [PMID: 22776958]
[149]
Fauchere, J.C.; Koller, B.M.; Tschopp, A. Safety of high-dose erythopoietin for neuroprotection in preterm infants. Arch. Dis. Child., 2012, 97, A16.
[http://dx.doi.org/10.1136/archdischild-2012-302724.0056]
[150]
Fauchère, J.C.; Koller, B.M.; Tschopp, A.; Dame, C.; Ruegger, C.; Bucher, H.U. Erythropoietin for neuroprotection in very preterm infants. J. Pediatr., 2015, 167(1), 52-7. ,e1, 3
[http://dx.doi.org/10.1016/j.jpeds.2015.02.052] [PMID: 25863661]
[151]
Fauchère, J.C.; Koller, B.M.; Tschopp, A.; Dame, C.; Ruegger, C.; Bucher, H.U. Safety of early high-dose recombinant erythropoietin for neuroprotection in very preterm infants. The Journal of pediatricsediatr., 2015, 167(1), 52-57.
[http://dx.doi.org/10.1016/j.jpeds.2015.02.052]
[152]
O’Gorman, R.L.; Bucher, H.U.; Held, U.; Koller, B.M.; Hüppi, P.S.; Hagmann, C.F. Tract-based spatial statistics to assess the neuroprotective effect of early erythropoietin on white matter development in preterm infants. Brain, 2015, 138(Pt 2), 388-397.
[http://dx.doi.org/10.1093/brain/awu363] [PMID: 25534356]
[153]
Leuchter, R.H.; Gui, L.; Poncet, A.; Hagmann, C.; Lodygensky, G.A.; Martin, E.; Koller, B.; Darqué, A.; Bucher, H.U.; Hüppi, P.S. Association between early administration of high-dose erythropoietin in preterm infants and brain MRI abnormality at term-equivalent age. JAMA, 2014, 312(8), 817-824.
[http://dx.doi.org/10.1001/jama.2014.9645] [PMID: 25157725]
[154]
Fauchere, J.C.; Leuchter, R.H.; Natalucci, G.; Dame, C.; Koller, B.M.; Ruegger, C.M.; Hagmann, C.; Huppi, P.S.; Bucher, H.U. Results of the swiss epo neuroprotection trial in very preterm infants. Am. J. Hematol., 2015, 90(8) ,E161
[155]
Jakab, A.; Ruegger, C.; Bucher, H.U.; Makki, M.; Huppi, P.S.; Tuura, R.; Hagmann, C. Network based statistics reveals trophic and neuroprotective effect of early high dose erythropoetin on brain connectivity in very preterm infants. Neuroimage Clin., 2019, 22 ,101806
[http://dx.doi.org/10.1016/j.nicl.2019.101806] [PMID: 30991614]
[156]
Yang, S.S.; Xu, F.L.; Cheng, H.Q.; Xu, H.R.; Yang, L.; Xing, J.Y.; Cheng, L. Effect of early application of recombinant human erythropoietin on white matter development in preterm infants Zhongguo dang dai er ke za zhi = Chinese J. Contemporary Pediatr., 2018, 20(5), 346-351.
[157]
Natalucci, G.; Latal, B.; Koller, B.; Rüegger, C.; Sick, B.; Held, L.; Bucher, H.U.; Fauchère, J.C. Effect of Early Prophylactic High-Dose Recombinant Human Erythropoietin in Very Preterm Infants on Neurodevelopmental Outcome at 2 Years: A Randomized Clinical Trial. JAMA, 2016, 315(19), 2079-2085.
[http://dx.doi.org/10.1001/jama.2016.5504] [PMID: 27187300]
[158]
Ohls, R.; Kamath-Rayne, B.D.; Christensen, R.; Wiedmeier, S.; Rosenberg, A.; Lowe, J. Neurocognitive outcomes at 18-22 months are improved in former preterm infants administered darbepoetin or erythropoietin. J. Investig. Med., 2013, 61(1), 166-167.
[159]
Phillips, J.; Yeo, R.A.; Caprihan, A.; Cannon, D.C.; Patel, S.; Winter, S.; Steffen, M.; Campbell, R.; Wiedmeier, S.; Baker, S.; Gonzales, S.; Lowe, J.; Ohls, R.K. Neuroimaging in former preterm children who received erythropoiesis stimulating agents. Pediatr. Res., 2017, 82(4), 685-690.
[http://dx.doi.org/10.1038/pr.2017.130] [PMID: 28553989]
[160]
Gasparovic, C.; Caprihan, A.; Yeo, R.A.; Phillips, J.; Lowe, J.R.; Campbell, R.; Ohls, R.K. The long-term effect of erythropoiesis stimulating agents given to preterm infants: A proton magnetic resonance spectroscopy study on neurometabolites in early childhood. Pediatr. Radiol., 2018, 48(3), 374-382.
[http://dx.doi.org/10.1007/s00247-017-4052-1] [PMID: 29335880]
[161]
Van Meter, J.; Ohls, R.K.; Phillips, J.; Caprihan, A.; Peceny, S.; Cannon, D.C.; Lowe, J.; Gasparovic, C. Erythrocyte stimulating agent effects on magnetic resonance spectroscopy in children born prematurely. J. Investig. Med., 2014, 62(1), 210-211.
[162]
Song, J.; Sun, H.; Xu, F.; Kang, W.; Gao, L.; Guo, J.; Zhang, Y.; Xia, L.; Wang, X.; Zhu, C. Recombinant human erythropoietin improves neurological outcomes in very preterm infants. Ann. Neurol., 2016, 80(1), 24-34.
[http://dx.doi.org/10.1002/ana.24677] [PMID: 27130143]
[163]
Wang, Y.; Song, J.; Sun, H.; Xu, F.; Li, K.; Nie, C.; Zhang, X.; Peng, X.; Xia, L.; Shen, Z.; Yuan, X.; Zhang, S.; Ding, X.; Zhang, Y.; Kang, W.; Qian, L.; Zhou, W.; Wang, X.; Cheng, X.; Zhu, C. Erythropoietin prevents necrotizing enterocolitis in very preterm infants: A randomized controlled trial. J. Transl. Med., 2020, 18(1), 308.
[http://dx.doi.org/10.1186/s12967-020-02459-w] [PMID: 32771013]
[164]
Neubauer, A.P.; Voss, W.; Wachtendorf, M.; Jungmann, T. Erythropoietin improves neurodevelopmental outcome of extremely preterm infants. Ann. Neurol., 2010, 67(5), 657-666.
[http://dx.doi.org/10.1002/ana.21977] [PMID: 20437563]
[165]
Brines, M.; Cerami, A. Emerging biological roles for erythropoietin in the nervous system. Nat. Rev. Neurosci., 2005, 6(6), 484-494.
[http://dx.doi.org/10.1038/nrn1687] [PMID: 15928718]
[166]
Ostrowski, D.; Heinrich, R. Alternative Erythropoietin Receptors in the Nervous System. J. Clin. Med., 2018, 7(2) ,E24
[http://dx.doi.org/10.3390/jcm7020024] [PMID: 29393890]
[167]
Anagnostou, A.; Lee, E.S.; Kessimian, N.; Levinson, R.; Steiner, M. Erythropoietin has a mitogenic and positive chemotactic effect on endothelial cells. Proc. Natl. Acad. Sci. USA, 1990, 87(15), 5978-5982.
[http://dx.doi.org/10.1073/pnas.87.15.5978] [PMID: 2165612]
[168]
Hitomi, K.; Fujita, K.; Sasaki, R.; Chiba, H.; Okuno, Y.; Ichiba, S.; Takahashi, T.; Imura, H. Erythropoietin receptor of a human leukemic cell line with erythroid characteristics. Biochem. Biophys. Res. Commun., 1988, 154(3), 902-909.
[http://dx.doi.org/10.1016/0006-291X(88)90225-2] [PMID: 2841935]
[169]
Sawyer, S.T.; Krantz, S.B.; Goldwasser, E. Binding and receptor-mediated endocytosis of erythropoietin in Friend virus-infected erythroid cells. J. Biol. Chem., 1987, 262(12), 5554-5562.
[http://dx.doi.org/10.1016/S0021-9258(18)45608-6] [PMID: 3032937]
[170]
Foley, L.S.; Fullerton, D.A.; Mares, J.; Sungelo, M.; Weyant, M.J.; Cleveland, J.C., Jr; Reece, T.B. Erythropoietin’s beta common receptor mediates neuroprotection in spinal cord neurons. Ann. Thorac. Surg., 2017, 104(6), 1909-1914.
[http://dx.doi.org/10.1016/j.athoracsur.2017.07.052] [PMID: 29100648]
[171]
Hahn, N.; Knorr, D.Y.; Liebig, J.; Wüstefeld, L.; Peters, K.; Büscher, M.; Bucher, G.; Ehrenreich, H.; Heinrich, R. The insect ortholog of the human orphan cytokine receptor CRLF3 is a neuroprotective erythropoietin receptor. Front. Mol. Neurosci., 2017, 10, 223.
[http://dx.doi.org/10.3389/fnmol.2017.00223] [PMID: 28769759]
[172]
Kabanov, A.V.; Batrakova, E.V. New technologies for drug delivery across the blood brain barrier. Curr. Pharm. Des., 2004, 10(12), 1355-1363.
[http://dx.doi.org/10.2174/1381612043384826] [PMID: 15134486]
[173]
Alexander, A.; Agrawal, M.; Uddin, A.; Siddique, S.; Shehata, A.M.; Shaker, M.A.; Ata Ur Rahman, S.; Abdul, M.I.M.; Shaker, M.A. Recent expansions of novel strategies towards the drug targeting into the brain. Int. J. Nanomedicine, 2019, 14, 5895-5909.
[http://dx.doi.org/10.2147/IJN.S210876] [PMID: 31440051]
[174]
Guidotti, G.; Brambilla, L.; Rossi, D. Cell-penetrating peptides: From basic research to clinics. Trends Pharmacol. Sci., 2017, 38(4), 406-424.
[http://dx.doi.org/10.1016/j.tips.2017.01.003] [PMID: 28209404]
[175]
Zhou, Q.H.; Boado, R.J.; Lu, J.Z.; Hui, E.K.; Pardridge, W.M. Re-engineering erythropoietin as an IgG fusion protein that penetrates the blood-brain barrier in the mouse. Mol. Pharm., 2010, 7(6), 2148-2155.
[http://dx.doi.org/10.1021/mp1001763] [PMID: 20860349]
[176]
Chang, R.; Al Maghribi, A.; Vanderpoel, V.; Vasilevko, V.; Cribbs, D.H.; Boado, R.; Pardridge, W.M.; Sumbria, R.K. Brain penetrating bifunctional erythropoietin-transferrin receptor antibody fusion protein for alzheimer’s disease. Mol. Pharm., 2018, 15(11), 4963-4973.
[http://dx.doi.org/10.1021/acs.molpharmaceut.8b00594] [PMID: 30252487]
[177]
Galinsky, R.; Dean, J.M.; Lingam, I.; Robertson, N.J.; Mallard, C.; Bennet, L.; Gunn, A.J. A systematic review of magnesium sulfate for perinatal neuroprotection: What have we learnt from the past decade? Front. Neurol., 2020, 11, 449.
[http://dx.doi.org/10.3389/fneur.2020.00449] [PMID: 32536903]
[178]
Wilkinson, D.; Shepherd, E.; Wallace, E.M. Melatonin for women in pregnancy for neuroprotection of the fetus. Cochrane Database Syst. Rev., 2016, 3(3) ,CD010527
[http://dx.doi.org/10.1002/14651858.CD010527.pub2] [PMID: 27022888]
[179]
Eyles, D.; Burne, T.; McGrath, J. Vitamin D in fetal brain development. Semin. Cell Dev. Biol., 2011, 22(6), 629-636.
[http://dx.doi.org/10.1016/j.semcdb.2011.05.004] [PMID: 21664981]
[180]
Cui, C.; Song, S.; Cui, J.; Feng, Y.; Gao, J.; Jiang, P.; Vitamin, D.; Vitamin, D. Receptor activation influences nadph oxidase (NOX2) activity and protects against neurological deficits and apoptosis in a rat model of traumatic brain injury. Oxid. Med. Cell. Longev., 2017, 2017 ,9245702
[http://dx.doi.org/10.1155/2017/9245702] [PMID: 29410737]
[181]
Rao, R.; Trivedi, S.; Vesoulis, Z.; Liao, S.M.; Smyser, C.D.; Mathur, A.M. Safety and short-term outcomes of therapeutic hypothermia in preterm neonates 34-35 weeks gestational age with hypoxic-ischemic encephalopathy. J. Pediatr., 2017, 183, 37-42.
[http://dx.doi.org/10.1016/j.jpeds.2016.11.019] [PMID: 27979578]
[182]
Ahn, S.Y.; Chang, Y.S.; Sung, S.I.; Park, W.S. Mesenchymal stem cells for severe intraventricular hemorrhage in preterm infants: Phase i dose-escalation clinical trial. Stem Cells Transl. Med., 2018, 7(12), 847-856.
[http://dx.doi.org/10.1002/sctm.17-0219] [PMID: 30133179]
[183]
Thomi, G.; Surbek, D.; Haesler, V.; Joerger-Messerli, M.; Schoeberlein, A. Exosomes derived from umbilical cord mesenchymal stem cells reduce microglia-mediated neuroinflammation in perinatal brain injury. Stem Cell Res. Ther., 2019, 10(1), 105.
[http://dx.doi.org/10.1186/s13287-019-1207-z] [PMID: 30898154]
[184]
Mattson, M.P. Hormesis defined. Ageing Res. Rev., 2008, 7(1), 1-7.
[http://dx.doi.org/10.1016/j.arr.2007.08.007] [PMID: 18162444]
[185]
Calabrese, V.; Cornelius, C.; Dinkova-Kostova, A.T.; Calabrese, E.J.; Mattson, M.P. Cellular stress responses, the hormesis paradigm, and vitagenes: Novel targets for therapeutic intervention in neurodegenerative disorders. Antioxid. Redox Signal., 2010, 13(11), 1763-1811.
[http://dx.doi.org/10.1089/ars.2009.3074] [PMID: 20446769]
[186]
Brunetti, G.; Di Rosa, G.; Scuto, M.; Leri, M.; Stefani, M.; Schmitz-Linneweber, C.; Calabrese, V.; Saul, N. Health span maintenance and prevention of parkinson’s-like phenotypes with hydroxytyrosol and oleuropein aglycone in c. elegans. Int. J. Mol. Sci., 2020, 21(7) ,E2588
[http://dx.doi.org/10.3390/ijms21072588] [PMID: 32276415]
[187]
Siracusa, R.; Scuto, M.; Fusco, R.; Trovato, A.; Ontario, M.L.; Crea, R.; Di Paola, R.; Cuzzocrea, S.; Calabrese, V. Anti-inflammatory and anti-oxidant activity of hidrox(®) in rotenone-induced parkinson’s disease in mice. Antioxidants (Basel, Switzerland), 2020, 9(9), 824.
[188]
Loren, D.J.; Seeram, N.P.; Schulman, R.N.; Holtzman, D.M. Maternal dietary supplementation with pomegranate juice is neuroprotective in an animal model of neonatal hypoxic-ischemic brain injury. Pediatr. Res., 2005, 57(6), 858-864.
[http://dx.doi.org/10.1203/01.PDR.0000157722.07810.15] [PMID: 15774834]
[189]
West, T.; Atzeva, M.; Holtzman, D.M. Pomegranate polyphenols and resveratrol protect the neonatal brain against hypoxic-ischemic injury. Dev. Neurosci., 2007, 29(4-5), 363-372.
[http://dx.doi.org/10.1159/000105477] [PMID: 17762204]
[190]
Collino, M.; Thiemermann, C.; Cerami, A.; Brines, M. Flipping the molecular switch for innate protection and repair of tissues: Long-lasting effects of a non-erythropoietic small peptide engineered from erythropoietin. Pharmacol. Ther., 2015, 151, 32-40.
[http://dx.doi.org/10.1016/j.pharmthera.2015.02.005] [PMID: 25728128]
[191]
Gussenhoven, R.; Ophelders, D.R.M.G.; Kemp, M.W.; Payne, M.S.; Spiller, O.B.; Beeton, M.L.; Stock, S.J.; Cillero-Pastor, B.; Barré, F.P.Y.; Heeren, R.M.A.; Kessels, L.; Stevens, B.; Rutten, B.P.; Kallapur, S.G.; Jobe, A.H.; Kramer, B.W.; Wolfs, T.G.A.M. The paradoxical effects of chronic intra-amniotic ureaplasma parvum exposure on ovine fetal brain development. Dev. Neurosci., 2017, 39(6), 472-486.
[http://dx.doi.org/10.1159/000479021] [PMID: 28848098]
[192]
Yates, N.; Gunn, A.J.; Bennet, L.; Dhillon, S.K.; Davidson, J.O. Preventing brain injury in the preterm infant-current controversies and potential therapies. Int. J. Mol. Sci., 2021, 22(4), 1671.
[http://dx.doi.org/10.3390/ijms22041671] [PMID: 33562339]
[193]
McNally, M.A.; Soul, J.S. Pharmacologic prevention and treatment of neonatal brain injury. Clin. Perinatol., 2019, 46(2), 311-325.
[http://dx.doi.org/10.1016/j.clp.2019.02.006] [PMID: 31010562]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy