Generic placeholder image

Current Organic Synthesis

Editor-in-Chief

ISSN (Print): 1570-1794
ISSN (Online): 1875-6271

Review Article

Bicyclic 5-6 Systems: Comprehensive Synthetic Strategies for the Annulations of Pyrazolo[ 1,5-a]pyrimidines

Author(s): Khaled M. Elattar* and Ahmed El-Mekabaty

Volume 18, Issue 6, 2021

Published on: 16 July, 2021

Page: [547 - 586] Pages: 40

DOI: 10.2174/1570179418666210509015108

Price: $65

Abstract

Pyrazolopyrimidines are a privileged class of 5-6 bicyclic systems with three or four nitrogen atoms, including four possible isomeric structures. The significance of this class of compounds is that they can be applied in medical and pharmaceutical fields due to their unlimited biological aptitude, hence it is the basic skeleton of several synthetic drugs. The current review aimed to highlight all the synthetic routes that have been applied to construct the pyrazolo[1,5-a]pyrimidine ring systems up to date. The sections in this study included the synthesis of pyrazolo[1,5- a]pyrimidines by condensation reactions of 5-aminopyrazoles with each of β-diketones, 1,5-diketones, β- ketoaldehydes, α-cyanoaldehydes, β-enaminones, enamines, enaminonitriles, ethers, with unsaturated ketones, unsaturated thiones, unsaturated esters, unsaturated dienones “1,2-allenic”, unsaturated aldehydes, unsaturated imines, and unsaturated nitriles. The routes adopted to synthesize this class of heterocyclic compounds were extended for ring construction from acyclic reagents and multicomponent reactions under catalytic or catalyst-free conditions.

Keywords: Pyrazolo[1, 5-a]pyrimisines, bicyclic 5-6 systems, synthetic methods, biological characteristics, acyclic reagents, α- cyanoaldehydes.

Graphical Abstract
[1]
Engers, D.W.; Frist, A.Y.; Lindsley, C.W.; Hong, C.C.; Hopkins, C.R. Synthesis and structure-activity relationships of a novel and selective bone morphogenetic protein receptor (BMP) inhibitor derived from the pyrazolo[1.5-a]pyrimidine scaffold of dorsomorphin: The discovery of ML347 as an ALK2 versus ALK3 selective MLPCN probe. Bioorg. Med. Chem. Lett., 2013, 23(11), 3248-3252.
[http://dx.doi.org/10.1016/j.bmcl.2013.03.113] [PMID: 23639540]
[2]
Ghozlan, S.S.; Abdelrazek, F.M.; Mohamed, M.H.; Azmy, K.E. Synthesis of some new pyrazole and pyrazolopyrimidine derivatives. J. Heterocycl. Chem., 2010, 47, 1379-1385.
[http://dx.doi.org/10.1002/jhet.482]
[3]
Frizzo, C.P.; Martins, M.P.; Marzari, M.B.; Campos, P.T.; Claramunt, R.M.; García, M.A.; Sanz, D.; Alkorta, A.; Elguero, J. Structural studies of 2-methyl-7-substituted pyrazolo[1,5-a]pyrimidines. J. Heterocycl. Chem., 2010, 47, 1259-1268.
[http://dx.doi.org/10.1002/jhet.377]
[4]
Sullivan, S.K.; Petroski, R.E.; Verge, G.; Gross, R.S.; Foster, A.C.; Grigoriadis, D.E. Characterization of the interaction of indiplon, a novel pyrazolopyrimidine sedative-hypnotic, with the GABAA receptor. J. Pharmacol. Exp. Ther., 2004, 311, 537-546.
[http://dx.doi.org/10.1124/jpet.104.071282]
[5]
Hoepping, A.; Diekers, M.; Deuther-Conrad, W.; Scheunemann, M.; Fischer, S.; Hiller, A.; Wegner, F.; Steinbach, J.; Brust, P. Synthesis of fluorine substituted pyrazolopyrimidines as potential leads for the development of PET-imaging agents for the GABAA receptors. Bioorg. Med. Chem., 2008, 16(3), 1184-1194.
[http://dx.doi.org/10.1016/j.bmc.2007.10.079] [PMID: 18023192]
[6]
Atwal, K.S.; Moreland, S. Dihydropyrimidine calcium channel blockers 51: Bicyclic dihydropyrimidines as potent mimics of dihydropyridines. Bioorg. Med. Chem. Lett., 1991, 1, 29-37.
[http://dx.doi.org/10.1016/S0960-894X(01)80810-6]
[7]
(a)Xu, Y.; Brenning, B.G.; Kultgen, S.G.; Foulks, J.M.; Clifford, A.; Lai, S.; Chan, A.; Merx, S.; McCullar, M.V.; Kanner, S.B.; Ho, K-K. Synthesis and biological evaluation of pyrazolo[1,5-a]pyrimidine compounds as potent and selective pim-1 inhibitors. ACS Med. Chem. Lett., 2014, 6(1), 63-67..
[http://dx.doi.org/10.1021/ml500300c] [PMID: 25589932]
(b)Tian, Y.; Du, D.; Rai, D.; Wang, L.; Liu, H.; Zhan, P.; De Clercq, E.; Pannecouque, C.; Liu, X. Fused heterocyclic compounds bearing bridgehead nitrogen as potent HIV-1 NNRTIs. Part 1: Design, synthesis and biological evaluation of novel 5,7-disubstituted pyrazolo[1,5-a]pyrimidine derivatives. Bioorg. Med. Chem., 2014, 22(7), 2052-2059..
[http://dx.doi.org/10.1016/j.bmc.2014.02.029] [PMID: 24631361]
(c)Dowling, J.E.; Alimzhanov, M.; Bao, L.; Block, M.H.; Chuaqui, C.; Cooke, E.L.; Denz, C.R.; Hird, A.; Huang, S.; Larsen, N.A.; Peng, B.; Pontz, T.W.; Rivard-Costa, C.; Saeh, J.C.; Thakur, K.; Ye, Q.; Zhang, T.; Lyne, P.D. structure and property based design of pyrazolo[1,5-a]pyrimidine inhibitors of CK2 kinase with activity in vivo. ACS Med. Chem. Lett., 2013, 4(8), 800-805.
[http://dx.doi.org/10.1021/ml400197u] [PMID: 24900749]
[8]
Liu, Y.; Laufer, R.; Patel, N.K.; Ng, G.; Sampson, P.B.; Li, S.W.; Lang, Y.; Feher, M.; Brokx, R.; Beletskaya, I.; Hodgson, R.; Plotnikova, O.; Awrey, D.E.; Qiu, W.; Chirgadze, N.Y.; Mason, J.M.; Wei, X.; Lin, D.C.; Che, Y.; Kiarash, R.; Fletcher, G.C.; Mak, T.W.; Bray, M.R.; Pauls, H.W. Discovery of Pyrazolo[1,5-a]pyrimidine TTK Inhibitors: CFI-402257 is a Potent, Selective, Bioavailable Anticancer Agent. ACS Med. Chem. Lett., 2016, 7(7), 671-675.
[http://dx.doi.org/10.1021/acsmedchemlett.5b00485] [PMID: 27437075]
[9]
Zhao, M.; Ren, H.; Chang, J.; Zhang, D.; Yang, Y.; He, Y.; Qi, C.; Zhang, H. Design and synthesis of novel pyrazolo[1,5-a]pyrimidine derivatives bearing nitrogen mustard moiety and evaluation of their antitumor activity in vitro and in vivo. Eur. J. Med. Chem., 2016, 119, 183-196.
[http://dx.doi.org/10.1016/j.ejmech.2016.04.068] [PMID: 27162123]
[10]
Al-Adiwish, W.M.; Tahir, M.I.M.; Siti-Noor-Adnalizawati, A.; Hashim, S.F.; Ibrahim, N.; Yaacob, W.A. Synthesis, antibacterial activity and cytotoxicity of new fused pyrazolo[1,5-a]pyrimidine and pyrazolo[5,1-c][1,2,4]triazine derivatives from new 5-aminopyrazoles. Eur. J. Med. Chem., 2013, 64, 464-476.
[http://dx.doi.org/10.1016/j.ejmech.2013.04.029] [PMID: 23669354]
[11]
Popovici-Muller, J.; Shipps, G.W., Jr; Rosner, K.E.; Deng, Y.; Wang, T.; Curran, P.J.; Brown, M.A.; Siddiqui, M.A.; Cooper, A.B.; Duca, J.; Cable, M.; Girijavallabhan, V. Pyrazolo[1,5-a]pyrimidine-based inhibitors of HCV polymerase. Bioorg. Med. Chem. Lett., 2009, 19(22), 6331-6336.
[http://dx.doi.org/10.1016/j.bmcl.2009.09.087] [PMID: 19819138]
[12]
Mukaiyama, H.; Nishimura, T.; Shiohara, H.; Kobayashi, S.; Komatsu, Y.; Kikuchi, S.; Tsuji, E.; Kamada, N.; Ohnota, H.; Kusama, H. Discovery of novel 2-anilinopyrazolo[1,5-a]pyrimidine derivatives as c-Src kinase inhibitors for the treatment of acute ischemic stroke. Chem. Pharm. Bull. (Tokyo), 2007, 55(6), 881-889.
[http://dx.doi.org/10.1248/cpb.55.881] [PMID: 17541186]
[13]
Powell, D.; Gopalsamy, A.; Wang, Y.D.; Zhang, N.; Miranda, M.; McGinnis, J.P.; Rabindran, S.K. Pyrazolo[1,5-a]pyrimidin-7-yl phenyl amides as novel antiproliferative agents: Exploration of core and headpiece structure-activity relationships. Bioorg. Med. Chem. Lett., 2007, 17(6), 1641-1645.
[http://dx.doi.org/10.1016/j.bmcl.2006.12.116] [PMID: 17275298]
[14]
Farag, A.M.; Mayhoub, A.S.; Barakat, S.E.; Bayomi, A.H. Synthesis of new N-phenylpyrazole derivatives with potent antimicrobial activity. Bioorg. Med. Chem., 2008, 16(8), 4569-4578.
[http://dx.doi.org/10.1016/j.bmc.2008.02.043] [PMID: 18313934]
[15]
Almansa, C.; de Arriba, A.F.; Cavalcanti, F.L.; Gómez, L.A.; Miralles, A.; Merlos, M.; García-Rafanell, J.; Forn, J. Synthesis and SAR of a new series of COX-2-selective inhibitors: Pyrazolo[1,5-a]pyrimidines. J. Med. Chem., 2001, 44(3), 350-361.
[http://dx.doi.org/10.1021/jm0009383] [PMID: 11462976]
[16]
Zhou, H-B.; Sheng, S.; Compton, D.R.; Kim, Y.; Joachimiak, A.; Sharma, S.; Carlson, K.E.; Katzenellenbogen, B.S.; Nettles, K.W.; Greene, G.L.; Katzenellenbogen, J.A. Structure-guided optimization of estrogen receptor binding affinity and antagonist potency of pyrazolopyrimidines with basic side chains. J. Med. Chem., 2007, 50(2), 399-403.
[http://dx.doi.org/10.1021/jm061035y] [PMID: 17228884]
[17]
Selleri, S.; Gratteri, P.; Costagli, C.; Bonaccini, C.; Costanzo, A.; Melani, F.; Guerrini, G.; Ciciani, G.; Costa, B.; Spinetti, F.; Martini, C.; Bruni, F. Insight into 2-phenylpyrazolo[1,5-a]pyrimidin-3-yl acetamides as peripheral benzodiazepine receptor ligands: Synthesis, biological evaluation and 3D-QSAR investigation. Bioorg. Med. Chem., 2005, 13(16), 4821-4834.
[http://dx.doi.org/10.1016/j.bmc.2005.05.015] [PMID: 15975799]
[18]
Fookes, C.J.R.; Pham, T.Q.; Mattner, F.; Greguric, I.; Loc’h, C.; Liu, X.; Berghofer, P.; Shepherd, R.; Gregoire, M-C.; Katsifis, A. Synthesis and biological evaluation of substituted [18F]imidazo[1,2-a]pyridines and [18F]pyrazolo[1,5-a]pyrimidines for the study of the peripheral benzodiazepine receptor using positron emission tomography. J. Med. Chem., 2008, 51(13), 3700-3712.
[http://dx.doi.org/10.1021/jm7014556] [PMID: 18557607]
[19]
Crossley, E.L.; Issa, F.; Scarf, A.M.; Kassiou, M.; Rendina, L.M. Synthesis and cellular uptake of boron-rich pyrazolopyrimidines: Exploitation of the translocator protein for the efficient delivery of boron into human glioma cells. Chem. Commun. (Camb.), 2011, 47(44), 12179-12181.
[http://dx.doi.org/10.1039/c1cc14587h] [PMID: 21993200]
[20]
Danagulyan, G.G.; Mkrtchyan, A.D.; Panosyan, G.A. Recyclization of Condensed Carbethoxypyrimidines Accompanied by Substitution of a Carbon Atom into the Heterocycle. Chem. Heterocycl. Compd., 2005, 41(4), 485-491.
[http://dx.doi.org/10.1007/s10593-005-0176-6]
[21]
Elmaati, T.M.A.; Said, S.B.; Elenein, N.S.A.; Khodeir, N.M.; Sofan, M.M. 3‐(Phenylhydrazono)‐indan‐1‐one and 2‐dimethylaminomethylene‐3‐(phenylhydrazono)‐indan‐1‐one as useful synthons for the construction of new heterocyclic systems. J. Heterocycl. Chem., 2003, 40(3), 481-486.
[http://dx.doi.org/10.1002/jhet.5570400312]
[22]
Shaaban, M.R.; Saleh, T.S.; Farag, A.M. Synthesis and Antimicrobial Evaluation of Novel Pyrazolo[1,5-a]pyrimidine, Triazolo[1,5-a]pyrimidine and Pyrimido[1,2-a]benzimidazole Derivatives. Heterocycles, 2007, 71(8), 1765-1777.
[http://dx.doi.org/10.3987/COM-07-11060]
[23]
Abdelall, E.; Philoppes, J. Synthesis and cytotoxic activity of new pyrazolo[1,5-a]pyrimidines and determination of pyrimidine regiospecific ring formation with 2D NMR. ARKIVOC, 2016, 5, 210-224.
[http://dx.doi.org/10.3998/ark.5550190.p009.743]
[24]
Baraldi, P.G.; Fruttarolo, F.; Tabrizi, M.A.; Romagnoli, R.; Preti, D.; Ongini, E.; El-Kashef, H.; Carrión, M.D.; Borea, P.A. Synthesis of a new series of pyrazolo[1,5-a]pyrimidines structurally related to zaleplon. J. Heterocycl. Chem., 2007, 44, 355-361.
[http://dx.doi.org/10.1002/jhet.55704 40212]
[25]
Mustazza, C.; Rosaria, M.; Giudice, D.; Borioni, A.; Gatta, F. Synthesis of pyrazolo[1,5-a]-1,2,4-triazolo[1,5-a]- and imidazo[1,2-a]pyrimidines related to zaleplon, a new drug for the treatment of insomnia. J. Heterocycl. Chem., 2001, 38, 1119-1129.
[26]
Zhang, X.; Song, Y.; Gao, L.; Guo, X.; Fan, X. Highly facile and regio-selective synthesis of pyrazolo[1,5-a]pyrimidines via reactions of 1,2-allenic ketones with aminopyrazoles. Org. Biomol. Chem., 2014, 12(13), 2099-2107.
[http://dx.doi.org/10.1039/c3ob42445f] [PMID: 24553740]
[27]
Ghotekar, B.K.; Jachak, M.; Toche, R.B. New one-step synthesis of pyrazolo[1,5-a]pyrimidine and pyrazolo[1,5-a]quinazoline derivatives via multicomponent reactions. J. Heterocycl. Chem., 2009, 46, 708-713.
[http://dx.doi.org/10.1002/jhet.128]
[28]
Rote, R.V.; Shelar, D.P.; Jachak, M.N. A convenient synthesis of new pyrazolo[4,3-d]pyrimidines and their fused heterocycles. J. Heterocycl. Chem., 2014, 51, 815-823.
[http://dx.doi.org/10.1002/jhet.2006]
[29]
Shamroukh, A.H.; Rashad, A.E.; Ali, H.S.; Abdel-Megeid, F.E. Some new pyrazole and pyrazolopyrimidines: Synthesis and antimicrobial evaluation. J. Heterocycl. Chem., 2013, 50, 758-765.
[http://dx.doi.org/10.1002/jhet.1550]
[30]
Hossein nia, R.; Mamaghani, M.; Tabatabaeian, K.; Shirini, F.; Rassa, M. An expeditious regioselective synthesis of novel bioactive indole-substituted chromene derivatives via one-pot three-component reaction. Bioorg. Med. Chem. Lett., 2012, 22(18), 5956-5960.
[http://dx.doi.org/10.1016/j.bmcl.2012.07.059] [PMID: 22892120]
[31]
Hussein, A.M. Novel synthesis of some new pyrimido[1,6-a]pyrimidine and pyrazolo[1,5-a]pyrimidine derivatives. J. Heterocycl. Chem., 2012, 49, 446-451.
[http://dx.doi.org/10.1002/jhet.852]
[32]
Masevicius, V.; Juskenas, R.; Tumkevicius, S. Synthesis of novel pyrazolo[3,4-d]pyrimidines peri-fused with 1,4-diazepine, 1,4-thiazepine, and 1,2,4-triazepine rings. J. Heterocycl. Chem., 2012, 49, 315-320.
[http://dx.doi.org/10.1002/jhet.724]
[33]
Bruni, F.; Selleri, S.; Costanzo, A.; Guerrini, G.; Casilli, M.L.; Giusti, L. Reactivity of 7‐(2‐dimethylaminovinyl)pyrazolo[1,5‐a]pyrimidines: Synthesis of pyrazolo[1,5‐a]pyrido[3,4‐e]pyrimidine derivatives as potential benzodiazepine receptor ligands. J. Heterocycl. Chem., 1995, 32(1), 291-298.
[http://dx.doi.org/10.1002/jhet.5570320149]
[34]
Jismy, B.; Guillaumet, G.; Allouchi, H.; Akssira, M.; Abarbri, M. Concise and Efficient Access to 5,7-Disubstituted Pyrazolo[1,5-a]pyrimidines by Pd-Catalyzed Sequential Arylation, Alkynylation, and SNAr Reaction. Eur. J. Org. Chem., 2017, 2017(41), 6168-6178.
[http://dx.doi.org/10.1002/ejoc.201701024]
[35]
Drev, M.; Grošelj, U.; Mevec, Š.; Pušavec, E.; Štrekelj, J.; Golobic, A.; Dahmann, G.; Stanovnik, B.; Svete, J. Regioselective synthesis of 1- and 4-substituted 7-oxopyrazolo[1,5-a]pyrimidine-3-carboxamides. Tetrahedron, 2014, 70, 8267-8279.
[http://dx.doi.org/10.1016/j.tet.2014.09.020]
[36]
Novinson, T.; Robins, R.K.; O’Brien, D.E. A new fluorination procedure. Fluorination of 5,7-dimethylpyrazolo[1,5-a]pyrimidine. Tetrahedron Lett., 1973, 14(34), 3149-3150.
[http://dx.doi.org/10.1016/S0040-4039(00)79795-4]
[37]
Fabron, J.; Pastor, R. Cambon. A. Synthese de pyrazolo[1,5-a]pyrimidines F-alkylees. J. Fluor. Chem., 1991, 51(1), 141-148.
[http://dx.doi.org/10.1016/S0022-1139(00)80313-9]
[38]
Aggarwal, R.; Sumran, G.; Claramunt, R.M.; Sanz, D.; Elguero, J. Synthesis and structural characterization of pyrazol-1′-ylpyrazolo[1,5-a]pyrimidines by multinuclear NMR spectroscopy. J. Mol. Struct., 2009, 934(1–3), 96-102.
[http://dx.doi.org/10.1016/j.molstruc.2009.06.021]
[39]
Abdel-Megid, M. Part-II: Utilities of active methylene compounds and heterocycles bearing active methyl or having an active methine in the formation of bioactive pyrazoles and pyrazolopyrimidines. Synth. Commun., 2020, 50(23), 3563-3591.
[http://dx.doi.org/10.1080/00397911.2020.1807570]
[40]
Salem, M.A.; Helal, M.H.; Gouda, M.A. Abd EL-Gawad, H. H.; Shehab, M. A. M.; El-Khalafawy, A. Recent synthetic methodologies for pyrazolo[1,5-a]pyrimidine. Synth. Commun., 2019, 49(14), 1750-1776.
[http://dx.doi.org/10.1080/00397911.2019.1604967]
[41]
Al-Azmi, A. Pyrazolo[1,5-a]pyrimidines: A close look into their synthesis and applications. Curr. Org. Chem., 2019, 23(6), 721-743.
[http://dx.doi.org/10.2174/1385272823666190410145238]
[42]
Ismail, N.S.M.; Ali, G.M.E.; Ibrahim, D.A.; Elmetwali, A.M. Medicinal attributes of Pyrazolo[1,5-a]pyrimidine based scaffold derivatives targeting kinases as anticancer agents. Future J. Pharm. Sci., 2016, 2(2), 60-70.
[http://dx.doi.org/10.1016/j.fjps.2016.08.004]
[43]
Elattar, K.M.; Mert, B.D. Recent developments in the chemistry of bicyclic 6-6 systems: Chemistry of pyrido[4,3-d]pyrimidines. RSC Advances, 2016, 6, 71827-71851.
[http://dx.doi.org/10.1039/C6RA12364C]
[44]
Fadda, A.A.; El-Hadidy, S.A.; Elattar, K.M. Advances in 1,8-naphthyridines chemistry. Synth. Commun., 2015, 45(24), 2765-2801.
[http://dx.doi.org/10.1080/00397911.2015.1089577]
[45]
Fadda, A.A.; El-Mekabaty, A.; Elattar, K.M. Chemistry of enaminonitriles of pyrano[2,3-c]pyrazole and related compounds. Synth. Commun., 2013, 43(20), 2685-2719.
[http://dx.doi.org/10.1080/00397911.2012.744842]
[46]
Elattar, K.M.; Youssef, I.; Fadda, A.A. Reactivity of indolizines in organic synthesis. Synth. Commun., 2016, 46, 719-744.
[http://dx.doi.org/10.1080/00397911.2016.1166252]
[47]
Elattar, K.M.; Rabie, R.; Hammouda, M.M. Recent developments in the chemistry of bicyclic 6-6 systems: Chemistry of pyrido[1,2-c]pyrimidines. Synth. Commun., 2016, 46, 1477-1498.
[http://dx.doi.org/10.1080/00397911.2016.1211702]
[48]
Monier, M.; Abdel-Latif, D.; El-Mekabaty, A.; Mert, B.D.; Elattar, K.M. Advances in the Chemistry of 6-6 Bicyclic Systems: Chemistry of Pyrido[3,4- d]pyrimidines. Curr. Org. Synth., 2019, 16(6), 812-854.
[http://dx.doi.org/10.2174/1570179416666190704113647] [PMID: 31984909]
[49]
Elattar, K.M.; Rabie, R.; Hammouda, M.M. Recent progress in the chemistry of bicyclic 6-6 systems: Chemistry of pyrido[1,2-a]pyrimidines. Monatsh. Chem., 2017, 148, 601-627.
[http://dx.doi.org/10.1007/s00706-016-1852-1]
[50]
Monier, M.; Abdel-Latif, D.; El-Mekabaty, A.; Elattar, K.M. Reactivity, and Stereoselectivity of Oxazolopyridines with A Ring-Junction Nitrogen Atom. J. Heterocycl. Chem., 2019, 56(12), 3172-3196.
[http://dx.doi.org/10.1002/jhet.3727]
[51]
Monier, M.; Abdel-Latif, D.; El-Mekabaty, A.; Elattar, K.M. Recent progress in the chemistry of heterocycles incorporated oxazolo[4,5-b]pyridine and oxazolo[5,4-b]pyridine skeletons. Synth. Commun., 2020, 50(1), 1-32.
[http://dx.doi.org/10.1080/00397911.2019.1686644]
[52]
Monier, M.; El-Mekabaty, A.; Abdel-Latif, D.; Elattar, K.M. Chemistry of Bicyclic 5-6 Systems: Synthesis of Oxazolo[3,2-a]pyridines and their Salts with A Ring-Junction Nitrogen Atom. Synth. Commun., 2019, 49(20), 2591-2629.
[http://dx.doi.org/10.1080/00397911.2019.1643889]
[53]
Klein, H.J.; Troschütz, R.; Roth, H.J. Synthese von 5-Aminopyrazolo[1,5-a]pyrimidin-7(4H)-onen. Arch. Pharm. (Weinheim), 1985, 318(2), 135-142.
[http://dx.doi.org/10.1002/ardp.19853180207]
[54]
Reimlinger, H.; Peiren, M.A.; Merényi, R. Synthesen mit heterocyclischen Aminen, I. Reaktionen des 3(5)-Amino-pyrazols mit α,β-ungesättigten Estern. Darstellung und Charakterisierung isomerer Oxo-dihydro-pyrazolo-pyrimidine. Chem. Ber., 1970, 103(10), 3252-3265.
[http://dx.doi.org/10.1002/cber.19701031029]
[55]
Alcalde, E.; De Mendoza, J.; Elguero, J.; Marino, J.; Marquina, G.; Almera, C. Elude de la réaction du β-aminocrotonitrile et du α-formyl phénylacétonitrile avec l’hydrazine: Synthèse d’amino-7-pyrazolo[1,5-a]pyrimidines. J. Heterocycl. Chem., 1974, 11(3), 423-429.
[http://dx.doi.org/10.1002/jhet.5570110330]
[56]
Ratajczyk, J.D.; Swett, L.R. The cyclocondensation of 5-amino-1,3-dimethylpyrazole with ethyl acetoacetate. Synthesis of isomeric pyrazolopyridones. J. Heterocycl. Chem., 1975, 12(3), 517-522.
[http://dx.doi.org/10.1002/jhet.5570120315]
[57]
Novinson, T.; Miller, J.P.; Scholten, M.; Robins, R.K.; Simon, L.N.; O’Brien, D.E.; Meyer, R.B. Jr. Adenosine cyclic 3′,5′,-monophosphate phosphodiesterasr inhibitors. 2.3-Substituted 5,7-dialkylpyrazolo [1,5-a]pyrimidines. J. Med. Chem., 1975, 18(5), 460-464.
[http://dx.doi.org/10.1021/jm00239a004] [PMID: 168380]
[58]
Dorn, H.; Zubek, A. Über Pyrazolo[1,5‐a]pyrimidine. J. Prakt. Chem., 1971, 313(5), 969-976.
[http://dx.doi.org/10.1002/prac.19713130524]
[59]
Senga, K.; Novinson, T.; Springer, R.H.; Rao, R.P.; O’Brien, D.E.; Robins, R.K.; Wilson, H.R. Synthesis and antitrichomonal activity of certain pyrazolo (1,5-a) pyrimidines. J. Med. Chem., 1975, 18(3), 312-314.
[http://dx.doi.org/10.1021/jm00237a021] [PMID: 1094116]
[60]
Springer, R.H.; Dimmitt, M.K.; Novinson, T.; O’Brien, D.E.; Robins, R.K.; Simon, L.N.; Miller, J.P. Synthesis and enzymic activity of some novel xanthine oxidase inhibitors. 3-Substituted 5,7-dihydroxypyrazolo(1,5-alpha)pyrimidines. J. Med. Chem., 1976, 19(2), 291-296.
[http://dx.doi.org/10.1021/jm00224a017] [PMID: 2778]
[61]
Kirkpatrick, W.E.; Okabe, T.; Hillyard, I.W.; Robins, R.K.; Dren, A.T.; Novinson, T. 3-Halo-5,7-dimethylpyrazolo [1,5-a]pyrimidines, a nonbenzodiazepinoid class of antianxiety agents devoid of potentiation of central nervous system depressant effects of ethanol or barbiturates. J. Med. Chem., 1977, 20(3), 386-393.
[http://dx.doi.org/10.1021/jm00213a014] [PMID: 15111]
[62]
Lynch, B.M.; Khan, M.A.; Sharma, S.C.; Teo, H.C. Pyrazolo[1,5-a]pyrimidine: Synthesis and Regiospecific Electrophilic Substitution in the Pyrazole and/or Pyrimidine Rings. Can. J. Chem., 1975, 53, 119-124.https://cdnsciencepub.com/doi/pdf/10.1139/v75-016
[http://dx.doi.org/10.1139/v75-016]
[63]
Makisumi, Y. Studies on the Azaindolizine Compounds. X. Synthesis of 5,7-Disubstituted Pyrazolo[1,5-a]pyrimidines. Chem. Pharm. Bull. (Tokyo), 1962, 10(7), 612-620.
[http://dx.doi.org/10.1248/cpb.10.612]
[64]
Novinson, T.; Robins, R.K.; Matthews, T.R. Synthesis and antifungal properties of certain 7-alkylaminopyrazolo[1,5-a]pyrimidines. J. Med. Chem., 1977, 20(2), 296-299.
[http://dx.doi.org/10.1021/jm00212a021] [PMID: 319236]
[65]
Hammouda, H.A.; El-Barbary, A.A.; Sharaf, M.A.F. Reactions with 5‐aminopyrazoles. I. Synthesis of halogen‐containing fused pyrazoles. J. Heterocycl. Chem., 1984, 21(4), 945-947.
[http://dx.doi.org/10.1002/jhet.5570210402]
[66]
Sadek, K.U.; Selim, M.A.; El-Maghraby, M.A. Reactions with Heterocyclic Amidines: Synthesis of Several New Pyrazolo[1,5-a]pyrimidines and Pyrazolo[1,5-c]-as-triazines. J. Chem. Eng. Data, 1985, 30(4), 514-515.
[http://dx.doi.org/10.1021/je00042a048]
[67]
Senga, K.; Novinson, T.; Wilson, H.R.; Robins, R.K. Synthesis and antischistosomal activity of certain pyrazolo[1,5-a]pyrimidines. J. Med. Chem., 1981, 24(5), 610-613.
[http://dx.doi.org/10.1021/jm00137a023] [PMID: 7241518]
[68]
Shiota, T.; Yamamori, T. Regioselective Reactions of Organozinc Reagents with 2,4-Dichloroquinoline and 5,7-Dichloropyrazolo[1,5-a]pyrimidine. J. Org. Chem., 1999, 64(2), 453-457.
[http://dx.doi.org/10.1021/jo981423a]
[69]
Springer, R.H.; Scholten, M.B.; O’Brien, D.E.; Novinson, T.; Miller, J.P.; Robins, R.K. Synthesis and enzymic activity of 6-carbethoxy- and 6-ethoxy-3,7-disubstituted-pyrazolo[1,5-a]pyrimidines and related derivatives as adenosine cyclic 3′, 5′-phosphate phosphodiesterase inhibitors. J. Med. Chem., 1982, 25(3), 235-242.
[http://dx.doi.org/10.1021/jm00345a009] [PMID: 6279841]
[70]
Khan, M.A.; Rolim, A.M.C. Fused pyrazolopyrimidines II. Thieno[3″,2″:5′,6′]-pyrido[4′,3′:3,4]pyrazolo[1,5-a]pyrimidines. Monatsh. Chem., 1983, 114, 1079-1085.
[http://dx.doi.org/10.1007/BF00799032]
[71]
Makarov, V.A.; Anisimova, O.S.; Granik, V.G. Reaction of 3,5-diamino-4-nitropyrazole with electrophilic reagents. Chem. Heterocycl. Compd., 1997, 33(3), 276-281.
[http://dx.doi.org/10.1007/BF02253106]
[72]
Makarov, V.A.; Soloveva, N.P.; Granlk, V.G. Synthesis and NMR spectroscopic study of derivatives of pyrazolo[1,5-a]pyrimidines. Chem. Heterocycl. Compd., 1997, 33(5), 535-542.
[http://dx.doi.org/10.1007/BF02291935]
[73]
Danagulyan, G.G.; Panosyan, G.A.; Boyakhchyan, A.P. Synthesis of n-alkylated derivatives of pyrazolo[1,5-a]pyrimidine and their reaction with methylamine. Chem. Heterocycl. Compd., 2002, 38(5), 581-585.
[http://dx.doi.org/10.1023/A:1019517414682]
[74]
Compton, D.R.; Sheng, S.; Carlson, K.E.; Rebacz, N.A.; Lee, I.Y.; Katzenellenbogen, B.S.; Katzenellenbogen, J.A. Pyrazolo[1,5-a]pyrimidines: Estrogen receptor ligands possessing estrogen receptor β antagonist activity. J. Med. Chem., 2004, 47(24), 5872-5893.
[http://dx.doi.org/10.1021/jm049631k] [PMID: 15537344]
[75]
Frey, R.R.; Curtin, M.L.; Albert, D.H.; Glaser, K.B.; Pease, L.J.; Soni, N.B.; Bouska, J.J.; Reuter, D.; Stewart, K.D.; Marcotte, P.; Bukofzer, G.; Li, J.; Davidsen, S.K.; Michaelides, M.R. 7-Aminopyrazolo[1,5-a]pyrimidines as potent multitargeted receptor tyrosine kinase inhibitors. J. Med. Chem., 2008, 51(13), 3777-3787.
[http://dx.doi.org/10.1021/jm701397k] [PMID: 18557606]
[76]
Emelina, E.E.; Petrov, A.A.; Firsov, A.V. α-Aminoazoles in syntheses of heterocycles. 3(5)-Aminopyrazole-4-carbonitriles in the synthesis of pyrazolo[1,5-α]pyrimidines. Russ. J. Org. Chem., 2007, 43, 471-473.
[http://dx.doi.org/10.1134/S1070428007030281]
[77]
Petrov, A.A.; Emelina, E.E.; Firsov, A.V. α-Aminoazoles in the synthesis of heterocycles. Part I. Synthesis of regioisomeric 5-methyl-2,7-diphenyl- and 7-methyl-2,5-diphenylpyrazolo[1,5-a]pyrimidines. Russ. J. Org. Chem., 2000, 36(7), 1027-1032.
[78]
Petrov, A.A.; Emelina, E.E.; Selivanov, S.I. α-Aminoazoles in Synthesis of Heterocycles: IV. Regiodirection of 3(5)-Amino-5(3)-methylpyrazole Reaction with Hexafluoroacetylacetone. Russ. J. Org. Chem., 2008, 44(2), 263-270.
[http://dx.doi.org/10.1134/S1070428008020139]
[79]
Petrov, A.A.; Kasatochkin, A.N.; Emelina, E.E. α-Amino azoles in the synthesis of heterocycles: VI. Synthesis and structure of cycloalkane-annulated pyrazolo[1,5-a]pyrimidines. Russ. J. Org. Chem., 2009, 45(9), 1390-1401.
[http://dx.doi.org/10.1134/S1070428009090139]
[80]
Emelina, E.E.; Petrov, A.A.; Firsov, A.V. Aminoazoles in Heterocycles Synthesis: II. Trifluoromethyl-containing diketones in the synthesis of pyrazolo[1,5-a]pyrimidines. Russ. J. Org. Chem., 2001, 37, 852-858.
[http://dx.doi.org/10.1023/A:1012417816375]
[81]
Petrov, A.A.; Kasatochkin, A.N.; Emelina, E.E. Study of Regioselectivity of Reactions between 3(5)-Aminopyrazoles and 2-Acetylcycloalkanones. Russ. J. Org. Chem., 2012, 48(8), 1111-1120.
[http://dx.doi.org/10.1134/S1070428012080131]
[82]
Petrova, O.V.; Sobenina, L.N.; Demenev, A.P. Synthesis of Functionalized 2-(2-Pyrrolyl)pyrazolo[1,5-a]pyrimidines. Russ. J. Org. Chem., 2003, 39, 1471-1476.
[http://dx.doi.org/10.1023/B:RUJO.0000010564.39518.5e]
[83]
Dalinger, I.L.; Vatsadse, I.A.; Shevelev, S.A.; Ivachtchenko, A.V. Liquid-phase synthesis of combinatorial libraries based on 7-trifluoromethyl-substituted pyrazolo[1,5-a]pyrimidine scaffold. J. Comb. Chem., 2005, 7(2), 236-245.
[http://dx.doi.org/10.1021/cc049855o] [PMID: 15762751]
[84]
Ivachtchenko, A.V.; Dmitriev, D.E.; Golovina, E.S.; Kadieva, M.G.; Koryakova, A.G.; Kysil, V.M.; Mitkin, O.D.; Okun, I.M.; Tkachenko, S.E.; Vorobiev, A.A. (3-Phenylsulfonylcycloalkano[e and d]pyrazolo[1,5-a]pyrimidin-2-yl)amines: Potent and selective antagonists of the serotonin 5-HT6 receptor. J. Med. Chem., 2010, 53(14), 5186-5196.
[http://dx.doi.org/10.1021/jm100350r] [PMID: 20560595]
[85]
Ivachtchenko, A.V.; Golovina, E.S.; Kadieva, M.G.; Kysil, V.M.; Mitkin, O.D.; Tkachenko, S.E.; Okun, I.M. Synthesis and structure-activity relationship (SAR) of (5,7-disubstituted 3-phenylsulfonyl-pyrazolo[1,5-a]pyrimidin-2-yl)-methylamines as potent serotonin 5-HT(6) receptor (5-HT(6)R) antagonists. J. Med. Chem., 2011, 54(23), 8161-8173.
[http://dx.doi.org/10.1021/jm201079g] [PMID: 22029285]
[86]
Patnaik, S.; Zheng, W.; Choi, J.H.; Motabar, O.; Southall, N.; Westbroek, W.; Lea, W.A.; Velayati, A.; Goldin, E.; Sidransky, E.; Leister, W.; Marugan, J.J. Discovery, structure-activity relationship, and biological evaluation of noninhibitory small molecule chaperones of glucocerebrosidase. J. Med. Chem., 2012, 55(12), 5734-5748.
[http://dx.doi.org/10.1021/jm300063b] [PMID: 22646221]
[87]
Gege, C.; Bao, B.; Bluhm, H.; Boer, J.; Gallagher, B.M., Jr; Korniski, B.; Powers, T.S.; Steeneck, C.; Taveras, A.G.; Baragi, V.M. Discovery and evaluation of a non-Zn chelating, selective matrix metalloproteinase 13 (MMP-13) inhibitor for potential intra-articular treatment of osteoarthritis. J. Med. Chem., 2012, 55(2), 709-716.
[http://dx.doi.org/10.1021/jm201152u] [PMID: 22175799]
[88]
Chen, C.; Wilcoxen, K.M.; Huang, C.Q.; Xie, Y-F.; McCarthy, J.R.; Webb, T.R.; Zhu, Y-F.; Saunders, J.; Liu, X-J.; Chen, T-K.; Bozigian, H.; Grigoriadis, D.E. Design of 2,5-dimethyl-3-(6-dimethyl-4-methylpyridin-3-yl)-7-dipropylaminopyrazolo[1,5-a]pyrimidine (NBI 30775/R121919) and structure--activity relationships of a series of potent and orally active corticotropin-releasing factor receptor antagonists. J. Med. Chem., 2004, 47(19), 4787-4798.
[http://dx.doi.org/10.1021/jm040058e] [PMID: 15341493]
[89]
El-Essawy, F.A. Synthesis of new pyrido[2′,3′:3,4]pyrazolo[1,5-a]pyrimi-dines and their use in the preparation of tetraheterocyclic systems. Synth. Commun., 2010, 40(6), 877-887.
[http://dx.doi.org/10.1080/00397910903020783]
[90]
Kosugi, T.; Mitchell, D.R.; Fujino, A.; Imai, M.; Kambe, M.; Kobayashi, S.; Makino, H.; Matsueda, Y.; Oue, Y.; Komatsu, K.; Imaizumi, K.; Sakai, Y.; Sugiura, S.; Takenouchi, O.; Unoki, G.; Yamakoshi, Y.; Cunliffe, V.; Frearson, J.; Gordon, R.; Harris, C.J.; Kalloo-Hosein, H.; Le, J.; Patel, G.; Simpson, D.J.; Sherborne, B.; Thomas, P.S.; Suzuki, N.; Takimoto-Kamimura, M.; Kataoka, K. Mitogen-activated protein kinase-activated protein kinase 2 (MAPKAP-K2) as an antiinflammatory target: Discovery and in vivo activity of selective pyrazolo[1,5-a]pyrimidine inhibitors using a focused library and structure-based optimization approach. J. Med. Chem., 2012, 55(15), 6700-6715.
[http://dx.doi.org/10.1021/jm300411k] [PMID: 22746295]
[91]
Sayed, S.M.; Khalil, M.A.; Raslan, M.A. A Facile synthesis of new 3-(1-methyl benzimidazol-2-yl) pyrazolopyrimidine and pyrimido[2,1-b][1,3]benzothiazole derivatives of potential biosignificant interest. Am. J. Org. Chem, 2012, 2(6), 151-160.
[http://dx.doi.org/10.5923/j.ajoc.20120206.05]
[92]
Damont, A.; Médran-Navarrete, V.; Cacheux, F.; Kuhnast, B.; Pottier, G.; Bernards, N.; Marguet, F.; Puech, F.; Boisgard, R.; Dollé, F. Novel pyrazolo[1,5-a]pyrimidines as translocator protein 18 kDa (TSPO) ligands: synthesis, in vitro biological evaluation, [(18)F]-labeling, and in vivo neuroinflammation PET images. J. Med. Chem., 2015, 58(18), 7449-7464.
[http://dx.doi.org/10.1021/acs.jmedchem.5b00932] [PMID: 26280386]
[93]
Kamal, A.; Faazil, S.; Hussaini, S.M.A.; Ramaiah, M.J.; Balakrishna, M.; Patel, N.; Pushpavalli, S.N.C.V.L.; Pal-Bhadra, M. Synthesis and mechanistic aspects of 2-anilinonicotinyl-pyrazolo[1,5-a]pyrimidine conjugates that regulate cell proliferation in MCF-7 cells via estrogen signaling. Bioorg. Med. Chem. Lett., 2016, 26(8), 2077-2083.
[http://dx.doi.org/10.1016/j.bmcl.2016.02.072] [PMID: 26948540]
[94]
Abe, M.; Seto, M.; Gogliotti, R.G.; Loch, M.T.; Bollinger, K.A.; Chang, S.; Engelberg, E.M.; Luscombe, V.B.; Harp, J.M.; Bubser, M.; Engers, D.W.; Jones, C.K.; Rodriguez, A.L.; Blobaum, A.L.; Conn, P.J.; Niswender, C.M.; Lindsley, C.W. Discovery of VU6005649, a CNS Penetrant mGlu7/8 Receptor PAM Derived from a Series of Pyrazolo[1,5-a]pyrimidines. ACS Med. Chem. Lett., 2017, 8(10), 1110-1115.
[http://dx.doi.org/10.1021/acsmedchemlett.7b00317] [PMID: 29057060]
[95]
Hieu Tran, V.; Park, H.; Park, J.; Kwon, Y-D.; Kang, S.; Ho Jung, J.; Chang, K-A.; Chul Lee, B.; Lee, S-Y.; Kang, S.; Kim, H-K. Synthesis and evaluation of novel potent TSPO PET ligands with 2-phenylpyrazolo[1,5-a]pyrimidin-3-yl acetamide. Bioorg. Med. Chem., 2019, 27(18), 4069-4080.
[http://dx.doi.org/10.1016/j.bmc.2019.07.036] [PMID: 31353076]
[96]
Kwon, Y-D.; Kang, S.; Park, H.; Cheong, I.K.; Chang, K-A.; Lee, S.Y.; Jung, J.H.; Lee, B.C.; Lim, S.T.; Kim, H.K. Novel potential pyrazolopyrimidine based translocator protein ligands for the evaluation of neuroinflammation with PET. Eur. J. Med. Chem., 2018, 159, 292-306.
[http://dx.doi.org/10.1016/j.ejmech.2018.09.069] [PMID: 30296688]
[97]
Li, J.; Schulte, M.L.; Nickels, M.L.; Manning, H.C. New structure-activity relationships of N-acetamide substituted pyrazolopyrimidines as pharmacological ligands of TSPO. Bioorg. Med. Chem. Lett., 2016, 26(15), 3472-3477.
[http://dx.doi.org/10.1016/j.bmcl.2016.06.041] [PMID: 27353534]
[98]
Zahdifar, M.; Razavi, R.; Sheibani, H. Reaction of (chloro carbonyl) phenyl ketene with 5-amino pyrazolones: Synthesis, characterization, and theoretical studies of 7-hydroxy-6-phenyl-3-(phenyldiazenyl)pyrazolo[1,5-a]pyrimidine-2,5(1H,4H)-dione derivatives. J. Mol. Struct., 2016, 1125, 730-735.
[http://dx.doi.org/10.1016/j.molstruc.2016.07.043]
[99]
Hebishy, A.M.S.; Salama, H.T.; Elgemeie, G.H. New route to the synthesis of benzamide-based 5-aminopyrazoles and their fused heterocycles showing remarkable antiavian influenza virus activity. ACS Omega, 2020, 5(39), 25104-25112.
[http://dx.doi.org/10.1021/acsomega.0c02675] [PMID: 33043189]
[100]
Raheem, I.T.; Schreier, J.D.; Fuerst, J.; Gantert, L.; Hostetler, E.D.; Huszar, S.; Joshi, A.; Kandebo, M.; Kim, S.H.; Li, J.; Ma, B.; McGaughey, G.; Sharma, S.; Shipe, W.D.; Uslaner, J.; Vandeveer, G.H.; Yan, Y.; Renger, J.J.; Smith, S.M.; Coleman, P.J.; Cox, C.D. Discovery of pyrazolopyrimidine phosphodiesterase 10A inhibitors for the treatment of schizophrenia. Bioorg. Med. Chem. Lett., 2016, 26(1), 126-132.
[http://dx.doi.org/10.1016/j.bmcl.2015.11.013] [PMID: 26602277]
[101]
Bagul, C.; Rao, G.K.; Makani, V.K.K.; Tamboli, J.R.; Pal-Bhadra, M.; Kamal, A. Synthesis and biological evaluation of chalcone-linked pyrazolo[1,5-a]pyrimidines as potential anticancer agents. MedChemComm, 2017, 8(9), 1810-1816.
[http://dx.doi.org/10.1039/C7MD00193B] [PMID: 30108891]
[102]
Kamal, A.; Tamboli, J.R.; Nayak, V.L.; Adil, S.F.; Vishnuvardhan, M.V.; Ramakrishna, S. Synthesis of pyrazolo[1,5-a]pyrimidine linked aminobenzothiazole conjugates as potential anticancer agents. Bioorg. Med. Chem. Lett., 2013, 23(11), 3208-3215.
[http://dx.doi.org/10.1016/j.bmcl.2013.03.129] [PMID: 23623491]
[103]
Kamal, A.; Tamboli, J.R.; Ramaiah, M.J.; Adil, S.F.; Koteswara Rao, G.; Viswanath, A.; Mallareddy, A.; Pushpavalli, S.N.; Pal-Bhadra, M. Anthranilamide-pyrazolo[1,5-a]pyrimidine conjugates as p53 activators in cervical cancer cells. ChemMedChem, 2012, 7(8), 1453-1464.
[http://dx.doi.org/10.1002/cmdc.201200205] [PMID: 22700474]
[104]
Mackman, R.L.; Sangi, M.; Sperandio, D.; Parrish, J.P.; Eisenberg, E.; Perron, M.; Hui, H.; Zhang, L.; Siegel, D.; Yang, H.; Saunders, O.; Boojamra, C.; Lee, G.; Samuel, D.; Babaoglu, K.; Carey, A.; Gilbert, B.E.; Piedra, P.A.; Strickley, R.; Iwata, Q.; Hayes, J.; Stray, K.; Kinkade, A.; Theodore, D.; Jordan, R.; Desai, M.; Cihlar, T. Discovery of an oral respiratory syncytial virus (RSV) fusion inhibitor (GS-5806) and clinical proof of concept in a human RSV challenge study. J. Med. Chem., 2015, 58(4), 1630-1643.
[http://dx.doi.org/10.1021/jm5017768] [PMID: 25574686]
[105]
Gavrin, L.K.; Lee, A.; Provencher, B.A.; Massefski, W.W.; Huhn, S.D.; Ciszewski, G.M.; Cole, D.C.; McKew, J.C. Synthesis of pyrazolo[1,5-alpha]pyrimidinone regioisomers. J. Org. Chem., 2007, 72(3), 1043-1046.
[http://dx.doi.org/10.1021/jo062120g] [PMID: 17253833]
[106]
Azeredo, L.F.S.P.; Coutinho, J.P.; Jabor, V.A.P.; Feliciano, P.R.; Nonato, M.C.; Kaiser, C.R.; Menezes, C.M.S.; Hammes, A.S.O.; Caffarena, E.R.; Hoelz, L.V.B.; de Souza, N.B.; Pereira, G.A.N.; Cerávolo, I.P.; Krettli, A.U.; Boechat, N. Evaluation of 7-arylaminopyrazolo[1,5-a]pyrimidines as anti-Plasmodium falciparum, antimalarial, and Pf-dihydroorotate dehydrogenase inhibitors. Eur. J. Med. Chem., 2017, 126, 72-83.
[http://dx.doi.org/10.1016/j.ejmech.2016.09.073] [PMID: 27744189]
[107]
Fayed, E.A.; Eissa, S.I.; Bayoumi, A.H.; Gohar, N.A.; Mehany, A.B.M.; Ammar, Y.A. Design, synthesis, cytotoxicity and molecular modeling studies of some novel fluorinated pyrazole-based heterocycles as anticancer and apoptosis-inducing agents. Mol. Divers., 2019, 23(1), 165-181.
[http://dx.doi.org/10.1007/s11030-018-9865-9] [PMID: 30099687]
[108]
Hassan, A.S.; Masoud, D.M.; Sroor, F.M.; Askar, A.A. Synthesis and biological evaluation of pyrazolo[1,5-a]pyrimidine-3-carboxamide as antimicrobial agents. Med. Chem. Res., 2017, 26, 2909-2919.
[http://dx.doi.org/10.1007/s00044-017-1990-y]
[109]
Hafez, T.S.; Osman, S.A.; Yosef, H.A.A.; El-All, A.S.; Hassan, A.S.; El-Sawy, A.A.; Abdallah, M.M.; Youns, M. Synthesis, structural elucidation, and in vitro antitumor activities of some pyrazolopyrimidines and schiff bases derived from 5-Amino-3-(arylamino)-1H-pyrazole-4-carboxamides. Sci. Pharm., 2013, 81(2), 339-357.
[http://dx.doi.org/10.3797/scipharm.1211-07] [PMID: 23833708]
[110]
Koizumi, Y.; Tanaka, Y.; Matsumura, T.; Kadoh, Y.; Miyoshi, H.; Hongu, M.; Takedomi, K.; Kotera, J.; Sasaki, T.; Taniguchi, H.; Watanabe, Y.; Takakuwa, M.; Kojima, K.; Baba, N.; Nakamura, I.; Kawanishi, E. Discovery of a pyrazolo[1,5-a]pyrimidine derivative (MT-3014) as a highly selective PDE10A inhibitor via core structure transformation from the stilbene moiety. Bioorg. Med. Chem., 2019, 27(15), 3440-3450.
[http://dx.doi.org/10.1016/j.bmc.2019.06.021] [PMID: 31235264]
[111]
Burgart, Y.V.; Elkina, N.A.; Shchegolkov, E.V. Synthesis of Biologically Active 6-(Tolylhydrazinylidene)Pyrazolo. 1,5-a Pyrimidinones. Chem. Heterocycl. Compd., 2020, 56, 199-207.
[http://dx.doi.org/10.1007/s10593-020-02652-1]
[112]
Li, G.; Meanwell, N.A.; Krystal, M.R.; Langley, D.R.; Naidu, B.N.; Sivaprakasam, P.; Lewis, H.; Kish, K.; Khan, J.A.; Ng, A.; Trainor, G.L.; Cianci, C.; Dicker, I.B.; Walker, M.A.; Lin, Z.; Protack, T.; Discotto, L.; Jenkins, S.; Gerritz, S.W.; Pendri, A. Discovery and optimization of novel pyrazolopyrimidines as potent and orally bioavailable allosteric HIV-1 integrase inhibitors. J. Med. Chem., 2020, 63(5), 2620-2637.
[http://dx.doi.org/10.1021/acs.jmedchem.9b01681] [PMID: 32081010]
[113]
Bertrand, S.M.; Ancellin, N.; Beaufils, B.; Bingham, R.P.; Borthwick, J.A.; Boullay, A-B.; Boursier, E.; Carter, P.S.; Chung, C.W.; Churcher, I.; Dodic, N.; Fouchet, M-H.; Fournier, C.; Francis, P.L.; Gummer, L.A.; Herry, K.; Hobbs, A.; Hobbs, C.I.; Homes, P.; Jamieson, C.; Nicodeme, E.; Pickett, S.D.; Reid, I.H.; Simpson, G.L.; Sloan, L.A.; Smith, S.E.; Somers, D.O.; Spitzfaden, C.; Suckling, C.J.; Valko, K.; Washio, Y.; Young, R.J. The discovery of in vivo active mitochondrial branched-chain aminotransferase (BCATm) inhibitors by hybridizing fragment and HTS Hits. J. Med. Chem., 2015, 58(18), 7140-7163.
[http://dx.doi.org/10.1021/acs.jmedchem.5b00313] [PMID: 26090771]
[114]
(a)Murakami, M.; Matsuda, T. Metal-catalysed cleavage of carbon-carbon bonds. Chem. Commun. (Camb.), 2011, 47(4), 1100-1105.,
[http://dx.doi.org/10.1039/C0CC02566F] [PMID: 20953480]
(b)Tobisu, M.; Chatani, N. Catalytic reactions involving the cleavage of carbon-cyano and carbon-carbon triple bonds.Chem. Soc. Rev., 2008, 37(2), 300-307.,
[http://dx.doi.org/10.1039/B702940N] [PMID: 18197346]
(c)Jun, C-H. Transition metal-catalyzed carbon-carbon bond activation. Chem. Soc. Rev., 2004, 33(9), 610-618.
[http://dx.doi.org/10.1039/B308864M] [PMID: 15592626]
[115]
Saikia, P.; Gogoi, S.; Boruah, R.C. Carbon-Carbon Bond Cleavage Reaction: Synthesis of Multisubstituted Pyrazolo[1,5-a]pyrimidines. J. Org. Chem., 2015, 80(13), 6885-6889.
[http://dx.doi.org/10.1021/acs.joc.5b00933] [PMID: 26083788]
[116]
Elgemeie, G.; Metwally, N. Synthesis of structurally related purines: benzimidazo[1,2-a]pyridines, benzimidazo[1,2-c]pyrimidines, and pyrazolo[1,5-a]pyrimidines. Monatsh. Chem., 2000, 131, 779-785.
[http://dx.doi.org/10.1007/s007060050025]
[117]
Filyakova, V.I.; Kuznetsova, O.A.; Ulomskii, E.N. Synthesis of (7-polyfluoroalkyl)pyrazolo[1,5-a]pyrimidines based on lithium fluorine-containing β-diketonates. Russ. Chem. Bull., 2002, 51, 332-336.
[http://dx.doi.org/10.1023/A:1015420130033]
[118]
Kim, I.; Song, J.H.; Park, C.M.; Jeong, J.W.; Kim, H.R.; Ha, J.R.; No, Z.; Hyun, Y.L.; Cho, Y.S.; Sook Kang, N.; Jeon, D.J. Design, synthesis, and evaluation of 2-aryl-7-(3′,4′-dialkoxyphenyl)-pyrazolo[1,5-a]pyrimidines as novel PDE-4 inhibitors. Bioorg. Med. Chem. Lett., 2010, 20(3), 922-926.
[http://dx.doi.org/10.1016/j.bmcl.2009.12.070] [PMID: 20053559]
[119]
Guerrini, G.; Ciciani, G.; Daniele, S.; Di Cesare Mannelli, L.; Ghelardini, C.; Martini, C.; Selleri, S. Synthesis and pharmacological evaluation of pyrazolo[1,5-a]pyrimidin-7(4H)-one derivatives as potential GABAA-R ligands. Bioorg. Med. Chem., 2017, 25(6), 1901-1906.
[http://dx.doi.org/10.1016/j.bmc.2017.02.013] [PMID: 28237554]
[120]
Selleri, S.; Bruni, F.; Costagli, C.; Costanzo, A.; Guerrini, G.; Ciciani, G.; Costa, B.; Martini, C. Synthesis and BZR affinity of pyrazolo[1,5-a]pyrimidine derivatives. Part 1: Study of the structural features for BZR recognition. Bioorg. Med. Chem., 1999, 7(12), 2705-2711.
[http://dx.doi.org/10.1016/S0968-0896(99)00232-1] [PMID: 10658575]
[121]
Abdallah, A.E.M.; Elgemeie, G.H. Design, synthesis, docking, and antimicrobial evaluation of some novel pyrazolo[1,5-a] pyrimidines and their corresponding cycloalkane ring-fused derivatives as purine analogs. Drug Des. Devel. Ther., 2018, 12, 1785-1798.
[http://dx.doi.org/10.2147/DDDT.S159310] [PMID: 29950813]
[122]
Li, M.; Wang, S.; Wen, L.; Zhang, X.; Ke, Z. Synthesis, bioactivities, and X-ray structure analysis of 2-cyano-5-methylpyrazolo[1,5-a]pyrimidine. J. Chem. Crystallogr., 2005, 35(9), 667-671.
[http://dx.doi.org/10.1007/s10870-005-3475-y]
[123]
Gopalsamy, A.; Ciszewski, G.; Hu, Y.; Lee, F.; Feldberg, L.; Frommer, E.; Kim, S.; Collins, K.; Wojciechowicz, D.; Mallon, R. Identification of pyrazolo[1,5-a]pyrimidine-3-carboxylates as B-Raf kinase inhibitors. Bioorg. Med. Chem. Lett., 2009, 19(10), 2735-2738.
[http://dx.doi.org/10.1016/j.bmcl.2009.03.129] [PMID: 19362830]
[124]
Rao, V.R.; Reddy, V.R. Synthesis of some new types of 3-coumarinyl-substituted pyrazolopyrimidines and imidazothiazoles. Chem. Heterocycl. Compd., 2008, 44, 360-365.
[http://dx.doi.org/10.1007/s10593-008-0053-1]
[125]
Mokhtar, M.; Saleh, T.S.; Basahel, S.N. Mg-Al hydrotalcites as efficient catalysts for aza-Michael addition reaction: A green protocol. J. Mol. Catal. Chem., 2012, 353, 122-131.
[http://dx.doi.org/10.1016/j.molcata.2011.11.015]
[126]
Abdelhamid, A.O.; Fahmi, A.A.; Halim, K.N.M. Design and synthesis of some new pyrazolo[1,5-a]pyrimidines, pyrazolo[5,1-c]triazines, pyrazolo[3,4-d]pyridazines, and isoxazolo[3,4-d]pyridazines containing the pyrazole moiety. Synth. Commun., 2013, 43(8), 1101-1126.
[http://dx.doi.org/10.1080/00397911.2011.616639]
[127]
Kaping, S.; Kalita, U.; Sunn, M.; Singha, L.I.; Vishwakarma, J.N. A facile, regioselective synthesis of pyrazolo[1,5-a]pyrimidine analogs in the presence of KHSO4 in aqueous media assisted by ultrasound and their anti-inflammatory and anti-cancer activities. Monatsh. Chem., 2016, 147, 1257-1276.
[http://dx.doi.org/10.1007/s00706-015-1638-x]
[128]
Kaping, S.; Boiss, I.; Singha, L.I.; Helissey, P.; Vishwakarma, J.N. A facile, regioselective synthesis of novel 3-(N-phenylcarboxamide)pyrazolo[1,5-a]pyrimidine analogs in the presence of KHSO4 in aqueous media assisted by ultrasound and their antibacterial activities. Mol. Divers., 2016, 20(2), 379-390.
[http://dx.doi.org/10.1007/s11030-015-9639-6] [PMID: 26511367]
[129]
Kumar, A.K.A.; Bodke, Y.D.; Lakra, P.S.; Sambasivam, G.; Bhat, K.G. Design, synthesis and anticancer evaluation of a novel series of pyrazolo[1,5-a]pyrimidine substituted diamide derivatives. Med. Chem. Res., 2017, 26, 714-744.
[http://dx.doi.org/10.1007/s00044-016-1770-0]
[130]
El-Naggar, M.; Hassan, A.S.; Awad, H.M.; Mady, M.F. Design, synthesis and antitumor evaluation of novel pyrazolopyrimidines and pyrazoloquinazolines. Molecules, 2018, 23(6), 1249.
[http://dx.doi.org/10.3390/molecules23061249] [PMID: 29882908]
[131]
Hassan, A.S.; Moustafa, G.O.; Awad, H.M. Synthesis and in vitro anticancer activity of pyrazolo[1,5-a]pyrimidines and pyrazolo[3,4-d][1,2,3]triazines. Synth. Commun., 2017, 47(21), 1963-1972.
[http://dx.doi.org/10.1080/00397911.2017.1358368]
[132]
Guo, Y.; Liu, Y.; Hu, N.; Yu, D.; Zhou, C.; Shi, G.; Zhang, B.; Wei, M.; Liu, J.; Luo, L.; Tang, Z.; Song, H.; Guo, Y.; Liu, X.; Su, D.; Zhang, S.; Song, X.; Zhou, X.; Hong, Y.; Chen, S.; Cheng, Z.; Young, S.; Wei, Q.; Wang, H.; Wang, Q.; Lv, L.; Wang, F.; Xu, H.; Sun, H.; Xing, H.; Li, N.; Zhang, W.; Wang, Z.; Liu, G.; Sun, Z.; Zhou, D.; Li, W.; Liu, L.; Wang, L.; Wang, Z. Discovery of zanubrutinib (BGB-3111), a novel, potent, and selective covalent inhibitor of bruton’s tyrosine kinase. J. Med. Chem., 2019, 62(17), 7923-7940.
[http://dx.doi.org/10.1021/acs.jmedchem.9b00687] [PMID: 31381333]
[133]
Castillo, J-C.; Tigreros, A.; Portilla, J. 3-Formylpyrazolo[1,5- a]pyrimidines as Key Intermediates for the Preparation of Functional Fluorophores. J. Org. Chem., 2018, 83(18), 10887-10897.
[http://dx.doi.org/10.1021/acs.joc.8b01571] [PMID: 30051714]
[134]
Alsaedi, A.M.R.; Farghaly, T.A.; Shaaban, M.R. Synthesis and Antimicrobial Evaluation of Novel Pyrazolopyrimidines Incorporated with Mono- and Diphenylsulfonyl Groups. Molecules, 2019, 24(21), 4009.
[http://dx.doi.org/10.3390/molecules24214009] [PMID: 31694325]
[135]
Osuma, A.T.; Xu, X.; Wang, Z.; Van Camp, J.A.; Freiberg, G.M. Design and evaluation of pyrazolopyrimidines as KCNQ channel modulators. Bioorg. Med. Chem. Lett., 2019, 29(19)126603
[http://dx.doi.org/10.1016/j.bmcl.2019.08.007] [PMID: 31416667]
[136]
Kaping, S.; Sunn, M.; Singha, L.I.; Vishwakarma, J.N. Ultrasound-assisted synthesis of pyrazolo[1,5-a]pyrimidine-antipyrine hybrids and their anti-inflammatory and anti-cancer activities. Eur. J. Chem., 2020, 11(1), 68-79.
[http://dx.doi.org/10.5155/eurjchem.11.1.68-79.1942]
[137]
Castillo, J-C.; Rosero, H-A.; Portilla, J. Simple access toward 3-halo- and 3-nitro-pyrazolo[1,5-a]pyrimidines through a one-pot sequence. RSC Advances, 2017, 7, 28483-28488.
[http://dx.doi.org/10.1039/C7RA04336H]
[138]
Mehranpour, A.; Hashemnia, S.; Bornak, M. Synthesis and characterization of new pyrido- and pyrazolopyrimidine derivatives using 2-substituted vinamidinium salts. Chem. Heterocycl. Compd., 2019, 55(11), 1087-1091.
[http://dx.doi.org/10.1007/s10593-019-02582-7]
[139]
Compton, D.R.; Carlson, K.E.; Katzenellenbogen, J.A. Pyrazolo[1,5-a]pyrimidines as estrogen receptor ligands: Defining the orientation of a novel heterocyclic core. Bioorg. Med. Chem. Lett., 2004, 14(22), 5681-5684.
[http://dx.doi.org/10.1016/j.bmcl.2004.08.046] [PMID: 15482947]
[140]
Attaby, F.A.; Eldin, S.M. Reactions of 3-aminopyrazole derivatives with cyanothioacetamide and its derivatives: Synthesis and reactions of several new pyrazole and pyrazole[3,2-b]pyrimidine derivatives. Arch. Pharm. Res., 1997, 20(4), 330-337.
[http://dx.doi.org/10.1007/BF02976195] [PMID: 18975174]
[141]
Quiroga, J.; Portilla, J.; Abonia, R.; Insuasty, B.; Nogueras, M.; Cobo, J. Regioselective synthesis of novel polyfunctionally substituted pyrazolo[1,5-a]pyrimidines under solvent-free conditions. Tetrahedron Lett., 2007, 48, 6352-6355.
[http://dx.doi.org/10.1016/j.tetlet.2007.07.041]
[142]
Quiroga, J.; Portilla, J.; Abonia, R.; Insuasty, B.; Nogueras, M.; Cobo, J. Regioselective synthesis of novel substituted pyrazolo[1,5-a]pyrimidines under solvent-free conditions. Tetrahedron Lett., 2008, 49, 6254-6256.
[http://dx.doi.org/10.1016/j.tetlet.2008.08.044]
[143]
Daniels, R.N.; Kim, K.; Lebois, E.P.; Muchalski, H.; Hughes, M.; Lindsley, C.W. Microwave-assisted protocols for the expedited synthesis of pyrazolo[1,5-a] and [3,4-d]pyrimidines. Tetrahedron Lett., 2008, 49, 305-310.
[http://dx.doi.org/10.1016/j.tetlet.2007.11.054]
[144]
Gregg, B.T.; Tymoshenko, D.O.; Razzano, D.A.; Johnson, M.R. Pyrazolo[1,5-a]pyrimidines. Identification of the privileged structure and combinatorial synthesis of 3-(hetero)arylpyrazolo[1,5-a]pyrimidine-6-carboxamides. J. Comb. Chem., 2007, 9(3), 507-512.
[http://dx.doi.org/10.1021/cc0700039] [PMID: 17439287]
[145]
Yoshida, M.; Mori, A.; Kotani, E.; Oka, M.; Makino, H.; Fujita, H.; Ban, J.; Ikeda, Y.; Kawamoto, T.; Goto, M.; Kimura, H.; Baba, A.; Yasuma, T. Discovery of novel and potent orally active calcium-sensing receptor antagonists that stimulate pulselike parathyroid hormone secretion: Synthesis and structure-activity relationships of tetrahydropyrazolopyrimidine derivatives. J. Med. Chem., 2011, 54(5), 1430-1440.
[http://dx.doi.org/10.1021/jm101452x] [PMID: 21306167]
[146]
Orlov, V.D.; Sidorenko, D.Y. Carbo[3 + 3] cyclocondensation reactions. A new method for the synthesis of tetrahydropyrazolo[1,5-b]quinazolines and tetrahydropyrazolo[4,5-b]quinolines. Chem. Heterocycl. Compd., 2012, 48, 650-657.
[http://dx.doi.org/10.1007/s10593-012-1039-6]
[147]
Golubev, P.; Karpova, E.A.; Pankova, A.S.; Sorokina, M.; Kuznetsov, M.A. Regioselective synthesis of 7-(trimethylsilylethynyl)pyrazolo[1,5-a]pyrimidines via reaction of pyrazolamines with enynones. J. Org. Chem., 2016, 81(22), 11268-11275.
[http://dx.doi.org/10.1021/acs.joc.6b02217] [PMID: 27749057]
[148]
Singsardar, M.; Sarkar, R.; Majhi, K.; Sinha, S.; Hajra, A. Brønsted acidic ionic liquid-catalyzed regioselective synthesis of pyrazolopyrimidines and their photophysical properties. ChemistrySelect, 2018, 3, 1404-1410.
[http://dx.doi.org/10.1002/slct.201702767]
[149]
Monier, M.; El-Mekabaty, A.; Abdel-Latif, D.; Doğru Mert, B.; Elattar, K.M. Heterocyclic steroids: Efficient routes for annulation of pentacyclic steroidal pyrimidines. Steroids, 2020, 154108548
[http://dx.doi.org/10.1016/j.steroids.2019.108548] [PMID: 31805293]
[150]
Elattar, K.M.; El-Mekabaty, A. Heterocyclic steroids: Synthetic routes and biological characteristics of steroidal fused bicyclic pyrimidines. J. Heterocycl. Chem., 2020, 58(2), 389-414.
[http://dx.doi.org/10.1002/jhet.4174]
[151]
Kaishap, P.P.; Baruah, S.; Shekarrao, K.; Gogoi, S.; Boruah, R.C. A facile method for the synthesis of steroidal and nonsteroidal 5-methyl pyrazolo[1,5-a]pyrimidines. Tetrahedron Lett., 2014, 55, 3117-3121.
[http://dx.doi.org/10.1016/j.tetlet.2014.04.011]
[152]
Blad, C.C.; van Veldhoven, J.P.D.; Klopman, C.; Wolfram, D.R.; Brussee, J.; Lane, J.R.; Ijzerman, A.P. Novel 3,6,7-substituted pyrazolopyrimidines as positive allosteric modulators for the hydroxycarboxylic acid receptor 2 (GPR109A). J. Med. Chem., 2012, 55(7), 3563-3567.
[http://dx.doi.org/10.1021/jm300164q] [PMID: 22420767]
[153]
Shen, H.C.; Taggart, A.K.P.; Wilsie, L.C.; Waters, M.G.; Hammond, M.L.; Tata, J.R.; Colletti, S.L. Discovery of pyrazolopyrimidines as the first class of allosteric agonists for the high affinity nicotinic acid receptor GPR109A. Bioorg. Med. Chem. Lett., 2008, 18(18), 4948-4951.
[http://dx.doi.org/10.1016/j.bmcl.2008.08.039] [PMID: 18752940]
[154]
Childress, E.S.; Wieting, J.M.; Felts, A.S.; Breiner, M.M.; Long, M.F.; Luscombe, V.B.; Rodriguez, A.L.; Cho, H.P.; Blobaum, A.L.; Niswender, C.M.; Emmitte, K.A.; Conn, P.J.; Lindsley, C.W. Discovery of novel central nervous system penetrant metabotropic glutamate receptor subtype 2 (mGlu2) negative allosteric modulators (NAMs) based on functionalized pyrazolo[1,5- a]pyrimidine-5-carboxamide and thieno[3,2- b]pyridine-5-carboxamide Cores. J. Med. Chem., 2019, 62(1), 378-384.
[http://dx.doi.org/10.1021/acs.jmedchem.8b01266] [PMID: 30350962]
[155]
Quancard, J.; Simic, O.; Pissot Soldermann, C.; Aichholz, R.; Blatter, M.; Renatus, M.; Erbel, P.; Melkko, S.; Endres, R.; Sorge, M.; Kieffer, L.; Wagner, T.; Beltz, K.; Mcsheehy, P.; Wartmann, M.; Régnier, C.H.; Calzascia, T.; Radimerski, T.; Bigaud, M.; Weiss, A.; Bornancin, F.; Schlapbach, A. Optimization of the in vivo potency of pyrazolopyrimidine MALT1 protease inhibitors by reducing metabolism and increasing potency in whole blood. J. Med. Chem., 2020, 63(23), 14594-14608.
[http://dx.doi.org/10.1021/acs.jmedchem.0c01246] [PMID: 33216547]
[156]
Makarov, V.A.; Tafeenko, V.A.; Granik, V.G. Synthesis of pyrazolo[1,5-a]pyrimidines by the reaction of dicarbonyl compounds with 3,5-diamino-4-nitropyrazole. Chem. Heterocycl. Compd., 1998, 34(12), 1423-1427.
[http://dx.doi.org/10.1007/BF02317814]
[157]
Makarov, V.A.; Soloveva, N.P.; Chernyshev, V.V.; Sonneveld, E.J.; Granik, V.G. Study of the reaction of 3,5-diamino-4-carbomethoxypyrazole with acetoacetic ester. synthesis of pyrazolo[1,5-a]pyrimidine. Chem. Heterocycl. Compd., 2000, 36(1), 70-73.
[http://dx.doi.org/10.1007/BF02256848]
[158]
Makarov, V.A.; Solov’eva, N.P.; Ryabova, O.B.; Granik, V.G. Synthesis of pyrazolo[1,5-a]pyrimidines by reaction of 3,5-diamino-4-nitropyrazole with acetoacetic ester in the presence of alkaline agents. Chem. Heterocycl. Compd., 2000, 36(1), 65-69.
[http://dx.doi.org/10.1007/BF02256847]
[159]
Larsen, S.D.; Spilman, C.H.; Bell, F.P.; Dinh, D.M.; Martinborough, E.; Wilson, G.J. Synthesis and hypocholesterolemic activity of 6,7-dihydro-4H-pyrazolo[1,5-a]pyrrolo[3,4-d]pyrimidine-5,8-diones, novel inhibitors of acylCoA:Cholesterol O-acyltransferase. J. Med. Chem., 1991, 34(5), 1721-1727.
[http://dx.doi.org/10.1021/jm00109a028] [PMID: 2033594]
[160]
Selleri, S.; Bruni, F.; Costagli, C.; Costanzo, A.; Guerrini, G.; Ciciani, G.; Gratteri, P.; Bonaccini, C.; Malmberg Aiello, P.; Besnard, F.; Renard, S.; Costa, B.; Martini, C. Synthesis and benzodiazepine receptor affinity of pyrazolo[1,5-a]pyrimidine derivatives. 3. New 6-(3-thienyl) series as alpha 1 selective ligands. J. Med. Chem., 2003, 46(2), 310-313.
[http://dx.doi.org/10.1021/jm020999w] [PMID: 12519068]
[161]
Danagulyan, G.G.; Boyakhchyan, A.P.; Kirakosyan, V.G. An example of a domino reaction in the synthesis of pyrazolo[1,5-a]pyrimidine derivative. Chem. Heterocycl. Compd., 2010, 46(6), 768-769.
[http://dx.doi.org/10.1007/s10593-010-0583-1]
[162]
Wang, X.; Berger, D.M.; Salaski, E.J.; Torres, N.; Dutia, M.; Hanna, C.; Hu, Y.; Levin, J.I.; Powell, D.; Wojciechowicz, D.; Collins, K.; Frommer, E.; Lucas, J. Indazolylpyrazolopyrimidine as highly potent B-Raf inhibitors with in vivo activity. J. Med. Chem., 2010, 53(21), 7874-7878.
[http://dx.doi.org/10.1021/jm1007566] [PMID: 20961062]
[163]
Aghazadeh Tabrizi, M.; Baraldi, P.G.; Saponaro, G.; Moorman, A.R.; Romagnoli, R.; Preti, D.; Baraldi, S.; Ruggiero, E.; Tintori, C.; Tuccinardi, T.; Vincenzi, F.; Borea, P.A.; Varani, K. Discovery of 7-oxopyrazolo[1,5-a]pyrimidine-6-carboxamides as potent and selective CB(2) cannabinoid receptor inverse agonists. J. Med. Chem., 2013, 56(11), 4482-4496.
[http://dx.doi.org/10.1021/jm400182t] [PMID: 23697626]
[164]
Danagulyan, G.G.; Boyakhchyan, A.P.; Danagulyan, A.G.; Panosyan, H.A. C–C Recyclizations of some 2,7-disubstituted 6-ethoxycarbonylpyrazolo[1,5-a]pyrimidines. Chem. Heterocycl. Compd., 2011, 47(3), 321-331.
[http://dx.doi.org/10.1007/s10593-011-0760-x]
[165]
Denislamova, E.S.; Bubnov, N.V.; Aliev, Z.G. Five-membered 2,3-dioxo heterocycles: LXXX. Recyclization of 1H-pyrrole-2,3-diones into pyrazolo[1,5-a]pyrimidines by the action of pyrazolamine. Crystalline and molecular structure of substituted pyrazolo[1,5-a]pyrimidine. Russ. J. Org. Chem., 2011, 47, 1362-1365.
[http://dx.doi.org/10.1134/S107042801109017X]
[166]
Schmitt, D.C.; Niljianskul, N.; Sach, N.W.; Trujillo, J.I. A Parallel Approach to 7-(Hetero)arylpyrazolo[1,5- a]pyrimidin-5-ones. ACS Comb. Sci., 2018, 20(5), 256-260.
[http://dx.doi.org/10.1021/acscombsci.8b00032] [PMID: 29618198]
[167]
Sagar, R.; Park, S.B. Facile and efficient synthesis of carbohybrids as stereodivergent druglike small molecules. J. Org. Chem., 2008, 73(8), 3270-3273.
[http://dx.doi.org/10.1021/jo800190v] [PMID: 18351781]
[168]
Bondock, S.; Khalifa, W.; Fadda, A.A. Utility of 1‐chloro‐3,4‐dihydronaphthalene‐2‐carboxaldehyde in the synthesis of novel heterocycles with pharmaceutical interest. Synth. Commun., 2006, 36(11), 1601-1612.
[http://dx.doi.org/10.1080/00397910600591763]
[169]
Kiselyov, A.S.; Smith, L. Novel one-pot synthesis of polysubstituted pyrazolo[1,5-a]-and imidazo[1,2-a]pyrimidines. Tetrahedron Lett., 2006, 47, 2611-2614.
[http://dx.doi.org/10.1016/j.tetlet.2006.02.031]
[170]
Fouda, A.M.; Abbas, H.S.; Ahmed, E.H.; Shati, A.A.; Alfaifi, M.Y.; Elbehairi, S.E.I. Synthesis, in vitro antimicrobial and cytotoxic activities of some new pyrazolo[1,5-a]pyrimidine derivatives. Molecules, 2019, 24(6), 1080.
[http://dx.doi.org/10.3390/molecules24061080] [PMID: 30893820]
[171]
Sun, J.; Qiu, J-K.; Jiang, B.; Hao, W-J.; Guo, C.; Tu, S-J.I. I2-catalyzed multicomponent reactions for accessing densely functionalized pyrazolo[1,5-a]pyrimidines and their disulphenylated derivatives. J. Org. Chem., 2016, 81(8), 3321-3328.
[http://dx.doi.org/10.1021/acs.joc.6b00332] [PMID: 26991413]
[172]
Ali, T.E.; Ali, M.M.; Abdel-Kariem, S.M.; Ahmed, M.M. Reaction of 2-cyano[(4-oxo-4H-chromen-3-yl)methylidene]acetohydrazide with phosphorus reagents: Synthesis and evaluation of anticancer activities of some novel 1,2-azaphospholes, 1,2,3-diazaphospholidine, and 1,3,2-diaza-phosphinanes bearing a chromone ring. Synth. Commun., 2017, 47(16), 1458-1470.
[http://dx.doi.org/10.1080/00397911.2017.1332224]
[173]
Finlay, H.J.; Lloyd, J.; Vaccaro, W.; Kover, A.; Yan, L.; Bhave, G.; Prol, J.; Huynh, T.; Bhandaru, R.; Caringal, Y.; DiMarco, J.; Gan, J.; Harper, T.; Huang, C.; Conder, M.L.; Sun, H.; Levesque, P.; Blanar, M.; Atwal, K.; Wexler, R. Discovery of ((S)-5-(methoxymethyl)-7-(1-methyl-1H-indol-2-yl)-2-(trifluoromethyl)-4,7-dihydropyrazolo[1,5-a]pyrimidin-6-yl)((S)-2-(3-methylisoxazol-5-yl)pyrrolidin-1-yl)methanone as a potent and selective I(Kur) inhibitor. J. Med. Chem., 2012, 55(7), 3036-3048.
[http://dx.doi.org/10.1021/jm201386u] [PMID: 22409629]
[174]
Kannan, M.; Raichurkar, A.V.; Khan, F.R.N.; Iyer, P.S. Synthesis and in vitro evaluation of novel 8-aminoquinoline-pyrazolopyrimidine hybrids as potent antimalarial agents. Bioorg. Med. Chem. Lett., 2015, 25(5), 1100-1103.
[http://dx.doi.org/10.1016/j.bmcl.2015.01.003] [PMID: 25650255]
[175]
Reddy Kotla, S.K.; Vandavasi, J.K.; Wang, J-J.; Parang, K.; Tiwari, R.K. Palladium-catalyzed intramolecular cross-dehydrogenative coupling: synthesis of fused imidazo[1,2-a]pyrimidines and pyrazolo[1,5-a]pyrimidines. ACS Omega, 2017, 2(1), 11-19.
[http://dx.doi.org/10.1021/acsomega.6b00417] [PMID: 31457205]
[176]
Hoang, G.L.; Streit, A.D.; Ellman, J.A. Three-Component Coupling of Aldehydes, Aminopyrazoles, and Sulfoxonium Ylides via Rhodium(III)-Catalyzed Imidoyl C-H Activation: Synthesis of Pyrazolo[1,5- a]pyrimidines. J. Org. Chem., 2018, 83(24), 15347-15360.
[http://dx.doi.org/10.1021/acs.joc.8b02606] [PMID: 30525637]
[177]
Alizadeh-Kouzehrash, M.; Rahmati, A. A four-component reaction: Regio- and chemoselective formation of 7-amino-2-(tert-butyl)-5-aryl-4,5-dihydropyrazolo[1,5-a]pyrimidine-6-carbonitrile. Mol. Divers., 2020, 24(3), 753-761.
[http://dx.doi.org/10.1007/s11030-019-09976-x] [PMID: 31321647]
[178]
Quiroga, J.; Hormaza, A.; Insuasty, B.; Saitz, C.; Cañete, A.; Jullian, C. Synthesis of pyrazolo[1,5‐a]pyrimidines in the reaction of 5‐amino‐3‐arylpyrazoles with methoxymethylene meldrum’s acid derivatives and thermolysis of their pyrazolylaminomethylene derivatives. J. Heterocycl. Chem., 1998, 35(1), 61-64.
[http://dx.doi.org/10.1002/jhet.5570350112]
[179]
Pinho e Melo, T.M.; Nunes, C.M.; Soares, M.I.L.; Paixão, J.A.; Beja, A.M.; Silva, M.R. Chemistry of diazafulvenium methides in the synthesis of functionalized pyrazoles. J. Org. Chem., 2007, 72(12), 4406-4415.
[http://dx.doi.org/10.1021/jo070265x] [PMID: 17489636]
[180]
Yeh, V.S.C.; Beno, D.W.A.; Brodjian, S.; Brune, M.E.; Cullen, S.C.; Dayton, B.D.; Dhaon, M.K.; Falls, H.D.; Gao, J.; Grihalde, N.; Hajduk, P.; Hansen, T.M.; Judd, A.S.; King, A.J.; Klix, R.C.; Larson, K.J.; Lau, Y.Y.; Marsh, K.C.; Mittelstadt, S.W.; Plata, D.; Rozema, M.J.; Segreti, J.A.; Stoner, E.J.; Voorbach, M.J.; Wang, X.; Xin, X.; Zhao, G.; Collins, C.A.; Cox, B.F.; Reilly, R.M.; Kym, P.R.; Souers, A.J. Identification and preliminary characterization of a potent, safe, and orally efficacious inhibitor of acyl-CoA:Diacylglycerol acyltransferase 1. J. Med. Chem., 2012, 55(4), 1751-1757.
[http://dx.doi.org/10.1021/jm201524g] [PMID: 22263872]
[181]
Hanan, E.J.; van Abbema, A.; Barrett, K.; Blair, W.S.; Blaney, J.; Chang, C.; Eigenbrot, C.; Flynn, S.; Gibbons, P.; Hurley, C.A.; Kenny, J.R.; Kulagowski, J.; Lee, L.; Magnuson, S.R.; Morris, C.; Murray, J.; Pastor, R.M.; Rawson, T.; Siu, M.; Ultsch, M.; Zhou, A.; Sampath, D.; Lyssikatos, J.P. Discovery of potent and selective pyrazolopyrimidine janus kinase 2 inhibitors. J. Med. Chem., 2012, 55(22), 10090-10107.
[http://dx.doi.org/10.1021/jm3012239] [PMID: 23061660]
[182]
Castillo, J-C.; Estupiñan, D.; Nogueras, M.; Cobo, J.; Portilla, J. 6-(Aryldiazenyl)pyrazolo[1,5-a]pyrimidines as Strategic Intermediates for the Synthesis of Pyrazolo[5,1-b]purines. J. Org. Chem., 2016, 81(24), 12364-12373.
[http://dx.doi.org/10.1021/acs.joc.6b02431] [PMID: 27978735]
[183]
Zhang, Y-Y.; Gao, S.; Liu, Y-X.; Wang, C.; Jiang, W.; Zhao, L-X.; Fu, Y.; Ye, F. Design, synthesis, and biological activity of novel diazabicyclo derivatives as safeners. J. Agric. Food Chem., 2020, 68(11), 3403-3414.
[http://dx.doi.org/10.1021/acs.jafc.9b07449] [PMID: 32101688]
[184]
Coluccini, C.; Metrangolo, P.; Parachini, M.; Pasini, D.; Resnati, G.; Righetti, P. “Push-pull” supramolecular chromophores supported on cyclopolymers. J. Polym. Sci. A Polym. Chem., 2008, 46(15), 5202-5213.
[http://dx.doi.org/10.1002/pola.22848]
[185]
Caricato, M.; Delforge, A.; Bonifazi, D.; Dondi, D.; Mazzanti, A.; Pasini, D. Chiral nanostructuring of multivalent macrocycles in solution and on surfaces. Org. Biomol. Chem., 2015, 13(12), 3593-3601.
[http://dx.doi.org/10.1039/C4OB02643H] [PMID: 25621466]
[186]
Caricato, M.; Coluccini, C.; Dondi, D.; Vander Griend, D.A.; Pasini, D. Nesting complexation of C60 with large, rigid D2 symmetrical macrocycles. Org. Biomol. Chem., 2010, 8(14), 3272-3280.
[http://dx.doi.org/10.1039/c004379f] [PMID: 20523939]
[187]
Pasini, D.; Klopp, J.M.; Fréchet, J.M.J. Design, synthesis, and characterization of carbon-rich cyclopolymers for 193 nm microlithography. Chem. Mater., 2001, 13(11), 4136-4146.
[http://dx.doi.org/10.1021/cm0104304]
[188]
Nitti, A.; Bianchi, G.; Po, R.; Swager, T.M.; Pasini, D. Domino direct arylation and cross-aldol for rapid construction of extended polycyclic π-scaffolds. J. Am. Chem. Soc., 2017, 139(26), 8788-8791.
[http://dx.doi.org/10.1021/jacs.7b03412] [PMID: 28621529]
[189]
Guo, K-L.; Zhao, L-X.; Wang, Z-W.; Gao, Y-C.; Li, J-J.; Gao, S.; Fu, Y.; Ye, F. Design, synthesis, and bioevaluation of substituted phenyl isoxazole analogues as herbicide safeners. J. Agric. Food Chem., 2020, 68(39), 10550-10559.
[http://dx.doi.org/10.1021/acs.jafc.0c01867] [PMID: 32886503]
[190]
Wang, Z-W.; Zhao, L-X.; Ma, P.; Ye, T.; Fu, Y.; Ye, F. Fragments recombination, design, synthesis, safener activity and CoMFA model of novel substituted dichloroacetylphenyl sulfonamide derivatives. Pest Manag. Sci., 2020, 77(4), 1724-1738.
[http://dx.doi.org/10.1002/ps.6193] [PMID: 33236407]
[191]
Kang, T.; Gao, S.; Zhao, L-X.; Zhai, Y.; Ye, F.; Fu, Y. Design, synthesis, and SAR of novel 1,3-disubstituted imidazolidine or hexahydropyrimidine derivatives as herbicide safeners. J. Agric. Food Chem., 2021, 69(1), 45-54.
[http://dx.doi.org/10.1021/acs.jafc.0c04436] [PMID: 33372787]

Rights & Permissions Print Export Cite as
© 2022 Bentham Science Publishers | Privacy Policy