Generic placeholder image

The Natural Products Journal

Editor-in-Chief

ISSN (Print): 2210-3155
ISSN (Online): 2210-3163

Review Article

Natural Products for Fungal Diseases Management and Prevention

Author(s): Nahid Akhtar, Rabia Ayoubi, Vinaypreet Kour, Umesh Gautam and Mohammad Amin-ul Mannan*

Volume 12, Issue 2, 2022

Published on: 29 July, 2021

Article ID: e110521193310 Pages: 10

DOI: 10.2174/2210315511666210512035847

Price: $65

Abstract

Fungal diseases cause more deaths as compared to combined deaths due to malaria and tuberculosis. There are around 3.8 million fungal species, but only about 300 of them are pathogenic to humans. Invasive fungal diseases are majorly caused by Aspergillus, Candida, Cryptococcus, Histoplasma, Mucorales, and Pneumocystis. It has been estimated that around 1.5 million people die because of these infections across the globe. The emergence of resistance against the major classes of antifungal drugs poses a serious threat to public health. Moreover, the commonly used antifungal drugs are loaded with side-effects. Some of them are nephrotoxic, hepatotoxic, cause cardiomyopathy, and in acute cases, cytotoxicity. Hence, it is important to seek novel molecules that can be safe and effective antifungal drugs. Naturally occurring molecules in plants and various microorganisms can be a safe and effective alternative to the existing antifungal drugs. In this review, the role of various phytochemicals, such as alkaloids, flavonoids, saponins, and phenols, as potential antifungal agents has been discussed. Similarly, naturally occurring molecules in other microorganisms like algae, bacteria, and various other fungi have been summarized. The information discussed in this review can be useful in the identification of novel antifungals.

Keywords: Invasive fungal infection, immunocompromised patients, alkaloids, antifungal agents, marine algae, phytochemicals.

Graphical Abstract
[1]
Garcia-Solache, M.A.; Casadevall, A. Global warming will bring new fungal diseases for mammals. MBio, 2010, 1(1), e00061-e10.
[http://dx.doi.org/10.1128/mBio.00061-10] [PMID: 20689745]
[2]
Hawksworth, D.L.; Lücking, R. Fungal Diversity Revisited: 2.2 to 3.8 Million Species. Microbiol. Spectr., 2017, 5(4)
[PMID: 28752818]
[3]
Brown, GD; Denning, DW; Gow, NAR; Levitz, SM; Netea, MG; White, TC Hidden Killers: Human Fungal Infections. Sci Transl Med, 2012, 4(165), 165rv13-165rv13.
[4]
Kim, J-Y. Human fungal pathogens: Why should we learn? J. Microbiol., 2016, 54(3), 145-148.
[http://dx.doi.org/10.1007/s12275-016-0647-8] [PMID: 26920875]
[5]
d’Enfert, C. Hidden killers: persistence of opportunistic fungal pathogens in the human host. Curr. Opin. Microbiol., 2009, 12(4), 358-364.
[http://dx.doi.org/10.1016/j.mib.2009.05.008] [PMID: 19541532]
[6]
de Andrade Monteiro, C.; Ribeiro Alves dos Santos, J. Phytochemicals and their antifungal potential against pathogenic yeasts. Phytochemicals in Human Health; IntechOpen, 2020.
[http://dx.doi.org/10.5772/intechopen.87302]
[7]
Bray, F.; Ferlay, J.; Soerjomataram, I.; Siegel, R.L.; Torre, L.A.; Jemal, A. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J. Clin., 2018, 68(6), 394-424.
[http://dx.doi.org/10.3322/caac.21492] [PMID: 30207593]
[8]
WHO | HIV/AIDS. WHO, 2019. Available from: https://www.who.int/gho/hiv/en/
[9]
Thammahong, A.; Puttikamonkul, S.; Perfect, J.R.; Brennan, R.G.; Cramer, R.A. Central role of the trehalose biosynthesis pathway in the pathogenesis of human fungal infections: opportunities and challenges for therapeutic development. Microbiol. Mol. Biol. Rev., 2017, 81(2), e00053-e16.
[http://dx.doi.org/10.1128/MMBR.00053-16] [PMID: 28298477]
[10]
Patra, A.K. An overview of antimicrobial properties of different classes of phytochemicals. Dietary Phytochemicals and Microbes; Springer Netherlands, 2012, pp. 1-32.
[http://dx.doi.org/10.1007/978-94-007-3926-0_1]
[11]
Ekor, M. The growing use of herbal medicines: issues relating to adverse reactions and challenges in monitoring safety. Front. Pharmacol., 2014, 4, 177.
[http://dx.doi.org/10.3389/fphar.2013.00177] [PMID: 24454289]
[12]
Akhtar, N.; Choudhury, N.; Kumar, N. Antioxidant and Antimicrobial Potentials of Artemisia Indica Collected from the Nepal Region. J Pharm Sci Res., 2017, 9(10), 1822-1826.
[13]
Choudhury, N.; Akhtar, N.; Kumar, N. Study on methanolic extract of Ageratum conyzoides for its ability to act as an antioxidant and to suppress the microbial growth. Pharma Innovation., 2017, 6(11), 170-173.
[14]
Kaur, R.; Akhtar, N.; Kumar, N. Phytochemical screening of Phyllanthus niruri collected from kerala region and its antioxidant and antimicrobial potentials. J Pharm Sci Res., 2017, 9(8), 1312-1316.
[15]
Akhtar, N; Choudhury, N; Kumar, N Evaluation of antioxidant and antimicrobial potentials of Eclipta prostrata collected from the Nepal region. The Pharma Innovation, 2017, 6(11), 04-07.
[16]
Leitzmann, C. Characteristics and health benefits of phytochemicals. Forsch. Komplement. Med., 2016, 23(2), 69-74.
[PMID: 27160996]
[17]
Christenhusz, M.J.M.; Byng, J.W. The number of known plants species in the world and its annual increase. Phytotaxa; Magnolia Press, 2016, pp. 201-217.
[http://dx.doi.org/10.11646/phytotaxa.261.3.1]
[18]
Hesse, M. Alkaloids: nature’s curse or blessing?, 2nd ed; Wiley-VCH: Weinheim, Germany, 2002.
[19]
Singh, U.P.; Sarma, B.K.; Mishra, P.K.; Ray, A.B. Antifungal activity of venenatine, an indole alkaloid isolated from Alstonia venenata. Folia Microbiol. (Praha), 2000, 45(2), 173-176.
[http://dx.doi.org/10.1007/BF02817419] [PMID: 11271828]
[20]
Morteza-Semnani, K.; Amin, G.; Shidfar, M.R.; Hadizadeh, H.; Shafiee, A. Antifungal activity of the methanolic extract and alkaloids of Glaucium oxylobum. Fitoterapia, 2003, 74(5), 493-496.
[http://dx.doi.org/10.1016/S0367-326X(03)00113-8] [PMID: 12837370]
[21]
Tripathi, S.K.; Xu, T.; Feng, Q.; Avula, B.; Shi, X.; Pan, X.; Mask, M.M.; Baerson, S.R.; Jacob, M.R.; Ravu, R.R.; Khan, S.I.; Li, X.C.; Khan, I.A.; Clark, A.M.; Agarwal, A.K. Two plant-derived aporphinoid alkaloids exert their antifungal activity by disrupting mitochondrial iron-sulfur cluster biosynthesis. J. Biol. Chem., 2017, 292(40), 16578-16593.
[http://dx.doi.org/10.1074/jbc.M117.781773] [PMID: 28821607]
[22]
Shi, J.; Li, S.; Gao, A.; Zhu, K.; Zhang, H. Tetrandrine enhances the antifungal activity of fluconazole in a murine model of disseminated candidiasis. Phytomedicine, 2018, 46, 21-31.
[http://dx.doi.org/10.1016/j.phymed.2018.06.003] [PMID: 30097119]
[23]
Li, L.P.; Liu, W.; Liu, H.; Zhu, F.; Zhang, D.Z.; Shen, H.; Xu, Z.; Qi, Y.P.; Zhang, S.Q.; Chen, S.M.; He, L.J.; Cao, X.J.; Huang, X.; Zhang, J.D.; Yan, L.; An, M.M.; Jiang, Y.Y. Synergistic antifungal activity of berberine derivative B-7b and fluconazole. PLoS One, 2015, 10(5), e0126393.
[http://dx.doi.org/10.1371/journal.pone.0126393] [PMID: 25992630]
[24]
De-la-Cruz-Chacón, I.; Riley-Saldaña, C.A.; Arrollo-Gómez, S.; Sancristóbal-Domínguez, T.J.; Castro-Moreno, M.; González-Esquinca, A.R. Spatio-temporal variation of alkaloids in annona purpurea and the associated influence on their antifungal activity. Chem. Biodivers., 2019, 16(2), e1800284.
[PMID: 30471185]
[25]
Hamdani, N.; Filali-Ansari, N.; Fdil, R.; El Abbouyi, A.; Khyari, S. Antifungal activity of the alkaloids extracts from aerial parts of Retama monosperma. Res. J. Pharm. Biol. Chem. Sci., 2016, 7(2), 965-971.
[26]
Kim, J.; Ha Quang Bao, T.; Shin, Y.K.; Kim, K.Y. Antifungal activity of magnoflorine against Candida strains. World J. Microbiol. Biotechnol., 2018, 34(11), 167.
[http://dx.doi.org/10.1007/s11274-018-2549-x] [PMID: 30382403]
[27]
Khan, S.I.; Nimrod, A.C.; Mehrpooya, M.; Nitiss, J.L.; Walker, L.A.; Clark, A.M. Antifungal activity of eupolauridine and its action on DNA topoisomerases. Antimicrob. Agents Chemother., 2002, 46(6), 1785-1792.
[http://dx.doi.org/10.1128/AAC.46.6.1785-1792.2002] [PMID: 12019091]
[28]
Seleem, D.; Pardi, V.; Murata, R.M. Review of flavonoids: A diverse group of natural compounds with anti-Candida albicans activity in vitro. Arch. Oral Biol., 2017, 76, 76-83.
[http://dx.doi.org/10.1016/j.archoralbio.2016.08.030] [PMID: 27659902]
[29]
Jin, Y.S. Recent advances in natural antifungal flavonoids and their derivatives. Bioorg. Med. Chem. Lett., 2019, 29(19), 126589.
[http://dx.doi.org/10.1016/j.bmcl.2019.07.048] [PMID: 31427220]
[30]
Orhan, D.D.; Ozçelik, B.; Özgen, S.; Ergun, F. Antibacterial, antifungal, and antiviral activities of some flavonoids. Microbiol. Res., 2010, 165(6), 496-504.
[http://dx.doi.org/10.1016/j.micres.2009.09.002] [PMID: 19840899]
[31]
Kumar, S.; Pandey, A.K. Chemistry and Biological Activities of Flavonoids: An Overview. Sci World J; Lu, KP; Sastre, J, Eds.; , 2013, 2013, p. 162750.
[32]
Bitencourt, T.A.; TakahasiKomoto, T.; Marins, M.; Fachin, AL. Antifungal activity of flavonoids and modulation of expression of genes of fatty acid synthesis in the dermatophyte Trichophyton rubrum. BMC Proc., 2014, 8(S4), 53.
[http://dx.doi.org/10.1186/1753-6561-8-S4-P53]
[33]
Alka, J.; Padma, K.; Jain, C. Antifungal activity of flavonoids of Sida acuta Burm f. against Candida albicans. Int J Drug Dev Res., 2012, 4(3), 92-96.
[34]
Bouterfas, K.; Mehdadi, Z.; Aouad, L.; Elaoufi, M.M.; Khaled, M.B.; Latreche, A.; Benchiha, W. La localité d’échantillonnage influence-t-elle l’activité antifongique des flavonoïdes de Marrubium vulgare vis-à-vis de Aspergillus niger et Candida albicans? J. Mycol. Med., 2016, 26(3), 201-211.
[http://dx.doi.org/10.1016/j.mycmed.2016.02.019] [PMID: 26994761]
[35]
Peralta, M.A.; da Silva, M.A.; Ortega, M.G.; Cabrera, J.L.; Paraje, M.G. Antifungal activity of a prenylated flavonoid from Dalea elegans against Candida albicans biofilms. Phytomedicine, 2015, 22(11), 975-980.
[http://dx.doi.org/10.1016/j.phymed.2015.07.003] [PMID: 26407939]
[36]
Souza-Moreira, T.M.; Severi, J.A.; Rodrigues, E.R.; de Paula, M.I.; Freitas, J.A.; Vilegas, W.; Pietro, R.C.L.R. Flavonoids from Plinia cauliflora (Mart.) Kausel (Myrtaceae) with antifungal activity. Nat. Prod. Res., 2019, 33(17), 2579-2582.
[http://dx.doi.org/10.1080/14786419.2018.1460827] [PMID: 29620451]
[37]
Rocha, M.F.G.; Sales, J.A.; da Rocha, M.G.; Galdino, L.M.; de Aguiar, L.; Pereira-Neto, W.A.; de Aguiar Cordeiro, R.; Castelo-Branco, D.S.C.M.; Sidrim, J.J.C.; Brilhante, R.S.N. Antifungal effects of the flavonoids kaempferol and quercetin: a possible alternative for the control of fungal biofilms. Biofouling, 2019, 35(3), 320-328.
[http://dx.doi.org/10.1080/08927014.2019.1604948] [PMID: 31066306]
[38]
Kim, S.; Woo, E.R.; Lee, D.G. Synergistic antifungal activity of isoquercitrin: apoptosis and membrane permeabilization related to reactive oxygen species in Candida albicans. IUBMB Life, 2019, 71(2), 283-292.
[http://dx.doi.org/10.1002/iub.1973] [PMID: 30481395]
[39]
Alves, C.T.; Ferreira, I.C.F.R.; Barros, L.; Silva, S.; Azeredo, J.; Henriques, M. Antifungal activity of phenolic compounds identified in flowers from North Eastern Portugal against Candida species. Future Microbiol., 2014, 9(2), 139-146.
[http://dx.doi.org/10.2217/fmb.13.147] [PMID: 24571069]
[40]
Barros, L.; Dueñas, M.; Alves, C.T.; Silva, S.; Henriques, M.; Santos-Buelga, C. Antifungal activity and detailed chemical characterization of Cistus ladanifer phenolic extracts. Ind. Crops Prod., 2013, 41(1), 41-45.
[http://dx.doi.org/10.1016/j.indcrop.2012.03.038]
[41]
Wang, M.Y.; Peng, Y.; Peng, C.S.; Qu, J.Y.; Li, X.B. The bioassay-guided isolation of antifungal saponins from Hosta plantaginea leaves. J. Asian Nat. Prod. Res., 2018, 20(6), 501-509.
[http://dx.doi.org/10.1080/10286020.2017.1329304] [PMID: 28534424]
[42]
Soberón, J.R.; Sgariglia, M.A.; Pastoriza, A.C.; Soruco, E.M.; Jäger, S.N.; Labadie, G.R.; Sampietro, D.A.; Vattuone, M.A. Antifungal activity and cytotoxicity of extracts and triterpenoid saponins obtained from the aerial parts of Anagallis arvensis L. J. Ethnopharmacol., 2017, 203, 233-240.
[http://dx.doi.org/10.1016/j.jep.2017.03.056] [PMID: 28389355]
[43]
Kumar, N.; Goel, N. Phenolic acids: Natural versatile molecules with promising therapeutic applications. Biotechnol. Rep. (Amst.), 2019, 24, e00370.
[http://dx.doi.org/10.1016/j.btre.2019.e00370] [PMID: 31516850]
[44]
Li, Z.J.; Liu, M.; Dawuti, G.; Dou, Q.; Ma, Y.; Liu, H.G.; Aibai, S. Antifungal activity of gallic acid in vitro and in vivo. Phytother. Res., 2017, 31(7), 1039-1045.
[http://dx.doi.org/10.1002/ptr.5823] [PMID: 28524381]
[45]
Canturk, Z. Evaluation of synergistic anticandidal and apoptotic effects of ferulic acid and caspofungin against Candida albicans. Yao Wu Shi Pin Fen Xi, 2018, 26(1), 439-443.
[http://dx.doi.org/10.1016/j.jfda.2016.12.014] [PMID: 29389586]
[46]
De Vita, D.; Simonetti, G.; Pandolfi, F.; Costi, R.; Di Santo, R.; D’Auria, F.D.; Scipione, L. Exploring the anti-biofilm activity of cinnamic acid derivatives in Candida albicans. Bioorg. Med. Chem. Lett., 2016, 26(24), 5931-5935.
[http://dx.doi.org/10.1016/j.bmcl.2016.10.091] [PMID: 27838185]
[47]
Teodoro, G.R.; Ellepola, K.; Seneviratne, C.J.; Koga-Ito, C.Y. Potential use of phenolic acids as anti-Candida agents: A review. Front. Microbiol., 2015, 6, 1420.
[http://dx.doi.org/10.3389/fmicb.2015.01420] [PMID: 26733965]
[48]
Porsche, F.M.; Molitor, D.; Beyer, M.; Charton, S.; André, C.; Kollar, A. Antifungal activity of saponins from the fruit pericarp of Sapindus mukorossi against Venturia inaequalis and Botrytis cinerea. Plant Dis., 2018, 102(5), 991-1000.
[http://dx.doi.org/10.1094/PDIS-06-17-0906-RE] [PMID: 30673376]
[49]
Barile, E.; Bonanomi, G.; Antignani, V.; Zolfaghari, B.; Sajjadi, S.E.; Scala, F.; Lanzotti, V. Saponins from Allium minutiflorum with antifungal activity. Phytochemistry, 2007, 68(5), 596-603.
[http://dx.doi.org/10.1016/j.phytochem.2006.10.009] [PMID: 17118413]
[50]
Teshima, Y.; Ikeda, T.; Imada, K.; Sasaki, K.; El-Sayed, M.A.; Shigyo, M.; Tanaka, S.; Ito, S. Aggregatum Group). Identification and biological activity of antifungal saponins from shallot ( Allium cepa L. Aggregatum group). J. Agric. Food Chem., 2013, 61(31), 7440-7445.
[http://dx.doi.org/10.1021/jf401720q] [PMID: 24138065]
[51]
Tsuzuki, J.K.; Svidzinski, T.I.E.; Shinobu, C.S.; Silva, L.F.A.; Rodrigues-Filho, E.; Cortez, D.A.G.; Ferreira, I.C. Antifungal activity of the extracts and saponins from Sapindus saponaria L. An. Acad. Bras. Cienc., 2007, 79(4), 577-583.
[http://dx.doi.org/10.1590/S0001-37652007000400002] [PMID: 18066429]
[52]
Yang, L.; Liu, X.; Zhuang, X.; Feng, X.; Zhong, L.; Ma, T. Antifungal effects of saponin extract from rhizomes of dioscorea panthaica prain et burk against Candida albicans. Evid Based Complement Alternat Med; Svidzinski, TIE, Ed.; , 2018, 2018, p. 6095307.
[53]
Choi, N.H.; Jang, J.Y.; Choi, G.J.; Choi, Y.H.; Jang, K.S.; Nguyen, V.T.; Min, B.S.; Le Dang, Q.; Kim, J.C. Antifungal activity of sterols and dipsacus saponins isolated from Dipsacus asper roots against phytopathogenic fungi. Pestic. Biochem. Physiol., 2017, 141, 103-108.
[http://dx.doi.org/10.1016/j.pestbp.2016.12.006] [PMID: 28911735]
[54]
Chapagain, B.P.; Wiesman, Z. Tsror (Lahkim) L. In vitro study of the antifungal activity of saponin-rich extracts against prevalent phytopathogenic fungi. Ind. Crops Prod., 2007, 26(2), 109-115.
[http://dx.doi.org/10.1016/j.indcrop.2007.02.005]
[55]
Yang, C.R.; Zhang, Y.; Jacob, M.R.; Khan, S.I.; Zhang, Y.J.; Li, X.C. Antifungal activity of C-27 steroidal saponins. Antimicrob. Agents Chemother., 2006, 50(5), 1710-1714.
[http://dx.doi.org/10.1128/AAC.50.5.1710-1714.2006] [PMID: 16641439]
[56]
Trdá, L.; Janda, M.; Macková, D.; Pospíchalová, R.; Dobrev, P.I.; Burketová, L.; Matušinsky, P. Dual Mode of the Saponin Aescin in Plant Protection: Antifungal Agent and Plant Defense Elicitor. Front. Plant Sci., 2019, 10, 1448.
[http://dx.doi.org/10.3389/fpls.2019.01448] [PMID: 31850004]
[57]
Onofrejová, L.; Vasícková, J.; Klejdus, B.; Stratil, P.; Misurcová, L.; Krácmar, S.; Kopecký, J.; Vacek, J. Bioactive phenols in algae: the application of pressurized-liquid and solid-phase extraction techniques. J. Pharm. Biomed. Anal., 2010, 51(2), 464-470.
[http://dx.doi.org/10.1016/j.jpba.2009.03.027] [PMID: 19410410]
[58]
Alarif, W.M.; Al-Footy, K.O.; Zubair, M.S.; Halid Ph, M.; Ghandourah, M.A.; Basaif, S.A.; Al-Lihaibi, S.S.; Ayyad, S.E.; Badria, F.A. The role of new eudesmane-type sesquiterpenoid and known eudesmane derivatives from the red alga Laurencia obtusa as potential antifungal-antitumour agents. Nat. Prod. Res., 2016, 30(10), 1150-1155.
[http://dx.doi.org/10.1080/14786419.2015.1046378] [PMID: 26181888]
[59]
Cheung, R.C.F.; Wong, J.H.; Pan, W.L.; Chan, Y.S.; Yin, C.M.; Dan, X.L.; Wang, H.X.; Fang, E.F.; Lam, S.K.; Ngai, P.H.; Xia, L.X.; Liu, F.; Ye, X.Y.; Zhang, G.Q.; Liu, Q.H.; Sha, O.; Lin, P.; Ki, C.; Bekhit, A.A.; Bekhit, Ael-D.; Wan, D.C.; Ye, X.J.; Xia, J.; Ng, T.B. Antifungal and antiviral products of marine organisms. Appl. Microbiol. Biotechnol., 2014, 98(8), 3475-3494.
[http://dx.doi.org/10.1007/s00253-014-5575-0] [PMID: 24562325]
[60]
Martins, R.M.; Nedel, F.; Guimarães, V.B.S.; da Silva, A.F.; Colepicolo, P.; de Pereira, C.M.P.; Lund, R.G. Macroalgae extracts from antarctica have antimicrobial and anticancer potential. Front. Microbiol, 2018, 9, 412.
[http://dx.doi.org/10.3389/fmicb.2018.00412] [PMID: 29568291]
[61]
Dong, X.; Bai, Y.; Xu, Z.; Shi, Y.; Sun, Y.; Janaswamy, S.; Yu, C.; Qi, H. Phlorotannins from Undaria pinnatifida Sporophyll: Extraction, antioxidant, and anti-inflammatory activities. Mar. Drugs, 2019, 17(8), 434.
[http://dx.doi.org/10.3390/md17080434] [PMID: 31344874]
[62]
Mickymaray, S.; Alturaiki, W. Antifungal efficacy of marine macroalgae against fungal isolates from bronchial asthmatic cases. Molecules, 2018, 23(11), 3032.
[http://dx.doi.org/10.3390/molecules23113032] [PMID: 30463364]
[63]
Guedes, E.A.C.; Araújo, M.A.; Souza, A.K.P.; de Souza, L.I.O.; de Barros, L.D.; Maranhão, F.C.; Sant’Ana, A.E. Antifungal activities of different extracts of marine macroalgae against dermatophytes and Candida species. Mycopathologia, 2012, 174(3), 223-232.
[http://dx.doi.org/10.1007/s11046-012-9541-z] [PMID: 22528741]
[64]
Ertürk, Ö.; Taş, B. Antibacterial and antifungal effects of some marine algae. Kafkas Univ. Vet. Fak. Derg., 2011, 17, S121-S124.
[65]
Musbah, H.; Abouelkhair, W.; Yousef, S.; Moustafa, E.; Hasan, A. Screening of Antifungal Activities of Five Algal Crude Extracts. J Sci Res Sci., 2019, 36(1), 318-338.
[http://dx.doi.org/10.21608/jsrs.2019.57633]
[66]
Saidani, K.; Bedjou, F.; Benabdesselam, F.; Touati, N. Antifungal activity of methanolic extracts of four Algerian marine algae species. Afr. J. Biotechnol., 2012, 11(39), 9496-9500.
[http://dx.doi.org/10.5897/AJB11.1537]
[67]
Carvalho, G.L.; Silva, R.; Gonçalves, J.M.; Batista, T.M.; Pereira, L. Extracts of the seaweed Bifurcaria bifurcata display antifungal activity against human dermatophyte fungi. J Oceanol Limnol., 2019, 37(3), 848-854.
[http://dx.doi.org/10.1007/s00343-019-8118-9]
[68]
Rajeshkumar, S.; Malarkodi, C.; Paulkumar, K.; Vanaja, M.; Gnanajobitha, G.; Annadurai, G. Algae Mediated Green Fabrication of Silver Nanoparticles and Examination of Its Antifungal Activity against Clinical Pathogens. Int J Met., 2014, 2014, 692643.
[http://dx.doi.org/10.1155/2014/692643]
[69]
Soares, F.; Fernandes, C.; Silva, P.; Pereira, L.; Gonçalves, T. Antifungal activity of carrageenan extracts from the red alga Chondracanthus teedei var. lusitanicus. J. Appl. Phycol., 2016, 28(5), 2991-2998.
[http://dx.doi.org/10.1007/s10811-016-0849-9]
[70]
Lopes, G.; Pinto, E.; Andrade, P.B.; Valentão, P. Antifungal activity of phlorotannins against dermatophytes and yeasts: approaches to the mechanism of action and influence on Candida albicans virulence factor. PLoS One, 2013, 8(8), e72203.
[http://dx.doi.org/10.1371/journal.pone.0072203] [PMID: 23951297]
[71]
Karpiński, T.M. Marine Macrolides with Antibacterial and/or Antifungal Activity. Mar. Drugs, 2019, 17(4), 241.
[http://dx.doi.org/10.3390/md17040241] [PMID: 31018512]
[72]
Patel, S. Therapeutic importance of sulfated polysaccharides from seaweeds: updating the recent findings. 3 Biotech, 2012, 2(3), 171-185.
[73]
Lin, A.S.; Stout, E.P.; Prudhomme, J.; Le Roch, K.; Fairchild, C.R.; Franzblau, S.G.; Aalbersberg, W.; Hay, M.E.; Kubanek, J. Bioactive bromophycolides R-U from the Fijian red alga Callophycus serratus. J. Nat. Prod., 2010, 73(2), 275-278.
[http://dx.doi.org/10.1021/np900686w] [PMID: 20141173]
[74]
Lane, A.L.; Stout, E.P.; Hay, M.E.; Prusak, A.C.; Hardcastle, K.; Fairchild, C.R.; Franzblau, S.G.; Le Roch, K.; Prudhomme, J.; Aalbersberg, W.; Kubanek, J. Callophycoic acids and callophycols from the Fijian red alga Callophycus serratus. J. Org. Chem., 2007, 72(19), 7343-7351.
[http://dx.doi.org/10.1021/jo071210y] [PMID: 17715978]
[75]
Teasdale, M.E.; Shearer, T.L.; Engel, S.; Alexander, T.S.; Fairchild, C.R.; Prudhomme, J.; Torres, M.; Le Roch, K.; Aalbersberg, W.; Hay, M.E.; Kubanek, J. Bromophycoic acids: bioactive natural products from a Fijian red alga Callophycus sp. J. Org. Chem., 2012, 77(18), 8000-8006.
[http://dx.doi.org/10.1021/jo301246x] [PMID: 22920243]
[76]
Kim, K.H.; Yu, D.; Eom, S.H.; Kim, H.J.; Kim, D.H.; Song, H.S. Fucofuroeckol-A from edible marine alga Eisenia bicyclis to restore antifungal activity of fluconazole against fluconazole-resistant Candida albicans. J. Appl. Phycol., 2018, 30(1), 605-609.
[http://dx.doi.org/10.1007/s10811-017-1232-1]
[77]
Du, X.; Lu, C.; Li, Y.; Zheng, Z.; Su, W.; Shen, Y. Three new antimicrobial metabolites of Phomopsis sp. J. Antibiot. (Tokyo), 2008, 61(4), 250-253.
[http://dx.doi.org/10.1038/ja.2008.37] [PMID: 18503206]
[78]
Deshmukh, SK; Verekar, SA Fungal endophytes: A potential source of antifungal compounds. Front Biosci - Elite, 2012, 4(6), 2045-2070.
[http://dx.doi.org/10.2741/e524]
[79]
Abad, M.J.; Ansuategui, M.; Bermejo, P. Active antifungal substances from natural sources. ARKIVOC, 2007, 7, 116-145.
[80]
Waksman, S.A.; Romano, A.H.; Lechevallier, H.; Raubitschek, F. Antifungal antibiotics. Bull. World Health Organ., 1952, 6(1-2), 163-172.
[PMID: 14954418]
[81]
Vicente, M.F.; Basilio, A.; Cabello, A.; Peláez, F. Microbial natural products as a source of antifungals. Clin. Microbiol. Infect., 2003, 9(1), 15-32.
[http://dx.doi.org/10.1046/j.1469-0691.2003.00489.x] [PMID: 12691539]
[82]
Iwamoto, T.; Fujie, A.; Sakamoto, K.; Tsurumi, Y.; Shigematsu, N.; Yamashita, M.; Hashimoto, S.; Okuhara, M.; Kohsaka, M. WF11899A, B and C, novel antifungal lipopeptides. I. Taxonomy, fermentation, isolation and physico-chemical properties. J. Antibiot. (Tokyo), 1994, 47(10), 1084-1091.
[http://dx.doi.org/10.7164/antibiotics.47.1084] [PMID: 7961156]
[83]
Coleman, J.J.; Ghosh, S.; Okoli, I.; Mylonakis, E. Antifungal activity of microbial secondary metabolites. PLoS One, 2011, 6(9), e25321.
[http://dx.doi.org/10.1371/journal.pone.0025321] [PMID: 21966496]
[84]
Hajji, M.; Jellouli, K.; Hmidet, N.; Balti, R.; Sellami-Kamoun, A.; Nasri, M. A highly thermostable antimicrobial peptide from Aspergillus clavatus ES1: biochemical and molecular characterization. J. Ind. Microbiol. Biotechnol., 2010, 37(8), 805-813.
[http://dx.doi.org/10.1007/s10295-010-0725-6] [PMID: 20440534]
[85]
Marx, F. Small, basic antifungal proteins secreted from filamentous ascomycetes: a comparative study regarding expression, structure, function and potential application. Appl. Microbiol. Biotechnol., 2004, 65(2), 133-142.
[http://dx.doi.org/10.1007/s00253-004-1600-z] [PMID: 15042327]
[86]
Turner, W.W.; Current, W.L. Echinocandin antifungal agents. Biotechnology of antibiotics, 2nd ed; Marcel-Dekker Inc: New York, 1997, pp. 315-334.
[87]
Kaida, K.; Fudou, R.; Kameyama, T.; Tubaki, K.; Suzuki, Y.; Ojika, M.; Sakagami, Y. New cyclic depsipeptide antibiotics, clavariopsins A and B, produced by an aquatic hyphomycetes, Clavariopsis aquatica. 1. Taxonomy, fermentation, isolation, and biological properties. J. Antibiot. (Tokyo), 2001, 54(1), 17-21.
[http://dx.doi.org/10.7164/antibiotics.54.17] [PMID: 11269710]
[88]
Wu, W.I.; McDonough, V.M.; Nickels, J.T., Jr; Ko, J.; Fischl, A.S.; Vales, T.R.; Merrill, A.H., Jr; Carman, G.M. Regulation of lipid biosynthesis in Saccharomyces cerevisiae by fumonisin B1. J. Biol. Chem., 1995, 270(22), 13171-13178.
[http://dx.doi.org/10.1074/jbc.270.22.13171] [PMID: 7768913]
[89]
Bouffard, F.A.; Zambias, R.A.; Dropinski, J.F.; Balkovec, J.M.; Hammond, M.L.; Abruzzo, G.K.; Bartizal, K.F.; Marrinan, J.A.; Kurtz, M.B.; McFadden, D.C. Synthesis and antifungal activity of novel cationic pneumocandin B(o) derivatives. J. Med. Chem., 1994, 37(2), 222-225.
[http://dx.doi.org/10.1021/jm00028a003] [PMID: 8295208]
[90]
Cabello, M.A.; Platas, G.; Collado, J.; Díez, M.T.; Martín, I.; Vicente, F.; Meinz, M.; Onishi, J.C.; Douglas, C.; Thompson, J.; Kurtz, M.B.; Schwartz, R.E.; Bills, G.F.; Giacobbe, R.A.; Abruzzo, G.K.; Flattery, A.M.; Kong, L.; Peláez, F. Arundifungin, a novel antifungal compound produced by fungi: biological activity and taxonomy of the producing organisms. Int. Microbiol., 2001, 4(2), 93-102.
[http://dx.doi.org/10.1007/s101230100020] [PMID: 11770831]
[91]
Viswanathan, K.; Ononye, S.N.; Cooper, H.D.; Kyle Hadden, M.; Anderson, A.C.; Wright, D.L. Viridin analogs derived from steroidal building blocks. Bioorg. Med. Chem. Lett., 2012, 22(22), 6919-6922.
[http://dx.doi.org/10.1016/j.bmcl.2012.09.015] [PMID: 23040731]
[92]
Sharma, K.; Akhtar, N.; Upadhyay, A.K.; Mannan, M.A. Efficacy of Trichoderma harzianum, a biocontrol agent for controlling opportunistic fungal pathogens. J Pharm Sci Res., 2020, 12(2), 282-285.
[93]
de Carvalho, M.P.; Weich, H.; Abraham, W-R. Macrocyclic trichothecenes as antifungal and anticancer compounds. Curr. Med. Chem., 2016, 23(1), 23-35.
[http://dx.doi.org/10.2174/0929867323666151117121521] [PMID: 26572613]
[94]
Wachowska, U.; Packa, D.; Wiwart, M. Microbial inhibition of Fusarium pathogens and biological modification of trichothecenes in cereal grains. Toxins (Basel), 2017, 9(12), 408.
[http://dx.doi.org/10.3390/toxins9120408] [PMID: 29261142]
[95]
Bharti, A.; Kumar, V.; Gusain, O.; Bisht, G.S. Antifungal activity of actinomycetes isolated from Garhwal region. J Sci Engg Tech Mgt., 2010, 2(2), 3-9.
[96]
Lievens, K.H.; van Rijsbergen, R.; Leyns, F.R.; Lambert, B.J.; Terming, P.; Swings, J. Dominant rhizosphere bacteria as a source for antifungal agents. Pestic. Sci., 1989, 27(2), 141-154.
[http://dx.doi.org/10.1002/ps.2780270205]
[97]
Kumar, R.S.; Ayyadurai, N.; Pandiaraja, P.; Reddy, A.V.; Venkateswarlu, Y.; Prakash, O.; Sakthivel, N. Characterization of antifungal metabolite produced by a new strain Pseudomonas aeruginosa PUPa3 that exhibits broad-spectrum antifungal activity and biofertilizing traits. J. Appl. Microbiol., 2005, 98(1), 145-154.
[http://dx.doi.org/10.1111/j.1365-2672.2004.02435.x] [PMID: 15610427]
[98]
Levenfors, J.J.; Hedman, R.; Thaning, C.; Gerhardson, B.; Welch, C.J. Broad-spectrum antifungal metabolites produced by the soil bacterium Serratia plymuthica A 153. Soil Biol. Biochem., 2004, 36(4), 677-685.
[http://dx.doi.org/10.1016/j.soilbio.2003.12.008]
[99]
Hasegawa, T.; Kakushima, M.; Hatori, M.; Aburaki, S.; Kakinuma, S.; Furumai, T.; Oki, T. Pradimicins T1 and T2, new antifungal antibiotics produced by an actinomycete. II. Structures and biosynthesis. J. Antibiot. (Tokyo), 1993, 46(4), 598-605.
[http://dx.doi.org/10.7164/antibiotics.46.598] [PMID: 8501002]
[100]
Walsh, T.J.; Giri, N. Pradimicins: a novel class of broad-spectrum antifungal compounds. Eur. J. Clin. Microbiol. Infect. Dis., 1997, 16(1), 93-97.
[http://dx.doi.org/10.1007/BF01575126] [PMID: 9063679]
[101]
Kerr, J.R. Bacterial inhibition of fungal growth and pathogenicity. Microb. Ecol. Health Dis., 1999, 11(3), 129-142.
[102]
Konishi, M.; Nishio, M.; Saitoh, K.; Miyaki, T.; Oki, T.; Kawaguchi, H. Cispentacin, a new antifungal antibiotic. I. Production, isolation, physico-chemical properties and structure. J. Antibiot. (Tokyo), 1989, 42(12), 1749-1755.
[http://dx.doi.org/10.7164/antibiotics.42.1749] [PMID: 2516082]
[103]
Wakayama, S.; Ishikawa, F.; Oishi, K. Mycocerein, a novel antifungal peptide antibiotic produced by Bacillus cereus. Antimicrob. Agents Chemother., 1984, 26(6), 939-940.
[http://dx.doi.org/10.1128/AAC.26.6.939] [PMID: 6441513]
[104]
Shakerifard, P.; Gancel, F.; Jacques, P.; Faille, C. Effect of different Bacillus subtilis lipopeptides on surface hydrophobicity and adhesion of Bacillus cereus 98/4 spores to stainless steel and Teflon. Biofouling, 2009, 25(6), 533-541.
[http://dx.doi.org/10.1080/08927010902977943] [PMID: 19431000]
[105]
Tao, Y.; Bie, X.M.; Lv, F.X.; Zhao, H.Z.; Lu, Z.X. Antifungal activity and mechanism of fengycin in the presence and absence of commercial surfactin against Rhizopus stolonifer. J. Microbiol., 2011, 49(1), 146-150.
[http://dx.doi.org/10.1007/s12275-011-0171-9] [PMID: 21369992]
[106]
Winkelmann, G.; Lupp, R.; Jung, G. Herbicolins- New peptide antibiotics from Erwinia herbicola. J. Antibiot. (Tokyo), 1980, 33(4), 353-358.
[http://dx.doi.org/10.7164/antibiotics.33.353] [PMID: 7410203]
[107]
Gaffney, T.D.; Lam, S.T.; Ligon, J.; Gates, K.; Frazelle, A.; Di Maio, J.; Hill, S.; Goodwin, S.; Torkewitz, N.; Allshouse, A.M. Global regulation of expression of antifungal factors by a Pseudomonas fluorescens biological control strain. Mol. Plant Microbe Interact., 1994, 7(4), 455-463.
[http://dx.doi.org/10.1094/MPMI-7-0455] [PMID: 8075420]
[108]
Harrison, L.; Teplow, D.B.; Rinaldi, M.; Strobel, G. Pseudomycins, a family of novel peptides from Pseudomonas syringae possessing broad-spectrum antifungal activity. J. Gen. Microbiol., 1991, 137(12), 2857-2865.
[http://dx.doi.org/10.1099/00221287-137-12-2857] [PMID: 1791440]
[109]
Troppens, D.M.; Dmitriev, R.I.; Papkovsky, D.B.; O’Gara, F.; Morrissey, J.P. Genome-wide investigation of cellular targets and mode of action of the antifungal bacterial metabolite 2,4-diacetylphloroglucinol in Saccharomyces cerevisiae. FEMS Yeast Res., 2013, 13(3), 322-334.
[http://dx.doi.org/10.1111/1567-1364.12037] [PMID: 23445507]
[110]
Yamaguchi, M.; Park, H.J.; Ishizuka, S.; Omata, K.; Hirama, M. Chemistry and antimicrobial activity of caryoynencins analogs. J. Med. Chem., 1995, 38(26), 5015-5022.
[http://dx.doi.org/10.1021/jm00026a008] [PMID: 8544177]
[111]
Abbas, A.K. Antifungal activities of actinomycetes isolated from a sample of iraqi soils. Iraqi J. Community Med., 2009, 22(3), 179-183.
[112]
Augustine, S.K.; Bhavsar, S.P.; Baserisalehi, M.; Kapadnis, B.P. Isolation, characterization and optimization of antifungal activity of an actinomycete of soil origin. Indian J. Exp. Biol., 2004, 42(9), 928-932.
[PMID: 15462189]
[113]
Filipuzzi, I.; Steffen, J.; Germain, M.; Goepfert, L.; Conti, M.A.; Potting, C.; Cerino, R.; Pfeifer, M.; Krastel, P.; Hoepfner, D.; Bastien, J.; Koehler, C.M.; Helliwell, S.B. Stendomycin selectively inhibits TIM23-dependent mitochondrial protein import. Nat. Chem. Biol., 2017, 13(12), 1239-1244.
[http://dx.doi.org/10.1038/nchembio.2493] [PMID: 28991239]
[114]
Tani, K.; Usuki, Y.; Motoba, K.; Fujita, K.; Taniguchi, M. UK-2A, B, C, and D, novel antifungal antibiotics from Streptomyces sp. 517-02 VII. Membrane injury induced by C9-UK-2A, a derivative of UK-2A, in Rhodotorula mucilaginosa IFO 0001. J. Antibiot. (Tokyo), 2002, 55(3), 315-321.
[http://dx.doi.org/10.7164/antibiotics.55.315] [PMID: 12014448]
[115]
Mizuhara, N.; Usuki, Y.; Ogita, M.; Fujita, K.; Kuroda, M.; Doe, M.; Iio, H.; Tanaka, T. Identification of phoslactomycin E as a metabolite inducing hyphal morphological abnormalities in Aspergillus fumigatus IFO 5840. J. Antibiot. (Tokyo), 2007, 60(12), 762-765.
[http://dx.doi.org/10.1038/ja.2007.101] [PMID: 18277002]
[116]
Ellis, D.; Amphotericin, B. Amphotericin B: spectrum and resistance. J. Antimicrob. Chemother., 2002, 49(S1)(Suppl. 1), 7-10.
[http://dx.doi.org/10.1093/jac/49.suppl_1.7] [PMID: 11801575]
[117]
Peacock, J.E.J.; Herrinton, D.A.; Cruz, J.M. Amphotericin, b. therapy: past, present, and future. Infect. Dis. Clin. Pract., 1993, 2(2), 81-93.
[http://dx.doi.org/10.1097/00019048-199303000-00001]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy