Generic placeholder image

Anti-Cancer Agents in Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 1871-5206
ISSN (Online): 1875-5992

Review Article

Radioprotective Role of Natural Polyphenols: From Sources to Mechanisms

Author(s): Muhammad Adnan, Azhar Rasul, Muhammad A. Shah, Ghulam Hussain, Muhammad Asrar, Ammara Riaz, Iqra Sarfraz, Arif Hussain, Khatereh Khorsandi, Ngit S. Lai and Syed M. Hussain*

Volume 22, Issue 1, 2022

Published on: 19 April, 2021

Page: [30 - 39] Pages: 10

DOI: 10.2174/1871520621666210419095829

Price: $65

Abstract

Abstract: The identification and development of radioprotective agents have emerged as a subject matter of research during recent years due to the growing usage of ionizing radiation in different areas of human life. Previous work on synthetic radioprotectors has achieved limited progress because of the numerous issues associated with toxicity. Compounds extracted from plants have the potential to serve as lead candidates for developing ideal radioprotectors due to their low cost, safety, and selectivity. Polyphenols are the most abundant and commonly dispersed group of biologically active molecules possessing a broad range of pharmacological activities. Polyphenols have displayed efficacy for radioprotection during various investigations and can be administered at high doses with lesser toxicity. Detoxification of free radicals, modulating inflammatory responses, DNA repair, stimulation of hematopoietic recovery, and immune functions are the main mechanisms for radiation protection with polyphenols. Epicatechin, epigallocatechin-3-gallate, apigenin, caffeic acid phenylethylester, and silibinin provide cytoprotection together with the suppression of many pro-inflammatory cytokines owing to their free radical scavenging, anti-oxidant, and anti-inflammatory properties. Curcumin, resveratrol, quercetin, gallic acid, and rutin's radioprotective properties are regulated primarily by the direct or indirect decline in cellular stress. Thus, polyphenols may serve as potential candidates for radioprotection in the near future; however, extensive investigations are still required to better understand their protection mechanisms.

Keywords: Radioprotective compounds, polyphenols, flavonoids, ionizing radiations, antioxidants, detoxification.

Graphical Abstract
[1]
Maurya, D.K.; Devasagayam, T.P.; Nair, C.K. Some novel approaches for radioprotection and the beneficial effect of natural products. Indian J. Exp. Biol., 2006, 44(2), 93-114.
[PMID: 16480175]
[2]
Ferlay, J.; Colombet, M.; Soerjomataram, I.; Mathers, C.; Parkin, D.M.; Piñeros, M.; Znaor, A.; Bray, F. Estimating the global cancer incidence and mortality in 2018: GLOBOCAN sources and methods. Int. J. Cancer, 2019, 144(8), 1941-1953.
[http://dx.doi.org/10.1002/ijc.31937] [PMID: 30350310]
[3]
Hazra, B.; Ghosh, S.; Kumar, A.; Pandey, B.N. The prospective role of plant products in radiotherapy of cancer: a current overview. Front. Pharmacol., 2012, 2, 94.
[http://dx.doi.org/10.3389/fphar.2011.00094] [PMID: 22291649]
[4]
Painuli, S.; Kumar, N. Prospects in the development of natural radioprotective therapeutics with anti-cancer properties from the plants of Uttarakhand region of India. J. Ayurveda Integr. Med., 2016, 7(1), 62-68.
[http://dx.doi.org/10.1016/j.jaim.2015.09.001] [PMID: 27240731]
[5]
Reisz, J.A.; Bansal, N.; Qian, J.; Zhao, W.; Furdui, C.M. Effects of ionizing radiation on biological molecules-mechanisms of damage and emerging methods of detection. Antioxid. Redox Signal., 2014, 21(2), 260-292.
[http://dx.doi.org/10.1089/ars.2013.5489] [PMID: 24382094]
[6]
Turner, N.D.; Braby, L.A.; Ford, J.; Lupton, J.R. Opportunities for nutritional amelioration of radiation-induced cellular damage. Nutrition, 2002, 18(10), 904-912.
[http://dx.doi.org/10.1016/S0899-9007(02)00945-0] [PMID: 12361786]
[7]
C Jagetia, G. Radioprotective potential of plants and herbs against the effects of ionizing radiation. J. Clin. Biochem. Nutr., 2007, 40(2), 74-81.
[http://dx.doi.org/10.3164/jcbn.40.74] [PMID: 18188408]
[8]
Arora, R.; Gupta, D.; Chawla, R.; Sagar, R.; Sharma, A.; Kumar, R.; Prasad, J.; Singh, S.; Samanta, N.; Sharma, R.K. Radioprotection by plant products: present status and future prospects. Phytother. Res., 2005, 19(1), 1-22.
[http://dx.doi.org/10.1002/ptr.1605] [PMID: 15799007]
[9]
Brizel, D.M. Pharmacologic approaches to radiation protection. J. Clin. Oncol., 2007, 25(26), 4084-4089.
[http://dx.doi.org/10.1200/JCO.2007.11.5816] [PMID: 17827457]
[10]
Nair, C.K.; Parida, D.K.; Nomura, T. Radioprotectors in radiotherapy. J. Radiat. Res. (Tokyo), 2001, 42(1), 21-37.
[http://dx.doi.org/10.1269/jrr.42.21] [PMID: 11393887]
[11]
Cheki, M.; Shirazi, A.; Mahmoudzadeh, A.; Bazzaz, J.T.; Hosseinimehr, S.J. The radioprotective effect of metformin against cytotoxicity and genotoxicity induced by ionizing radiation in cultured human blood lymphocytes. Mutat. Res., 2016, 809, 24-32.
[http://dx.doi.org/10.1016/j.mrgentox.2016.09.001] [PMID: 27692296]
[12]
Maisin, J.R. Bacq and Alexander Award lecture-chemical radioprotection: past, present, and future prospects. Int. J. Radiat. Biol., 1998, 73(4), 443-450.
[http://dx.doi.org/10.1080/095530098142284] [PMID: 9587083]
[13]
Cassatt, D.R.; Fazenbaker, C.A.; Bachy, C.M.; Hanson, M.S. Preclinical modeling of improved amifostine (Ethyol) use in radiation therapy. Semin. Radiat. Oncol., 2002, 12(1)(Suppl. 1), 97-102.
[http://dx.doi.org/10.1053/srao.2002.31382] [PMID: 11917293]
[14]
Lindegaard, J.C.; Grau, C. Has the outlook improved for amifostine as a clinical radioprotector? Radiother. Oncol., 2000, 57(2), 113-118.
[http://dx.doi.org/10.1016/S0167-8140(00)00235-8] [PMID: 11054513]
[15]
Calabro-Jones, P.M.; Fahey, R.C.; Smoluk, G.D.; Ward, J.F. Alkaline phosphatase promotes radioprotection and accumulation of WR-1065 in V79-171 cells incubated in medium containing WR-2721. Int. J. Radiat. Biol. Relat. Stud. Phys. Chem. Med., 1985, 47(1), 23-27.
[http://dx.doi.org/10.1080/09553008514550041] [PMID: 2982751]
[16]
Kouvaris, J.R.; Kouloulias, V.E.; Vlahos, L.J. Amifostine: the first selective-target and broad-spectrum radioprotector. Oncologist, 2007, 12(6), 738-747.
[http://dx.doi.org/10.1634/theoncologist.12-6-738] [PMID: 17602063]
[17]
Kuntić, V.S.; Stanković, M.B.; Vujić, Z.B.; Brborić, J.S.; Uskoković-Marković, S.M. Radioprotectors - the evergreen topic. Chem. Biodivers., 2013, 10(10), 1791-1803.
[http://dx.doi.org/10.1002/cbdv.201300054] [PMID: 24130023]
[18]
Szejk, M.; Kołodziejczyk-Czepas, J.; Żbikowska, H.M. Radioprotectors in radiotherapy - advances in the potential application of phytochemicals. Postepy Hig. Med. Dosw., 2016, 70(0), 722-734.
[http://dx.doi.org/10.5604/17322693.1208039] [PMID: 27356603]
[19]
Stone, H.B.; Moulder, J.E.; Coleman, C.N.; Ang, K.K.; Anscher, M.S.; Barcellos-Hoff, M.H.; Dynan, W.S.; Fike, J.R.; Grdina, D.J.; Greenberger, J.S.; Hauer-Jensen, M.; Hill, R.P.; Kolesnick, R.N.; Macvittie, T.J.; Marks, C.; McBride, W.H.; Metting, N.; Pellmar, T.; Purucker, M.; Robbins, M.E.; Schiestl, R.H.; Seed, T.M.; Tomaszewski, J.E.; Travis, E.L.; Wallner, P.E.; Wolpert, M.; Zaharevitz, D. Models for evaluating agents intended for the prophylaxis, mitigation and treatment of radiation injuries. Report of an NCI Workshop. Radiat. Res., 2004, 162(6), 711-728.
[http://dx.doi.org/10.1667/RR3276] [PMID: 15548121]
[20]
Dayem, M.; Navarro, V.; Marsault, R.; Darcourt, J.; Lindenthal, S.; Pourcher, T. From the molecular characterization of iodide transporters to the prevention of radioactive iodide exposure. Biochimie, 2006, 88(11), 1793-1806.
[http://dx.doi.org/10.1016/j.biochi.2006.07.015] [PMID: 16905238]
[21]
Tsao, R. Chemistry and biochemistry of dietary polyphenols. Nutrients, 2010, 2(12), 1231-1246.
[http://dx.doi.org/10.3390/nu2121231] [PMID: 22254006]
[22]
Kuruba, V.; Gollapalli, P. Natural radioprotectors and their impact on cancer drug discovery. Radiat. Oncol. J., 2018, 36(4), 265-275.
[http://dx.doi.org/10.3857/roj.2018.00381] [PMID: 30630265]
[23]
Cho, Y.J.; Yi, C.O.; Jeon, B.T.; Jeong, Y.Y.; Kang, G.M.; Lee, J.E.; Roh, G.S.; Lee, J.D. Curcumin attenuates radiation-induced inflammation and fibrosis in rat lungs. Korean J. Physiol. Pharmacol., 2013, 17(4), 267-274.
[http://dx.doi.org/10.4196/kjpp.2013.17.4.267] [PMID: 23946685]
[24]
Hall, S.; Desbrow, B.; Anoopkumar-Dukie, S.; Davey, A.K.; Arora, D.; McDermott, C.; Schubert, M.M.; Perkins, A.V.; Kiefel, M.J.; Grant, G.D. A review of the bioactivity of coffee, caffeine and key coffee constituents on inflammatory responses linked to depression. Food Res. Int., 2015, 76(Pt 3), 626-636.
[http://dx.doi.org/10.1016/j.foodres.2015.07.027] [PMID: 28455046]
[25]
Pratheeshkumar, P.; Sreekala, C.; Zhang, Z.; Budhraja, A.; Ding, S.; Son, Y.O.; Wang, X.; Hitron, A.; Hyun-Jung, K.; Wang, L.; Lee, J.C.; Shi, X. Cancer prevention with promising natural products: mechanisms of action and molecular targets. Anticancer. Agents Med. Chem., 2012, 12(10), 1159-1184.
[http://dx.doi.org/10.2174/187152012803833035] [PMID: 22583402]
[26]
Aneshensel, C.S.; Becerra, R.M.; Fielder, E.P.; Schuler, R.H. Onset of fertility-related events during adolescence: a prospective comparison of Mexican American and non-Hispanic white females. Am. J. Public Health, 1990, 80(8), 959-963.
[http://dx.doi.org/10.2105/AJPH.80.8.959] [PMID: 2368858]
[27]
Benkovic, V.; Knezevic, A.H.; Dikic, D.; Lisicic, D.; Orsolic, N.; Basic, I.; Kosalec, I.; Kopjar, N. Radioprotective effects of propolis and quercetin in gamma-irradiated mice evaluated by the alkaline comet assay. Phytomedicine, 2008, 15(10), 851-858.
[http://dx.doi.org/10.1016/j.phymed.2008.02.010] [PMID: 18424105]
[28]
Martinez, K.B.; Mackert, J.D.; McIntosh, M.K. Chapter 18 Polyphenols and Intestinal Health Nutrition and Functional Foods for Healthy Aging; , 2017, pp. 191-210.
[29]
Teplova, V.V.; Isakova, E.P.; Klein, O.I.; Dergachova, D.I.; Gessler, N.N.; Deryabina, Y.I. Natural Polyphenols: Biological Activity, Pharmacological Potential, Means of Metabolic Engineering. Appl. Biochem. Microbiol., 2018, 54(3), 221-237.
[http://dx.doi.org/10.1134/S0003683818030146]
[30]
Mun, G.I.; Kim, S.; Choi, E.; Kim, C.S.; Lee, Y.S. Pharmacology of natural radioprotectors. Arch. Pharm. Res., 2018, 41(11), 1033-1050.
[http://dx.doi.org/10.1007/s12272-018-1083-6] [PMID: 30361949]
[31]
Mishra, K.N.; Moftah, B.A.; Alsbeih, G.A. Appraisal of mechanisms of radioprotection and therapeutic approaches of radiation countermeasures. Biomed. Pharmacother., 2018, 106, 610-617.
[http://dx.doi.org/10.1016/j.biopha.2018.06.150] [PMID: 29990850]
[32]
Venkatachalam, S.; Chattopadhyay, S. Natural radioprotective agents: An overview. Curr. Org. Chem., 2005, 9(4), 389-404.
[http://dx.doi.org/10.2174/1385272053174930]
[33]
Morgan, S.C. adium-223 in metastatic castration-resistant prostate cancer: clinical development and use in contemporary practice0. J Med Imaging Radiat Sci, 2019, 50(4S1), S26-S30.,
[34]
Nussbaum, N.; George, D.J.; Abernethy, A.P.; Dolan, C.M.; Oestreicher, N.; Flanders, S.; Dorff, T.B. Patient experience in the treatment of metastatic castration-resistant prostate cancer: state of the science. Prostate Cancer Prostatic Dis., 2016, 19(2), 111-121.
[http://dx.doi.org/10.1038/pcan.2015.42] [PMID: 26832363]
[35]
Lobo, V.; Patil, A.; Phatak, A.; Chandra, N. Free radicals, antioxidants and functional foods: Impact on human health. Pharmacogn. Rev., 2010, 4(8), 118-126.
[http://dx.doi.org/10.4103/0973-7847.70902] [PMID: 22228951]
[36]
Samarth, R.M.; Panwar, M.; Kumar, M.; Soni, A.; Kumar, M.; Kumar, A. Evaluation of antioxidant and radical-scavenging activities of certain radioprotective plant extracts. Food Chem., 2008, 106(2), 868-873.
[http://dx.doi.org/10.1016/j.foodchem.2007.05.005]
[37]
Končić, M.Z.; Barbarić, M.; Perković, I.; Zorc, B. Antiradical, chelating and antioxidant activities of hydroxamic acids and hydroxyureas. Molecules, 2011, 16(8), 6232-6242.
[http://dx.doi.org/10.3390/molecules16086232] [PMID: 21788931]
[38]
Pastore, S.; Potapovich, A.; Kostyuk, V.; Mariani, V.; Lulli, D.; De Luca, C.; Korkina, L. Plant polyphenols effectively protect HaCaT cells from ultraviolet C-triggered necrosis and suppress inflammatory chemokine expression. Ann. N. Y. Acad. Sci., 2009, 1171(1), 305-313.
[http://dx.doi.org/10.1111/j.1749-6632.2009.04684.x] [PMID: 19723070]
[39]
Ishihara, T.; Kaidzu, S.; Kimura, H.; Koyama, Y.; Matsuoka, Y.; Ohira, A. Protective effect of highly polymeric a-type proanthocyanidins from seed shells of Japanese horse chestnut (Aesculus turbinata BLUME) against light-induced oxidative damage in rat retina. Nutrients, 2018, 10(5)E593
[http://dx.doi.org/10.3390/nu10050593] [PMID: 29748512]
[40]
Kanski, J.; Aksenova, M.; Stoyanova, A.; Butterfield, D.A. Ferulic acid antioxidant protection against hydroxyl and peroxyl radical oxidation in synaptosomal and neuronal cell culture systems in vitro: structure-activity studies. J. Nutr. Biochem., 2002, 13(5), 273-281.
[http://dx.doi.org/10.1016/S0955-2863(01)00215-7] [PMID: 12015157]
[41]
Srinivasan, M.; Rajendra Prasad, N.; Menon, V.P. Protective effect of curcumin on gamma-radiation induced DNA damage and lipid peroxidation in cultured human lymphocytes. Mutat. Res., 2006, 611(1-2), 96-103.
[http://dx.doi.org/10.1016/j.mrgentox.2006.07.002] [PMID: 16973408]
[42]
Prabhakar, K.R.; Veerapur, V.P.; Parihar, K.V.; Priyadarsini, K.I.; Rao, B.S.; Unnikrishnan, M.K. Evaluation and optimization of radioprotective activity of Coronopus didymus Linn. in gamma-irradiated mice. Int. J. Radiat. Biol., 2006, 82(8), 525-536.
[http://dx.doi.org/10.1080/09553000600876686] [PMID: 16966180]
[43]
Di Maggio, F.M.; Minafra, L.; Forte, G.I.; Cammarata, F.P.; Lio, D.; Messa, C.; Gilardi, M.C.; Bravatà, V. Portrait of inflammatory response to ionizing radiation treatment. J. Inflamm. (Lond.), 2015, 12, 14.
[http://dx.doi.org/10.1186/s12950-015-0058-3] [PMID: 25705130]
[44]
Straub, J.M.; New, J.; Hamilton, C.D.; Lominska, C.; Shnayder, Y.; Thomas, S.M. Radiation-induced fibrosis: mechanisms and implications for therapy. J. Cancer Res. Clin. Oncol., 2015, 141(11), 1985-1994.
[http://dx.doi.org/10.1007/s00432-015-1974-6] [PMID: 25910988]
[45]
Lee, J.C.; Krochak, R.; Blouin, A.; Kanterakis, S.; Chatterjee, S.; Arguiri, E.; Vachani, A.; Solomides, C.C.; Cengel, K.A.; Christofidou-Solomidou, M. Dietary flaxseed prevents radiation-induced oxidative lung damage, inflammation and fibrosis in a mouse model of thoracic radiation injury. Cancer Biol. Ther., 2009, 8(1), 47-53.
[http://dx.doi.org/10.4161/cbt.8.1.7092] [PMID: 18981722]
[46]
Yang, H.J.; Youn, H.; Seong, K.M.; Yun, Y.J.; Kim, W.; Kim, Y.H.; Lee, J.Y.; Kim, C.S.; Jin, Y.W.; Youn, B. Psoralidin, a dual inhibitor of COX-2 and 5-LOX, regulates ionizing radiation (IR)-induced pulmonary inflammation. Biochem. Pharmacol., 2011, 82(5), 524-534.
[http://dx.doi.org/10.1016/j.bcp.2011.05.027] [PMID: 21669192]
[47]
Lachumy, S.J.; Oon, C.E.; Deivanai, S.; Saravanan, D.; Vijayarathna, S.; Choong, Y.S.; Yeng, C.; Latha, L.Y.; Sasidharan, S. Herbal remedies for combating irradiation: a green anti-irradiation approach. Asian Pac. J. Cancer Prev., 2013, 14(10), 5553-5565.
[http://dx.doi.org/10.7314/APJCP.2013.14.10.5553] [PMID: 24289545]
[48]
Hutchinson, F. The molecular basis for radiation effects on cells. Cancer Res., 1966, 26(9), 2045-2052.
[PMID: 5924966]
[49]
Pollycove, M.; Feinendegen, L.E. Radiation-induced versus endogenous DNA damage: possible effect of inducible protective responses in mitigating endogenous damage.Hum Exp Toxicol, 2003, 22(6), 290-306. discussion 307, 315-297, 319-223.,
[http://dx.doi.org/10.1191/0960327103ht365oa]
[50]
Jonathan, E.C.; Bernhard, E.J.; McKenna, W.G. How does radiation kill cells? Curr. Opin. Chem. Biol., 1999, 3(1), 77-83.
[http://dx.doi.org/10.1016/S1367-5931(99)80014-3] [PMID: 10021401]
[51]
Bryant, P.E. Enzymatic restriction of mammalian cell DNA: evidence for double-strand breaks as potentially lethal lesions. Int. J. Radiat. Biol. Relat. Stud. Phys. Chem. Med., 1985, 48(1), 55-60.
[http://dx.doi.org/10.1080/09553008514551061] [PMID: 2989196]
[52]
Radford, I.R. The level of induced DNA double-strand breakage correlates with cell killing after X-irradiation. Int. J. Radiat. Biol. Relat. Stud. Phys. Chem. Med., 1985, 48(1), 45-54.
[http://dx.doi.org/10.1080/09553008514551051] [PMID: 3874180]
[53]
Szejk, M.; Poplawski, T.; Czubatka-Bienkowska, A.; Olejnik, A.K.; Pawlaczyk-Graja, I.; Gancarz, R.; Zbikowska, H.M. A comparative study on the radioprotective potential of the polyphenolic glycoconjugates from medicinal plants of Rosaceae and Asteraceae families versus their aglycones. J. Photochem. Photobiol. B, 2017, 171, 50-57.
[http://dx.doi.org/10.1016/j.jphotobiol.2017.04.027] [PMID: 28475935]
[54]
Prasad, N.R.; Srinivasan, M.; Pugalendi, K.V.; Menon, V.P. Protective effect of ferulic acid on γ-radiation-induced micronuclei, dicentric aberration and lipid peroxidation in human lymphocytes. Mutat. Res., 2006, 603(2), 129-134.
[http://dx.doi.org/10.1016/j.mrgentox.2005.11.002] [PMID: 16406783]
[55]
Hall, S.; Rudrawar, S.; Zunk, M.; Bernaitis, N.; Arora, D.; McDermott, C.M.; Anoopkumar-Dukie, S. Protection against Radiotherapy-Induced Toxicity. Antioxidants, 2016, 5(3)E22
[http://dx.doi.org/10.3390/antiox5030022] [PMID: 27399787]
[56]
Cinkilic, N.; Cetintas, S.K.; Zorlu, T.; Vatan, O.; Yilmaz, D.; Cavas, T.; Tunc, S.; Ozkan, L.; Bilaloglu, R. Radioprotection by two phenolic compounds: chlorogenic and quinic acid, on X-ray induced DNA damage in human blood lymphocytes in vitro. Food Chem. Toxicol., 2013, 53, 359-363.
[http://dx.doi.org/10.1016/j.fct.2012.12.008] [PMID: 23266271]
[57]
Guo, C.Y.; Luo, L.; Urata, Y.; Goto, S.; Huang, W.J.; Takamura, S.; Hayashi, F.; Doi, H.; Kitajima, Y.; Ono, Y.; Ogi, T.; Li, T.S. Sensitivity and dose dependency of radiation-induced injury in hematopoietic stem/progenitor cells in mice. Sci. Rep., 2015, 5, 8055.
[http://dx.doi.org/10.1038/srep08055] [PMID: 25623887]
[58]
Dumont, F.; Le Roux, A.; Bischoff, P. Radiation countermeasure agents: an update. Expert Opin. Ther. Pat., 2010, 20(1), 73-101.
[http://dx.doi.org/10.1517/13543770903490429] [PMID: 20021286]
[59]
Schaue, D.; Kachikwu, E.L.; McBride, W.H. Cytokines in radiobiological responses: a review. Radiat. Res., 2012, 178(6), 505-523.
[http://dx.doi.org/10.1667/RR3031.1] [PMID: 23106210]
[60]
Hu, Y.; Guo, D.H.; Liu, P.; Cao, J.J.; Wang, Y.P.; Yin, J.; Zhu, Y.; Rahman, K. Bioactive components from the tea polyphenols influence on endogenous antioxidant defense system and modulate inflammatory cytokines after total-body irradiation in mice. Phytomedicine, 2011, 18(11), 970-975.
[http://dx.doi.org/10.1016/j.phymed.2011.02.012] [PMID: 21498061]
[61]
Rithidech, K.N.; Tungjai, M.; Whorton, E.B. Protective effect of apigenin on radiation-induced chromosomal damage in human lymphocytes. Mutat. Res., 2005, 585(1-2), 96-104.
[http://dx.doi.org/10.1016/j.mrgentox.2005.04.003] [PMID: 15886050]
[62]
Gandhi, N.M. Baicalein protects mice against radiation-induced DNA damages and genotoxicity. Mol. Cell. Biochem., 2013, 379(1-2), 277-281.
[http://dx.doi.org/10.1007/s11010-013-1649-z] [PMID: 23606056]
[63]
Linard, C.; Marquette, C.; Mathieu, J.; Pennequin, A.; Clarençon, D.; Mathé, D. Acute induction of inflammatory cytokine expression after gamma-irradiation in the rat: effect of an NF-kappaB inhibitor. Int. J. Radiat. Oncol. Biol. Phys., 2004, 58(2), 427-434.
[http://dx.doi.org/10.1016/j.ijrobp.2003.09.039] [PMID: 14751512]
[64]
Cikman, O.; Taysi, S.; Gulsen, M.T.; Demir, E.; Akan, M.; Diril, H.; Kiraz, H.A.; Karaayvaz, M.; Tarakcioglu, M. The radio-protective effects of caffeic acid phenethyl ester and thymoquinone in rats exposed to total head irradiation. Wien. Klin. Wochenschr., 2015, 127(3-4), 103-108.
[http://dx.doi.org/10.1007/s00508-014-0635-0] [PMID: 25409943]
[65]
Mansour, S.Z.; Moawed, F.S.M.; Elmarkaby, S.M. Protective effect of 5, 7-dihydroxyflavone on brain of rats exposed to acrylamide or γ-radiation. J. Photochem. Photobiol. B, 2017, 175, 149-155.
[http://dx.doi.org/10.1016/j.jphotobiol.2017.08.034] [PMID: 28888167]
[66]
Okunieff, P.; Xu, J.; Hu, D.; Liu, W.; Zhang, L.; Morrow, G.; Pentland, A.; Ryan, J.L.; Ding, I. Curcumin protects against radiation-induced acute and chronic cutaneous toxicity in mice and decreases mRNA expression of inflammatory and fibrogenic cytokines. Int. J. Radiat. Oncol. Biol. Phys., 2006, 65(3), 890-898.
[http://dx.doi.org/10.1016/j.ijrobp.2006.03.025] [PMID: 16751071]
[67]
Xie, Y.; Zhao, Q.Y.; Li, H.Y.; Zhou, X.; Liu, Y.; Zhang, H. Curcumin ameliorates cognitive deficits heavy ion irradiation-induced learning and memory deficits through enhancing of Nrf2 antioxidant signaling pathways. Pharmacol. Biochem. Behav., 2014, 126, 181-186.
[http://dx.doi.org/10.1016/j.pbb.2014.08.005] [PMID: 25159739]
[68]
Zhao, H.; Zhu, W.; Jia, L.; Sun, X.; Chen, G.; Zhao, X.; Li, X.; Meng, X.; Kong, L.; Xing, L.; Yu, J. Phase I study of topical epigallocatechin-3-gallate (EGCG) in patients with breast cancer receiving adjuvant radiotherapy. Br. J. Radiol., 2016, 89(1058)20150665
[http://dx.doi.org/10.1259/bjr.20150665] [PMID: 26607642]
[69]
Shin, Y.S.; Shin, H.A.; Kang, S.U.; Kim, J.H.; Oh, Y.T.; Park, K.H.; Kim, C.H. Effect of epicatechin against radiation-induced oral mucositis: in vitro and in vivo study. PLoS One, 2013, 8(7)e69151
[http://dx.doi.org/10.1371/journal.pone.0069151] [PMID: 23874895]
[70]
Maurya, D.K.; Salvi, V.P.; Nair, C.K. Radiation protection of DNA by ferulic acid under in vitro and in vivo conditions. Mol. Cell. Biochem., 2005, 280(1-2), 209-217.
[http://dx.doi.org/10.1007/s11010-005-0170-4] [PMID: 16311925]
[71]
Nair, G.G.; Nair, C.K. Radioprotective effects of gallic acid in mice. BioMed Res. Int., 2013, 2013953079
[http://dx.doi.org/10.1155/2013/953079] [PMID: 24069607]
[72]
Kalpana, K.B.; Devipriya, N.; Srinivasan, M.; Menon, V.P. Investigation of the radioprotective efficacy of hesperidin against gamma-radiation induced cellular damage in cultured human peripheral blood lymphocytes. Mutat. Res., 2009, 676(1-2), 54-61.
[http://dx.doi.org/10.1016/j.mrgentox.2009.03.005] [PMID: 19486865]
[73]
Hosseinimehr, S.J.; Nemati, A. Radioprotective effects of hesperidin against gamma irradiation in mouse bone marrow cells. Br. J. Radiol., 2006, 79(941), 415-418.
[http://dx.doi.org/10.1259/bjr/40692384] [PMID: 16632622]
[74]
Jagetia, G.C.; Venkatesha, V.A.; Reddy, T.K. Naringin, a citrus flavonone, protects against radiation-induced chromosome damage in mouse bone marrow. Mutagenesis, 2003, 18(4), 337-343.
[http://dx.doi.org/10.1093/mutage/geg001] [PMID: 12840107]
[75]
Benković, V.; Knezević, A.H.; Dikić, D.; Lisicić, D.; Orsolić, N.; Basić, I.; Kopjar, N. Radioprotective effects of quercetin and ethanolic extract of propolis in gamma-irradiated mice. Arh. Hig. Rada Toksikol., 2009, 60(2), 129-138.
[http://dx.doi.org/10.2478/10004-1254-60-2009-1908] [PMID: 19581205]
[76]
Horton, J.A.; Li, F.; Chung, E.J.; Hudak, K.; White, A.; Krausz, K.; Gonzalez, F.; Citrin, D. Quercetin inhibits radiation-induced skin fibrosis. Radiat. Res., 2013, 180(2), 205-215.
[http://dx.doi.org/10.1667/RR3237.1] [PMID: 23819596]
[77]
Zhang, H.; Yan, H.; Zhou, X.; Wang, H.; Yang, Y.; Zhang, J.; Wang, H. The protective effects of Resveratrol against radiation-induced intestinal injury. BMC Complement. Altern. Med., 2017, 17(1), 410.
[http://dx.doi.org/10.1186/s12906-017-1915-9] [PMID: 28814292]
[78]
Carsten, R.E.; Bachand, A.M.; Bailey, S.M.; Ullrich, R.L. Resveratrol reduces radiation-induced chromosome aberration frequencies in mouse bone marrow cells. Radiat. Res., 2008, 169(6), 633-638.
[http://dx.doi.org/10.1667/RR1190.1] [PMID: 18494544]
[79]
Xu, L.; Yang, X.; Cai, J.; Ma, J.; Cheng, H.; Zhao, K.; Yang, L.; Cao, Y.; Qin, Q.; Zhang, C.; Zhang, Q.; Sun, X. Resveratrol attenuates radiation-induced salivary gland dysfunction in mice. Laryngoscope, 2013, 123(11), E23-E29.
[http://dx.doi.org/10.1002/lary.24276] [PMID: 23794219]
[80]
Patil, S.L.; Rao, N.B.; Somashekarappa, H.M.; Rajashekhar, K.P. Antigenotoxic potential of rutin and quercetin in Swiss mice exposed to gamma radiation. Biomed. J., 2014, 37(5), 305-313.
[http://dx.doi.org/10.4103/2319-4170.132880] [PMID: 25179701]
[81]
Prasad, N.R.; Menon, V.P.; Vasudev, V.; Pugalendi, K.V. Radioprotective effect of sesamol on gamma-radiation induced DNA damage, lipid peroxidation and antioxidants levels in cultured human lymphocytes. Toxicology, 2005, 209(3), 225-235.
[http://dx.doi.org/10.1016/j.tox.2004.12.009] [PMID: 15795059]
[82]
Parihar, V.K.; Prabhakar, K.R.; Veerapur, V.P.; Kumar, M.S.; Reddy, Y.R.; Joshi, R.; Unnikrishnan, M.K.; Rao, C.M. Effect of sesamol on radiation-induced cytotoxicity in Swiss albino mice. Mutat. Res., 2006, 611(1-2), 9-16.
[http://dx.doi.org/10.1016/j.mrgentox.2006.06.037] [PMID: 17045515]
[83]
Son, Y.; Lee, H.J.; Rho, J.K.; Chung, S.Y.; Lee, C.G.; Yang, K.; Kim, S.H.; Lee, M.; Shin, I.S.; Kim, J.S. The ameliorative effect of silibinin against radiation-induced lung injury: protection of normal tissue without decreasing therapeutic efficacy in lung cancer. BMC Pulm. Med., 2015, 15, 68.
[http://dx.doi.org/10.1186/s12890-015-0055-6] [PMID: 26143275]
[84]
Uma Devi, P.; Ganasoundari, A.; Vrinda, B.; Srinivasan, K.K.; Unnikrishnan, M.K. Radiation protection by the ocimum flavonoids orientin and vicenin: mechanisms of action. Radiat. Res., 2000, 154(4), 455-460.,
[http://dx.doi.org/10.1667/0033-7587(2000)154[0455:RPBTOF]2.0.CO;2] [PMID: 11023610]
[85]
Blay, M.; Espinel, A.E.; Delgado, M.A.; Baiges, I.; Bladé, C.; Arola, L.; Salvadó, J. Isoflavone effect on gene expression profile and biomarkers of inflammation. J. Pharm. Biomed. Anal., 2010, 51(2), 382-390.
[http://dx.doi.org/10.1016/j.jpba.2009.03.028] [PMID: 19410411]
[86]
Verdrengh, M.; Jonsson, I.M.; Holmdahl, R.; Tarkowski, A. Genistein as an anti-inflammatory agent. Inflamm. Res., 2003, 52(8), 341-346.
[http://dx.doi.org/10.1007/s00011-003-1182-8] [PMID: 14504672]
[87]
Smith, D.M.; Dou, Q.P. Green tea polyphenol epigallocatechin inhibits DNA replication and consequently induces leukemia cell apoptosis. Int. J. Mol. Med., 2001, 7(6), 645-652.
[http://dx.doi.org/10.3892/ijmm.7.6.645] [PMID: 11351279]
[88]
Wang, J.; Zhang, Y.Y.; Cheng, J.; Zhang, J.L.; Li, B.S. Preventive and therapeutic effects of quercetin on experimental radiation induced lung injury in mice. Asian Pac. J. Cancer Prev., 2015, 16(7), 2909-2914.
[http://dx.doi.org/10.7314/APJCP.2015.16.7.2909] [PMID: 25854382]
[89]
Sunada, S.; Fujisawa, H.; Cartwright, I.M.; Maeda, J.; Brents, C.A.; Mizuno, K.; Aizawa, Y.; Kato, T.A.; Uesaka, M. Monoglucosyl-rutin as a potential radioprotector in mammalian cells. Mol. Med. Rep., 2014, 10(1), 10-14.
[http://dx.doi.org/10.3892/mmr.2014.2181] [PMID: 24788331]
[90]
Castillo, J.; Benavente-García, O.; Lorente, J.; Alcaraz, M.; Redondo, A.; Ortuño, A.; Del Rio, J.A. Antioxidant activity and radioprotective effects against chromosomal damage induced in vivo by X-rays of flavan-3-ols (Procyanidins) from grape seeds (Vitis vinifera): comparative study versus other phenolic and organic compounds. J. Agric. Food Chem., 2000, 48(5), 1738-1745.
[http://dx.doi.org/10.1021/jf990665o] [PMID: 10820088]
[91]
Akhmadieva, A.Kh.; Zaichkina, S.I.; Ruzieva, R.Kh.; Ganassi, E.E. The protective action of a natural preparation of anthocyan (pelargonidin-3,5-diglucoside). Radiobiologiia, 1993, 33(3), 433-435.
[PMID: 8332723]
[92]
Abraham, S.K.; Sarma, L.; Kesavan, P.C. Protective effects of chlorogenic acid, curcumin and beta-carotene against gamma-radiation-induced in vivo chromosomal damage. Mutat. Res., 1993, 303(3), 109-112.
[http://dx.doi.org/10.1016/0165-7992(93)90022-N] [PMID: 7694126]
[93]
Inano, H.; Onoda, M. Prevention of radiation-induced mammary tumors. Int. J. Radiat. Oncol. Biol. Phys., 2002, 52(1), 212-223.
[http://dx.doi.org/10.1016/S0360-3016(01)02651-7] [PMID: 11777641]
[94]
Inano, H.; Onoda, M.; Inafuku, N.; Kubota, M.; Kamada, Y.; Osawa, T.; Kobayashi, H.; Wakabayashi, K. Potent preventive action of curcumin on radiation-induced initiation of mammary tumorigenesis in rats. Carcinogenesis, 2000, 21(10), 1835-1841.
[http://dx.doi.org/10.1093/carcin/21.10.1835] [PMID: 11023541]
[95]
Gođevac, D.; Tešević, V.; Vajs, V.; Milosavljević, S.; Stanković, M. Blackberry seed extracts and isolated polyphenolic compounds showing protective effect on human lymphocytes DNA. J. Food Sci., 2011, 76(7), C1039-C1043.
[http://dx.doi.org/10.1111/j.1750-3841.2011.02305.x] [PMID: 21824137]
[96]
Godevac, D.; Tesević, V.; Vajs, V.; Milosavljević, S.; Stanković, M. Antioxidant properties of raspberry seed extracts on micronucleus distribution in peripheral blood lymphocytes. Food Chem. Toxicol., 2009, 47(11), 2853-2859.
[http://dx.doi.org/10.1016/j.fct.2009.09.006] [PMID: 19748543]
[97]
Shi, W.; Yan, D.; Zhao, C.; Xiao, M.; Wang, Y.; Ma, H.; Liu, T.; Qin, H.; Zhang, C.; Li, C.; Lin, J.; Li, S.; Lv, J.; Lin, L. Inhibition of IL-6/STAT3 signaling in human cancer cells using Evista. Biochem. Biophys. Res. Commun., 2017, 491(1), 159-165.
[http://dx.doi.org/10.1016/j.bbrc.2017.07.067] [PMID: 28711499]
[98]
Fabre, K.M.; Saito, K.; DeGraff, W.; Sowers, A.L.; Thetford, A.; Cook, J.A.; Krishna, M.C.; Mitchell, J.B. The effects of resveratrol and selected metabolites on the radiation and antioxidant response. Cancer Biol. Ther., 2011, 12(10), 915-923.
[http://dx.doi.org/10.4161/cbt.12.10.17714] [PMID: 22024758]
[99]
Mishra, K.; Srivastava, P.S.; Chaudhury, N.K. Sesamol as a potential radioprotective agent: in vitro studies. Radiat. Res., 2011, 176(5), 613-623.
[http://dx.doi.org/10.1667/RR2661.1] [PMID: 21899433]
[100]
Fantini, M.; Benvenuto, M.; Masuelli, L.; Frajese, G.V.; Tresoldi, I.; Modesti, A.; Bei, R. In vitro and in vivo antitumoral effects of combinations of polyphenols, or polyphenols and anticancer drugs: perspectives on cancer treatment. Int. J. Mol. Sci., 2015, 16(5), 9236-9282.
[http://dx.doi.org/10.3390/ijms16059236] [PMID: 25918934]
[101]
Cao, J.; Han, J.; Xiao, H.; Qiao, J.; Han, M. Effect of Tea Polyphenol Compounds on Anticancer Drugs in Terms of Anti-Tumor Activity, Toxicology, and Pharmacokinetics. Nutrients, 2016, 8(12)E762
[http://dx.doi.org/10.3390/nu8120762] [PMID: 27983622]
[102]
Lev-Ari, S.; Zinger, H.; Kazanov, D.; Yona, D.; Ben-Yosef, R.; Starr, A.; Figer, A.; Arber, N. Curcumin synergistically potentiates the growth inhibitory and pro-apoptotic effects of celecoxib in pancreatic adenocarcinoma cells. Biomed. Pharmacother., 2005, 59(Suppl. 2), S276-S280.
[http://dx.doi.org/10.1016/S0753-3322(05)80045-9] [PMID: 16507392]
[103]
Harikumar, K.B.; Kunnumakkara, A.B.; Sethi, G.; Diagaradjane, P.; Anand, P.; Pandey, M.K.; Gelovani, J.; Krishnan, S.; Guha, S.; Aggarwal, B.B. Resveratrol, a multitargeted agent, can enhance antitumor activity of gemcitabine in vitro and in orthotopic mouse model of human pancreatic cancer. Int. J. Cancer, 2010, 127(2), 257-268.
[PMID: 19908231]
[104]
Kuhar, M.; Sen, S.; Singh, N. Role of mitochondria in quercetin-enhanced chemotherapeutic response in human non-small cell lung carcinoma H-520 cells. Anticancer Res., 2006, 26(2A), 1297-1303.
[PMID: 16619537]
[105]
Yerlikaya, A.; Okur, E.; Eker, S.; Erin, N. Combined effects of the proteasome inhibitor bortezomib and Hsp70 inhibitors on the B16F10 melanoma cell line. Mol. Med. Rep., 2010, 3(2), 333-339.
[http://dx.doi.org/10.3892/mmr_000000262] [PMID: 21472244]
[106]
Liu, F.T.; Agrawal, S.G.; Movasaghi, Z.; Wyatt, P.B.; Rehman, I.U.; Gribben, J.G.; Newland, A.C.; Jia, L. Dietary flavonoids inhibit the anticancer effects of the proteasome inhibitor bortezomib. Blood, 2008, 112(9), 3835-3846.
[http://dx.doi.org/10.1182/blood-2008-04-150227] [PMID: 18633129]
[107]
van het Hof, K.H.; Kivits, G.A.; Weststrate, J.A.; Tijburg, L.B. Bioavailability of catechins from tea: the effect of milk. Eur. J. Clin. Nutr., 1998, 52(5), 356-359.
[http://dx.doi.org/10.1038/sj.ejcn.1600568] [PMID: 9630386]
[108]
Manach, C.; Williamson, G.; Morand, C.; Scalbert, A.; Rémésy, C. Bioavailability and bioefficacy of polyphenols in humans. I. Review of 97 bioavailability studies. Am. J. Clin. Nutr., 2005, 81(1)(Suppl.), 230S-242S.
[http://dx.doi.org/10.1093/ajcn/81.1.230S] [PMID: 15640486]
[109]
Lee, J.A.; Ha, S.K.; Kim, Y.C.; Choi, I. Effects of friedelin on the intestinal permeability and bioavailability of apigenin. Pharmacol. Rep., 2017, 69(5), 1044-1048.
[http://dx.doi.org/10.1016/j.pharep.2017.04.012] [PMID: 28939344]
[110]
Telange, D.R.; Patil, A.T.; Pethe, A.M.; Fegade, H.; Anand, S.; Dave, V.S. Formulation and characterization of an apigenin-phospholipid phytosome (APLC) for improved solubility, in vivo bioavailability, and antioxidant potential. Eur. J. Pharm. Sci., 2017, 108, 36-49.
[http://dx.doi.org/10.1016/j.ejps.2016.12.009] [PMID: 27939619]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy