Generic placeholder image

Combinatorial Chemistry & High Throughput Screening

Editor-in-Chief

ISSN (Print): 1386-2073
ISSN (Online): 1875-5402

Review Article

Nutraceuticals with Anti-inflammatory and Anti-oxidant Properties as an Intervention for Reducing the Health Effects of Fine Particulate Matter: Potential and Prospects

Author(s): Tanwi Trushna, Amit K. Tripathi, Sindhuprava Rana* and Rajnarayan R. Tiwari

Volume 25, Issue 10, 2022

Published on: 12 April, 2021

Page: [1639 - 1660] Pages: 22

DOI: 10.2174/1386207324666210412121226

Price: $65

Abstract

Air pollution, especially particulate matter pollution, adversely affects human health. A growing pool of evidence has emerged which underscores the potential of individual-level nutritional interventions in attenuating the adverse health impact of exposure to PM2.5. Although controlling emission and reducing the overall levels of air pollution remains the ultimate objective globally, the sustainable achievement of such a target and thus consequent protection of human health will require a substantial amount of time and concerted efforts worldwide. In the meantime, smaller-scale individual-level interventions that can counter the inflammatory or oxidative stress effects triggered by exposure to particulate matter may be utilized to ameliorate the health effects of PM2.5 pollution. One such intervention is the incorporation of nutraceuticals in the diet. Here, we present a review of the evidence generated from various in vitro, in vivo and human studies regarding the effects of different anti-inflammatory and antioxidant nutraceuticals in ameliorating the health effects of particulate matter air pollution. The studies discussed in this review suggest that these nutraceuticals, when consumed as a part of the diet or as additional supplementation, can potentially negate the cellular level adverse effects of exposure to particulate pollution. The potential benefits of adopting a non-pharmacological diet-based approach to air pollution-induced disease management have also been discussed. We argue that before a nutraceuticals-based approach can be used for widespread public adoption, further research, especially human clinical trials, is essential to confirm the beneficial action of relevant nutraceuticals and to explore the safe limits of human supplementation and the risk of side effects. Future research should focus on systematically translating bench-based knowledge regarding nutraceuticals gained from in vitro and in vivo studies into clinically usable nutritional guidelines.

Keywords: Functional foods, medical foods, air pollution, oxidative stress, reactive oxygen species, nutraceuticals.

Graphical Abstract
[1]
9 out of 10 people worldwide breathe polluted air, but more countries are taking action. World Health Organ, Available from: https://www.who.int/news-room/detail/02-05-2018-9-out-of-10-people-worldwide-breathe-polluted-air-but-more-countries-are-taking-action
[2]
Ambient air pollution: A global assessment of exposure and burden of disease; World Health Organization: Geneva, Switzerland, 2016.
[3]
[4]
Cohen, A.J.; Brauer, M.; Burnett, R.; Anderson, H.R.; Frostad, J.; Estep, K.; Balakrishnan, K.; Brunekreef, B.; Dandona, L.; Dandona, R.; Feigin, V.; Freedman, G.; Hubbell, B.; Jobling, A.; Kan, H.; Knibbs, L.; Liu, Y.; Martin, R.; Morawska, L.; Pope, C.A., III; Shin, H.; Straif, K.; Shaddick, G.; Thomas, M.; van Dingenen, R.; van Donkelaar, A.; Vos, T.; Murray, C.J.L.; Forouzanfar, M.H. Estimates and 25-year trends of the global burden of disease attributable to ambient air pollution: an analysis of data from the Global Burden of Diseases Study 2015. Lancet, 2017, 389(10082), 1907-1918.
[http://dx.doi.org/10.1016/S0140-6736(17)30505-6] [PMID: 28408086]
[5]
Newell, K.; Kartsonaki, C.; Lam, K.B.H.; Kurmi, O.P. Cardiorespiratory health effects of particulate ambient air pollution exposure in low-income and middle-income countries: A systematic review and meta-analysis. Lancet Planet. Health, 2017, 1(9), e368-e380.
[http://dx.doi.org/10.1016/S2542-5196(17)30166-3] [PMID: 29851649]
[6]
Braithwaite, I.; Zhang, S.; Kirkbride, J.B.; Osborn, D.P.J.; Hayes, J.F. Air pollution (particulate matter) exposure and associations with depression, anxiety, bipolar, psychosis and suicide risk: a systematic review and meta-analysis. Environ. Health Perspect., 2019, 127(12), 126002.
[http://dx.doi.org/10.1289/EHP4595] [PMID: 31850801]
[7]
Fu, P.; Guo, X.; Cheung, F.M.H.; Yung, K.K.L. The association between PM2.5 exposure and neurological disorders: A systematic review and meta-analysis. Sci. Total Environ., 2019, 655, 1240-1248.
[http://dx.doi.org/10.1016/j.scitotenv.2018.11.218] [PMID: 30577116]
[8]
Jaganathan, S.; Jaacks, L.M.; Magsumbol, M.; Walia, G.K.; Sieber, N.L.; Shivasankar, R.; Dhillon, P.K.; Hameed, S.S.; Schwartz, J.; Prabhakaran, D. Association of long-term exposure to fine particulate matter and cardio-metabolic diseases in low- and middle-income countries: A systematic review. Int. J. Environ. Res. Public Health, 2019, 16(14), E2541.
[http://dx.doi.org/10.3390/ijerph16142541] [PMID: 31315297]
[9]
Wang, X.; Liu, C.; Zhang, M.; Han, Y.; Aase, H.; Villanger, G.D.; Myhre, O.; Donkelaar, A.V.; Martin, R.V.; Baines, E.A.; Chen, R.; Kan, H.; Xia, Y. Evaluation of maternal exposure to pm2.5 and its components on maternal and neonatal thyroid function and birth weight: A cohort study. Thyroid, 2019, 29(8), 1147-1157.
[http://dx.doi.org/10.1089/thy.2018.0780] [PMID: 31298631]
[10]
Yuan, L.; Zhang, Y.; Gao, Y.; Tian, Y. Maternal fine particulate matter (PM2.5) exposure and adverse birth outcomes: an updated systematic review based on cohort studies. Environ. Sci. Pollut. Res. Int., 2019, 26(14), 13963-13983.
[http://dx.doi.org/10.1007/s11356-019-04644-x] [PMID: 30891704]
[11]
SDG Indicators - SDG Indicators. Available from: https://unstats.un.org/sdgs/metadata/
[12]
Burns, J.; Boogaard, H.; Polus, S.; Pfadenhauer, L.M.; Rohwer, A.C.; van Erp, A.M.; Turley, R.; Rehfuess, E.A. Interventions to reduce ambient air pollution and their effects on health: An abridged Cochrane systematic review. Environ. Int., 2020, 135, 105400.
[http://dx.doi.org/10.1016/j.envint.2019.105400] [PMID: 31855800]
[13]
Zhang, J. Low-level air pollution associated with death: Policy and clinical implications. JAMA, 2017, 318(24), 2431-2432.
[http://dx.doi.org/10.1001/jama.2017.18948] [PMID: 29279908]
[14]
Zhao, B.; Johnston, F.H.; Salimi, F.; Kurabayashi, M.; Negishi, K. Short-term exposure to ambient fine particulate matter and out-of-hospital cardiac arrest: A nationwide case-crossover study in Japan. Lancet Planet. Health, 2020, 4(1), e15-e23.
[http://dx.doi.org/10.1016/S2542-5196(19)30262-1] [PMID: 31999950]
[15]
Katoto, P.D.M.C.; Byamungu, L.; Brand, A.S.; Mokaya, J.; Strijdom, H.; Goswami, N.; De Boever, P.; Nawrot, T.S.; Nemery, B. Ambient air pollution and health in Sub-Saharan Africa: Current evidence, perspectives and a call to action. Environ. Res., 2019, 173, 174-188.
[http://dx.doi.org/10.1016/j.envres.2019.03.029] [PMID: 30913485]
[16]
Koman, P.D.; Hogan, K.A.; Sampson, N.; Mandell, R.; Coombe, C.M.; Tetteh, M.M.; Hill-Ashford, Y.R.; Wilkins, D.; Zlatnik, M.G.; Loch-Caruso, R.; Schulz, A.J.; Woodruff, T.J. Examining joint effects of air pollution exposure and social determinants of health in defining “at-risk” populations under the clean air act: susceptibility of pregnant women to hypertensive disorders of pregnancy. World Med. Health Policy, 2018, 10(1), 7-54.
[http://dx.doi.org/10.1002/wmh3.257] [PMID: 30197817]
[17]
Caplin, A.; Ghandehari, M.; Lim, C.; Glimcher, P.; Thurston, G. Advancing environmental exposure assessment science to benefit society. Nat. Commun., 2019, 10(1), 1236.
[http://dx.doi.org/10.1038/s41467-019-09155-4] [PMID: 30874557]
[18]
Neidell, M.J. Air pollution, health, and socio-economic status: the effect of outdoor air quality on childhood asthma. J. Health Econ., 2004, 23(6), 1209-1236.
[http://dx.doi.org/10.1016/j.jhealeco.2004.05.002] [PMID: 15556243]
[19]
Carlsten, C.; Salvi, S.; Wong, G.W.K.; Chung, K.F. Personal strategies to minimise effects of air pollution on respiratory health: advice for providers, patients and the public. Eur. Respir. J., 2020, 55(6), 1902056.
[http://dx.doi.org/10.1183/13993003.02056-2019] [PMID: 32241830]
[20]
Zhang, Y.; Darland, D.; He, Y.; Yang, L.; Dong, X.; Chang, Y. Reduction of PM2.5 toxicity on human alveolar epithelial cells a549 by tea polyphenols. J. Food Biochem., 2018, 42(3), e12496.
[http://dx.doi.org/10.1111/jfbc.12496] [PMID: 29962558]
[21]
Gao, X.; Coull, B.; Lin, X.; Vokonas, P.; Schwartz, J.; Baccarelli, A.A. Nonsteroidal antiinflammatory drugs modify the effect of short-term air pollution on lung function. Am. J. Respir. Crit. Care Med., 2020, 201(3), 374-378.
[http://dx.doi.org/10.1164/rccm.201905-1003LE] [PMID: 31553629]
[22]
Fernando, I.P.S.; Kim, H-S.; Sanjeewa, K.K.A.; Oh, J-Y.; Jeon, Y-J.; Lee, W.W. Inhibition of inflammatory responses elicited by urban fine dust particles in keratinocytes and macrophages by diphlorethohydroxycarmalol isolated from a brown alga Ishige okamurae. Algae, 2017, 32, 261-273.
[http://dx.doi.org/10.4490/algae.2017.32.8.14]
[23]
Jian, T.; Ding, X.; Wu, Y.; Ren, B.; Li, W.; Lv, H.; Chen, J. Hepatoprotective Effect of loquat leaf flavonoids in pm2.5-induced non-alcoholic fatty liver disease via regulation of IRs-1/Akt and CYP2E1/JNK pathways. Int. J. Mol. Sci., 2018, 19(10), 3005.
[http://dx.doi.org/10.3390/ijms19103005] [PMID: 30275422]
[24]
Sanjeewa, K.K.A.; Jayawardena, T.U.; Kim, S-Y.; Lee, H.G.; Je, J-G.; Jee, Y.; Jeon, Y.J. Sargassum horneri (Turner) inhibit urban particulate matter-induced inflammation in MH-S lung macrophages via blocking TLRs mediated NF-κB and MAPK activation. J. Ethnopharmacol., 2020, 249, 112363.
[http://dx.doi.org/10.1016/j.jep.2019.112363] [PMID: 31678416]
[25]
Zhang, Z.; Niu, X.; Lu, C.; Jiang, M.; Xiao, G.G.; Lu, A. The effect of curcumin on human bronchial epithelial cells exposed to fine particulate matter: a predictive analysis. Molecules, 2012, 17(10), 12406-12426.
[http://dx.doi.org/10.3390/molecules171012406] [PMID: 23090021]
[26]
Panasevich, S.; Leander, K.; Rosenlund, M.; Ljungman, P.; Bellander, T.; de Faire, U.; Pershagen, G.; Nyberg, F. Associations of long- and short-term air pollution exposure with markers of inflammation and coagulation in a population sample. Occup. Environ. Med., 2009, 66(11), 747-753.
[http://dx.doi.org/10.1136/oem.2008.043471] [PMID: 19687019]
[27]
Zeka, A.; Sullivan, J.R.; Vokonas, P.S.; Sparrow, D.; Schwartz, J. Inflammatory markers and particulate air pollution: characterizing the pathway to disease. Int. J. Epidemiol., 2006, 35(5), 1347-1354.
[http://dx.doi.org/10.1093/ije/dyl132] [PMID: 16844771]
[28]
Seaton, A.; MacNee, W.; Donaldson, K.; Godden, D. Particulate air pollution and acute health effects. Lancet, 1995, 345(8943), 176-178.
[http://dx.doi.org/10.1016/S0140-6736(95)90173-6] [PMID: 7741860]
[29]
Péter, S.; Holguin, F.; Wood, L.G.; Clougherty, J.E.; Raederstorff, D.; Antal, M.; Weber, P.; Eggersdorfer, M. Nutritional solutions to reduce risks of negative health impacts of air pollution. Nutrients, 2015, 7(12), 10398-10416.
[http://dx.doi.org/10.3390/nu7125539] [PMID: 26690474]
[30]
Romieu, I.; Castro-Giner, F.; Kunzli, N.; Sunyer, J. Air pollution, oxidative stress and dietary supplementation: a review. Eur. Respir. J., 2008, 31(1), 179-197.
[http://dx.doi.org/10.1183/09031936.00128106] [PMID: 18166596]
[31]
Whyand, T.; Hurst, J.R.; Beckles, M.; Caplin, M.E. Pollution and respiratory disease: can diet or supplements help? A review. Respir. Res., 2018, 19(1), 79.
[http://dx.doi.org/10.1186/s12931-018-0785-0] [PMID: 29716592]
[32]
Barthelemy, J.; Sanchez, K.; Miller, M.R.; Khreis, H. New opportunities to mitigate the burden of disease caused by traffic related air pollution: antioxidant-rich diets and supplements. Int. J. Environ. Res. Public Health, 2020, 17(2), 630.
[http://dx.doi.org/10.3390/ijerph17020630] [PMID: 31963738]
[33]
Guan, L.; Geng, X.; Stone, C.; Cosky, E.E.P.; Ji, Y.; Du, H.; Zhang, K.; Sun, Q.; Ding, Y. PM2.5 exposure induces systemic inflammation and oxidative stress in an intracranial atherosclerosis rat model. Environ. Toxicol., 2019, 34(4), 530-538.
[http://dx.doi.org/10.1002/tox.22707] [PMID: 30672636]
[34]
Hernández Cadena, L.; Ibinarriaga-Montiel, P.; Escamilla-Nuñez, C.; Alvarado-Cruz, I.; Barraza-Villarreal, A.; Romieu, I. PM2.5 exposure and oxidative stress in a cohort of obese with and without asthma. Environ. Epidemiol., 2019, 3.
[http://dx.doi.org/10.1097/01.EE9.0000607516.74956.af]
[35]
Zhang, S.; Huo, X.; Zhang, Y.; Lu, X.; Xu, C.; Xu, X. The association of PM2.5 with airway innate antimicrobial activities of salivary agglutinin and surfactant protein D. Chemosphere, 2019, 226, 915-923.
[http://dx.doi.org/10.1016/j.chemosphere.2019.04.032] [PMID: 31509921]
[36]
Abbas, I.; Badran, G.; Verdin, A.; Ledoux, F.; Roumie, M.; Lo Guidice, J-M.; Courcot, D.; Garçon, G. In vitro evaluation of organic extractable matter from ambient PM2.5 using human bronchial epithelial BEAS-2B cells: Cytotoxicity, oxidative stress, pro-inflammatory response, genotoxicity, and cell cycle deregulation. Environ. Res., 2019, 171, 510-522.
[http://dx.doi.org/10.1016/j.envres.2019.01.052] [PMID: 30743243]
[37]
Santovito, A.; Gendusa, C.; Cervella, P.; Traversi, D. In vitro genomic damage induced by urban fine particulate matter on human lymphocytes. Sci. Rep., 2020, 10(1), 8853.
[http://dx.doi.org/10.1038/s41598-020-65785-5] [PMID: 32483266]
[38]
Libby, P. Inflammatory mechanisms: the molecular basis of inflammation and disease. Nutr. Rev., 2007, 65(12 Pt 2), S140-S146.
[http://dx.doi.org/10.1301/nr.2007.dec.S140-S146] [PMID: 18240538]
[39]
Chen, Y.; Zhou, Z.; Min, W. Mitochondria, oxidative stress and innate immunity. Front. Physiol., 2018, 9, 1487.
[http://dx.doi.org/10.3389/fphys.2018.01487] [PMID: 30405440]
[40]
Medzhitov, R. Inflammation 2010: new adventures of an old flame. Cell, 2010, 140(6), 771-776.
[http://dx.doi.org/10.1016/j.cell.2010.03.006] [PMID: 20303867]
[41]
Pizzino, G.; Irrera, N.; Cucinotta, M.; Pallio, G.; Mannino, F.; Arcoraci, V.; Squadrito, F.; Altavilla, D.; Bitto, A. Oxidative stress: harms and benefits for human health. Oxid. Med. Cell. Longev., 2017, 2017, 8416763-8416763.
[http://dx.doi.org/10.1155/2017/8416763] [PMID: 28819546]
[42]
Taniyama, Y.; Griendling, K.K. Reactive oxygen species in the vasculature: molecular and cellular mechanisms. Hypertens, 2003, 42, 1075-1081.
[http://dx.doi.org/10.1161/01.HYP.0000100443.09293.4F]
[43]
Cho, C-C.; Hsieh, W-Y.; Tsai, C-H.; Chen, C-Y.; Chang, H-F.; Lin, C-S. In vitro and in vivo experimental studies of PM2.5 on disease progression. Int. J. Environ. Res. Public Health, 2018, 15.
[44]
Badran, G.; Ledoux, F.; Verdin, A.; Abbas, I.; Roumie, M.; Genevray, P.; Landkocz, Y.; Lo Guidice, J.M.; Garçon, G.; Courcot, D. Toxicity of fine and quasi-ultrafine particles: Focus on the effects of organic extractable and non-extractable matter fractions. Chemosphere, 2020, 243, 125440.
[http://dx.doi.org/10.1016/j.chemosphere.2019.125440] [PMID: 31995888]
[45]
Zhao, C.; Wang, Y.; Su, Z.; Pu, W.; Niu, M.; Song, S.; Wei, L.; Ding, Y.; Xu, L.; Tian, M.; Wang, H. Respiratory exposure to PM2.5 soluble extract disrupts mucosal barrier function and promotes the development of experimental asthma. Sci. Total Environ., 2020, 730, 139145.
[http://dx.doi.org/10.1016/j.scitotenv.2020.139145] [PMID: 32402975]
[46]
Jiang, X.; Xu, F.; Qiu, X.; Shi, X.; Pardo, M.; Shang, Y.; Wang, J.; Rudich, Y.; Zhu, T. Hydrophobic organic components of ambient fine particulate matter (PM2.5) associated with inflammatory cellular response. Environ. Sci. Technol., 2019, 53(17), 10479-10486.
[http://dx.doi.org/10.1021/acs.est.9b02902] [PMID: 31397158]
[47]
Zhao, C.; Niu, M.; Song, S.; Li, J.; Su, Z.; Wang, Y.; Gao, Q.; Wang, H. Serum metabolomics analysis of mice that received repeated airway exposure to a water-soluble PM2.5 extract. Ecotoxicol. Environ. Saf., 2019, 168, 102-109.
[http://dx.doi.org/10.1016/j.ecoenv.2018.10.068] [PMID: 30384157]
[48]
Xu, H.; Xu, X.; Wang, H.; Qimuge, A.; Liu, S.; Chen, Y.; Zhang, C.; Hu, M.; Song, L. LKB1/p53/TIGAR/autophagy-dependent VEGF expression contributes to PM2.5-induced pulmonary inflammatory responses. Sci. Rep., 2019, 9(1), 16600.
[http://dx.doi.org/10.1038/s41598-019-53247-6] [PMID: 31719630]
[49]
Wang, G.; Zheng, X.; Duan, H.; Dai, Y.; Niu, Y.; Gao, J.; Chang, Z.; Song, X.; Leng, S.; Tang, J.; Zheng, Y. High-content analysis of particulate matters-induced oxidative stress and organelle dysfunction in vitro. Toxicol. In Vitro, 2019, 59, 263-274.
[http://dx.doi.org/10.1016/j.tiv.2019.04.026] [PMID: 31029784]
[50]
Upadhyay, S.; Palmberg, L. Air-liquid interface: relevant in vitro models for investigating air pollutant-induced pulmonary toxicity. Toxicol. Sci., 2018, 164(1), 21-30.
[http://dx.doi.org/10.1093/toxsci/kfy053] [PMID: 29534242]
[51]
Wang, G; Zhang, G; Gao, X; Zhang, Y; Fan, W; Jiang, J Oxidative stress-mediated epidermal growth factor receptor activation regulates PM2.5-induced over-secretion of proinflammatory mediators from human bronchial epithelial cells. Biochim Biophys Acta BBA - Gen Subj, 1864, 1864, 129672.
[52]
Xu, Z.; Wu, H.; Zhang, H.; Bai, J.; Zhang, Z. Interleukins 6/8 and cyclooxygenase-2 release and expressions are regulated by oxidative stress-JAK2/STAT3 signaling pathway in human bronchial epithelial cells exposed to particulate matter ≤2.5 μm. J. Appl. Toxicol., 2020.
[53]
Xu, X.; Wang, H.; Liu, S.; Xing, C.; Liu, Y. Aodengqimuge; Zhou, W.; Yuan, X.; Ma, Y.; Hu, M.; Hu, Y.; Zou, S.; Gu, Y.; Peng, S.; Yuan, S.; Li, W.; Ma, Y.; Song, L. TP53-dependent autophagy links the ATR-CHEK1 axis activation to proinflammatory VEGFA production in human bronchial epithelial cells exposed to fine particulate matter (PM2.5). Autophagy, 2016, 12(10), 1832-1848.
[http://dx.doi.org/10.1080/15548627.2016.1204496] [PMID: 27463284]
[54]
Li, Y.; Duan, J.; Yang, M.; Li, Y.; Jing, L.; Yu, Y.; Wang, J.; Sun, Z. Transcriptomic analyses of human bronchial epithelial cells BEAS-2B exposed to atmospheric fine particulate matter PM2.5. Toxicol. In Vitro, 2017, 42, 171-181.
[http://dx.doi.org/10.1016/j.tiv.2017.04.014] [PMID: 28412507]
[55]
Zhou, Z.; Liu, Y.; Duan, F.; Qin, M.; Wu, F.; Sheng, W.; Yang, L.; Liu, J.; He, K. Transcriptomic analyses of the biological effects of airborne PM2.5 exposure on human bronchial epithelial cells. PLoS One, 2015, 10(9), e0138267-e0138267.
[http://dx.doi.org/10.1371/journal.pone.0138267] [PMID: 26382838]
[56]
Longhin, E.; Capasso, L.; Battaglia, C.; Proverbio, M.C.; Cosentino, C.; Cifola, I.; Mangano, E.; Camatini, M.; Gualtieri, M. Integrative transcriptomic and protein analysis of human bronchial BEAS-2B exposed to seasonal urban particulate matter. Environ. Pollut., 2016, 209, 87-98.
[http://dx.doi.org/10.1016/j.envpol.2015.11.013] [PMID: 26647171]
[57]
Song, L.; Li, D.; Li, X.; Ma, L.; Bai, X.; Wen, Z.; Zhang, X.; Chen, D.; Peng, L. Exposure to PM2.5 induces aberrant activation of NF-κB in human airway epithelial cells by downregulating miR-331 expression. Environ. Toxicol. Pharmacol., 2017, 50, 192-199.
[http://dx.doi.org/10.1016/j.etap.2017.02.011] [PMID: 28192748]
[58]
Yan, J.; Lai, C-H.; Lung, S-C.C.; Chen, C.; Wang, W-C.; Huang, P-I.; Lin, C.H. Industrial PM2.5 cause pulmonary adverse effect through RhoA/ROCK pathway. Sci. Total Environ., 2017, 599-600, 1658-1666.
[http://dx.doi.org/10.1016/j.scitotenv.2017.05.107] [PMID: 28535594]
[59]
He, M.; Ichinose, T.; Yoshida, S.; Ito, T.; He, C.; Yoshida, Y.; Arashidani, K.; Takano, H.; Sun, G.; Shibamoto, T. PM2.5-induced lung inflammation in mice: Differences of inflammatory response in macrophages and type II alveolar cells. J. Appl. Toxicol., 2017, 37(10), 1203-1218.
[http://dx.doi.org/10.1002/jat.3482] [PMID: 28555929]
[60]
Tang, Q.; Huang, K.; Liu, J.; Wu, S.; Shen, D.; Dai, P.; Li, C. Fine particulate matter from pig house induced immune response by activating TLR4/MAPK/NF-κB pathway and NLRP3 inflammasome in alveolar macrophages. Chemosphere, 2019, 236, 124373.
[http://dx.doi.org/10.1016/j.chemosphere.2019.124373] [PMID: 31336238]
[61]
Dou, C.; Zhang, J.; Qi, C. Cooking oil fume-derived PM2.5 induces apoptosis in A549 cells and MAPK/NF-кB/STAT1 pathway activation. Environ. Sci. Pollut. Res. Int., 2018, 25(10), 9940-9948.
[http://dx.doi.org/10.1007/s11356-018-1262-5] [PMID: 29374380]
[62]
Jeong, S-C.; Cho, Y.; Song, M-K.; Lee, E.; Ryu, J-C. Epidermal growth factor receptor (EGFR)-MAPK-nuclear factor(NF)-κB-IL8: A possible mechanism of particulate matter(PM) 2.5-induced lung toxicity. Environ. Toxicol., 2017, 32(5), 1628-1636.
[http://dx.doi.org/10.1002/tox.22390] [PMID: 28101945]
[63]
Fu, H.; Liu, X.; Li, W.; Zu, Y.; Zhou, F.; Shou, Q.; Ding, Z. PM2.5 exposure induces inflammatory response in macrophages via the TLR4/COX-2/NF-κB Pathway. Inflammation, 2020, 43(5), 1948-1958.
[http://dx.doi.org/10.1007/s10753-020-01269-y] [PMID: 32504162]
[64]
Li, P.; Wang, J.; Guo, F.; Zheng, B.; Zhang, X. A novel inhibitory role of microRNA-224 in particulate matter 2.5-induced asthmatic mice by inhibiting TLR2. J. Cell. Mol. Med., 2020, 24(5), 3040-3052.
[http://dx.doi.org/10.1111/jcmm.14940] [PMID: 31978265]
[65]
Zhang, J.; Chen, Y.; Namani, A.; Elshaer, M.; Jiang, Z.; Shi, H.; Tang, X.; Wang, X.J. Comparative transcriptome analysis reveals Dusp1 as a critical regulator of inflammatory response to fly ash particle exposure in mouse. Ecotoxicol. Environ. Saf., 2020, 190, 110116.
[http://dx.doi.org/10.1016/j.ecoenv.2019.110116] [PMID: 31911387]
[66]
Li, Y.; Sun, B.; Shi, Y.; Jiang, J.; Du, Z.; Chen, R.; Duan, J.; Sun, Z. Subacute exposure of PM2.5 induces airway inflammation through inflammatory cell infiltration and cytokine expression in rats. Chemosphere, 2020, 251, 126423.
[http://dx.doi.org/10.1016/j.chemosphere.2020.126423] [PMID: 32171134]
[67]
Zheng, R.; Tao, L.; Jian, H.; Chang, Y.; Cheng, Y.; Feng, Y.; Zhang, H. NLRP3 inflammasome activation and lung fibrosis caused by airborne fine particulate matter. Ecotoxicol. Environ. Saf., 2018, 163, 612-619.
[http://dx.doi.org/10.1016/j.ecoenv.2018.07.076] [PMID: 30092543]
[68]
Kim, R.Y.; Pinkerton, J.W.; Gibson, P.G.; Cooper, M.A.; Horvat, J.C.; Hansbro, P.M. Inflammasomes in COPD and neutrophilic asthma. Thorax, 2015, 70(12), 1199-1201.
[http://dx.doi.org/10.1136/thoraxjnl-2014-206736] [PMID: 26493990]
[69]
De Nardo, D.; De Nardo, C.M.; Latz, E. New insights into mechanisms controlling the NLRP3 inflammasome and its role in lung disease. Am. J. Pathol., 2014, 184(1), 42-54.
[http://dx.doi.org/10.1016/j.ajpath.2013.09.007] [PMID: 24183846]
[70]
Wang, X.; Jiang, S.; Liu, Y.; Du, X.; Zhang, W.; Zhang, J.; Shen, H. Comprehensive pulmonary metabolome responses to intratracheal instillation of airborne fine particulate matter in rats. Sci. Total Environ., 2017, 592, 41-50.
[http://dx.doi.org/10.1016/j.scitotenv.2017.03.064] [PMID: 28297636]
[71]
Lei, X.; Chen, R.; Wang, C.; Shi, J.; Zhao, Z.; Li, W.; Yan, B.; Chillrud, S.; Cai, J.; Kan, H. Personal fine particulate matter constituents, increased systemic inflammation, and the role of DNA hypomethylation. Environ. Sci. Technol., 2019, 53(16), 9837-9844.
[http://dx.doi.org/10.1021/acs.est.9b02305] [PMID: 31328512]
[72]
Shou, Y.; Zhu, X.; Zhu, D.; Yin, H.; Shi, Y.; Chen, M.; Lu, L.; Qian, Q.; Zhao, D.; Hu, Y.; Wang, H. Ambient PM2.5 chronic exposure leads to cognitive decline in mice: From pulmonary to neuronal inflammation. Toxicol. Lett., 2020, 331, 208-217.
[http://dx.doi.org/10.1016/j.toxlet.2020.06.014] [PMID: 32569800]
[73]
Siponen, T.; Yli-Tuomi, T.; Aurela, M.; Dufva, H.; Hillamo, R.; Hirvonen, M-R.; Huttunen, K.; Pekkanen, J.; Pennanen, A.; Salonen, I.; Tiittanen, P.; Salonen, R.O.; Lanki, T. Source-specific fine particulate air pollution and systemic inflammation in ischaemic heart disease patients. Occup. Environ. Med., 2015, 72(4), 277-283.
[http://dx.doi.org/10.1136/oemed-2014-102240] [PMID: 25479755]
[74]
Cipriani, G.; Danti, S.; Carlesi, C.; Borin, G. Danger in the air: air pollution and cognitive dysfunction. Am. J. Alzheimers Dis. Other Demen., 2018, 33(6), 333-341.
[http://dx.doi.org/10.1177/1533317518777859] [PMID: 29874918]
[75]
Hahad, O.; Lelieveld, J.; Birklein, F.; Lieb, K.; Daiber, A.; Münzel, T. Ambient air pollution increases the risk of cerebrovascular and neuropsychiatric disorders through induction of inflammation and oxidative stress. Int. J. Mol. Sci., 2020, 21(12), 4306.
[http://dx.doi.org/10.3390/ijms21124306] [PMID: 32560306]
[76]
Wilson, S.J.; Miller, M.R.; Newby, D.E. Effects of diesel exhaust on cardiovascular function and oxidative stress. Antioxid. Redox Signal., 2018, 28(9), 819-836.
[http://dx.doi.org/10.1089/ars.2017.7174] [PMID: 28540736]
[77]
Hajipour, S.; Farbood, Y.; Gharib-Naseri, M.K.; Goudarzi, G.; Rashno, M.; Maleki, H.; Bakhtiari, N.; Nesari, A.; Khoshnam, S.E.; Dianat, M.; Sarkaki, B.; Sarkaki, A. Exposure to ambient dusty particulate matter impairs spatial memory and hippocampal LTP by increasing brain inflammation and oxidative stress in rats. Life Sci., 2020, 242, 117210.
[http://dx.doi.org/10.1016/j.lfs.2019.117210] [PMID: 31874166]
[78]
Jeong, S.; Park, S.A.; Park, I.; Kim, P.; Cho, N.H.; Hyun, J.W.; Hyun, Y.M. PM2.5 Exposure in the respiratory system induces distinct inflammatory signaling in the lung and the liver of mice. J. Immunol. Res., 2019, 2019, 3486841.
[http://dx.doi.org/10.1155/2019/3486841] [PMID: 31871955]
[79]
Wang, L.; Wei, L.Y.; Ding, R.; Feng, Y.; Li, D.; Li, C.; Malko, P.; Syed Mortadza, S.A.; Wu, W.; Yin, Y.; Jiang, L.H. Predisposition to Alzheimer’s and age-related brain pathologies by pm2.5 exposure: perspective on the roles of oxidative stress and TRPM2 channel. Front. Physiol., 2020, 11, 155.
[http://dx.doi.org/10.3389/fphys.2020.00155] [PMID: 32174842]
[80]
Chen, X.; Guo, J.; Huang, Y.; Liu, S.; Huang, Y.; Zhang, Z.; Zhang, F.; Lu, Z.; Li, F.; Zheng, J.C.; Ding, W. Urban airborne PM2.5-activated microglia mediate neurotoxicity through glutaminase-containing extracellular vesicles in olfactory bulb. Environ. Pollut., 2020, 264, 114716.
[http://dx.doi.org/10.1016/j.envpol.2020.114716] [PMID: 32559876]
[81]
Xu, M-X.; Zhu, Y-F.; Chang, H-F.; Liang, Y. Nanoceria restrains PM2.5-induced metabolic disorder and hypothalamus inflammation by inhibition of astrocytes activation related NF-κB pathway in Nrf2 deficient mice. Free Radic. Biol. Med., 2016, 99, 259-272.
[http://dx.doi.org/10.1016/j.freeradbiomed.2016.08.021] [PMID: 27554971]
[82]
Wang, B-R.; Shi, J-Q.; Ge, N-N.; Ou, Z.; Tian, Y-Y.; Jiang, T.; Zhou, J.S.; Xu, J.; Zhang, Y.D. PM2.5 exposure aggravates oligomeric amyloid beta-induced neuronal injury and promotes NLRP3 inflammasome activation in an in vitro model of Alzheimer’s disease. J. Neuroinflammation, 2018, 15(1), 132.
[http://dx.doi.org/10.1186/s12974-018-1178-5] [PMID: 29720213]
[83]
Chu, C.; Zhang, H.; Cui, S.; Han, B.; Zhou, L.; Zhang, N.; Su, X.; Niu, Y.; Chen, W.; Chen, R.; Zhang, R.; Zheng, Y. Ambient PM2.5 caused depressive-like responses through Nrf2/NLRP3 signaling pathway modulating inflammation. J. Hazard. Mater., 2019, 369, 180-190.
[http://dx.doi.org/10.1016/j.jhazmat.2019.02.026] [PMID: 30776601]
[84]
Cole, T.B.; Coburn, J.; Dao, K.; Roqué, P.; Chang, Y-C.; Kalia, V.; Guilarte, T.R.; Dziedzic, J.; Costa, L.G. Sex and genetic differences in the effects of acute diesel exhaust exposure on inflammation and oxidative stress in mouse brain. Toxicology, 2016, 374, 1-9.
[http://dx.doi.org/10.1016/j.tox.2016.11.010] [PMID: 27865893]
[85]
Wang, Y.; Zhang, M.; Li, Z.; Yue, J.; Xu, M.; Zhang, Y.; Yung, K.K.L.; Li, R. Fine particulate matter induces mitochondrial dysfunction and oxidative stress in human SH-SY5Y cells. Chemosphere, 2019, 218, 577-588.
[http://dx.doi.org/10.1016/j.chemosphere.2018.11.149] [PMID: 30502696]
[86]
Zhang, Q.; Li, Q.; Ma, J.; Zhao, Y. PM2.5 impairs neurobehavior by oxidative stress and myelin sheaths injury of brain in the rat. Environ Pollut Barking Essex, 2018, 242, 994-1001.
[87]
Liu, X.; Qian, X.; Xing, J.; Wang, J.; Sun, Y.; Wang, Q.; Li, H. particulate matter triggers depressive-like response associated with modulation of inflammatory cytokine homeostasis and brain-derived neurotrophic factor signaling pathway in mice. Toxicol. Sci., 2018, 164(1), 278-288.
[http://dx.doi.org/10.1093/toxsci/kfy086] [PMID: 29688525]
[88]
Wang, Q.; Gan, X.; Li, F.; Chen, Y.; Fu, W.; Zhu, X.; Xu, D.; Long, M.; Xu, D. PM2.5 Exposure Induces More Serious Apoptosis of Cardiomyocytes Mediated by Caspase3 through JNK/P53 Pathway in Hyperlipidemic Rats. Int. J. Biol. Sci., 2019, 15(1), 24-33.
[http://dx.doi.org/10.7150/ijbs.28633] [PMID: 30662344]
[89]
Le, Y.; Hu, X.; Zhu, J.; Wang, C.; Yang, Z.; Lu, D. Ambient fine particulate matter induces inflammatory responses of vascular endothelial cells through activating TLR-mediated pathway. Toxicol. Ind. Health, 2019, 35(10), 670-678.
[http://dx.doi.org/10.1177/0748233719871778] [PMID: 31601156]
[90]
Du, X.; Jiang, S.; Zeng, X.; Zhang, J.; Pan, K.; Song, L.; Zhou, J.; Kan, H.; Sun, Q.; Zhao, J.; Xie, Y. Fine particulate matter-induced cardiovascular injury is associated with NLRP3 inflammasome activation in Apo E-/- mice. Ecotoxicol. Environ. Saf., 2019, 174, 92-99.
[http://dx.doi.org/10.1016/j.ecoenv.2019.02.064] [PMID: 30822672]
[91]
Du, X.; Jiang, S.; Zeng, X.; Zhang, J.; Pan, K.; Zhou, J.; Xie, Y.; Kan, H.; Song, W.; Sun, Q.; Zhao, J. Air pollution is associated with the development of atherosclerosis via the cooperation of CD36 and NLRP3 inflammasome in ApoE-/- mice. Toxicol. Lett., 2018, 290, 123-132.
[http://dx.doi.org/10.1016/j.toxlet.2018.03.022] [PMID: 29571893]
[92]
Luo, C-M.; Feng, J.; Zhang, J.; Gao, C.; Cao, J-Y.; Zhou, G-L.; Jiang, Y.J.; Jin, X.Q.; Yang, M.S.; Pan, J.Y.; Wang, A.L. 1,25-Vitamin D3 protects against cooking oil fumes-derived PM2.5-induced cell damage through its anti-inflammatory effects in cardiomyocytes. Ecotoxicol. Environ. Saf., 2019, 179, 249-256.
[http://dx.doi.org/10.1016/j.ecoenv.2019.04.064] [PMID: 31054378]
[93]
Fernando, I.P.S.; Jayawardena, T.U.; Kim, H-S.; Lee, W.W.; Vaas, A.P.J.P.; De Silva, H.I.C.; Abayaweera, G.S.; Nanayakkara, C.M.; Abeytunga, D.T.U.; Lee, D.S.; Jeon, Y.J. Beijing urban particulate matter-induced injury and inflammation in human lung epithelial cells and the protective effects of fucosterol from Sargassum binderi (Sonder ex J. Agardh). Environ. Res., 2019, 172, 150-158.
[http://dx.doi.org/10.1016/j.envres.2019.02.016] [PMID: 30782534]
[94]
Hu, H.; Wu, J.; Li, Q.; Asweto, C.; Feng, L.; Yang, X.; Duan, F.; Duan, J.; Sun, Z. Fine particulate matter induces vascular endothelial activation via IL-6 dependent JAK1/STAT3 signaling pathway. Toxicol. Res. (Camb.), 2016, 5(3), 946-953.
[http://dx.doi.org/10.1039/C5TX00351B] [PMID: 30090403]
[95]
What is a true nutraceutical? and what is the nature & size of the U.S. nutraceutical market? Available from: https://fimdefelice.org/library/what-is-a-true-nutraceutical-and-what-is-the-nature-size-of-the-u-s-nutraceutical-market/
[96]
Kalra, E.K. Nutraceutical-definition and introduction. AAPS PharmSci, 2003, 5(3), E25.
[http://dx.doi.org/10.1208/ps050325] [PMID: 14621960]
[97]
Canada h. archived - policy paper - nutraceuticals/functional foods and health claims on foods. Gov Can 1998. Available from: https://www.canada.ca/en/health-canada/services/food-nutrition/food-labelling/health-claims/nutraceuticals-functional-foods-health-claims-foods-policy-paper.html
[98]
Torabally, N.B.; Rahmanpoor, H.A. Nutraceuticals: Nutritionally functional foods – an overview. Biomed. J. Sci. Tech. Res., 2019, 15, 1-3.
[http://dx.doi.org/10.26717/BJSTR.2019.15.002728]
[99]
Aronson, J.K. Defining ‘nutraceuticals’: neither nutritious nor pharmaceutical. Br. J. Clin. Pharmacol., 2017, 83(1), 8-19.
[http://dx.doi.org/10.1111/bcp.12935] [PMID: 26991455]
[100]
Schmitt, J.; Ferro, A. Nutraceuticals: is there good science behind the hype? Br. J. Clin. Pharmacol., 2013, 75(3), 585-587.
[http://dx.doi.org/10.1111/bcp.12061] [PMID: 23384079]
[101]
Liu, R.H. Potential synergy of phytochemicals in cancer prevention: mechanism of action. J. Nutr., 2004, 134(12)(Suppl.), 3479S-3485S.
[http://dx.doi.org/10.1093/jn/134.12.3479S] [PMID: 15570057]
[102]
Süntar, I. Importance of ethnopharmacological studies in drug discovery: role of medicinal plants. Phytochem. Rev., 2019.
[http://dx.doi.org/10.1007/s11101-019-09629-9]
[103]
PubChem compound summary for CID 969516, Curcumin. 2004.
[104]
Gopinath, H.; Karthikeyan, K. Turmeric: A condiment, cosmetic and cure. Indian J. Dermatol. Venereol. Leprol., 2018, 84(1), 16-21.
[http://dx.doi.org/10.4103/ijdvl.IJDVL_1143_16] [PMID: 29243674]
[105]
Banez, M.J.; Geluz, M.I.; Chandra, A.; Hamdan, T.; Biswas, O.S.; Bryan, N.S.; Von Schwarz, E.R. A systemic review on the antioxidant and anti-inflammatory effects of resveratrol, curcumin, and dietary nitric oxide supplementation on human cardiovascular health. Nutr. Res., 2020, 78, 11-26.
[http://dx.doi.org/10.1016/j.nutres.2020.03.002] [PMID: 32428778]
[106]
Liczbiński, P.; Michałowicz, J.; Bukowska, B. Molecular mechanism of curcumin action in signaling pathways: Review of the latest research. Phytother. Res., 2020, 34(8), 1992-2005.
[http://dx.doi.org/10.1002/ptr.6663] [PMID: 32141677]
[107]
Hasanzadeh, S.; Read, M.I.; Bland, A.R.; Majeed, M.; Jamialahmadi, T.; Sahebkar, A. Curcumin: an inflammasome silencer. Pharmacol. Res., 2020, 159, 104921.
[http://dx.doi.org/10.1016/j.phrs.2020.104921] [PMID: 32464325]
[108]
Shi, J.; Deng, H.; Zhang, M. Curcumin pretreatment protects against PM2.5 induced oxidized low density lipoprotein mediated oxidative stress and inflammation in human microvascular endothelial cells. Mol. Med. Rep., 2017, 16(3), 2588-2594.
[http://dx.doi.org/10.3892/mmr.2017.6935] [PMID: 28713935]
[109]
Huang, K.; Shi, C.; Min, J.; Li, L.; Zhu, T.; Yu, H.; Deng, H. Study on the mechanism of curcumin regulating lung injury induced by outdoor fine particulate matter (PM2.5). Mediators Inflamm., 2019, 2019, 8613523-8613523.
[http://dx.doi.org/10.1155/2019/8613523] [PMID: 31530996]
[110]
Ng, T.P.; Niti, M.; Yap, K.B.; Tan, W.C. Curcumins-rich curry diet and pulmonary function in Asian older adults. PLoS One, 2012, 7(12), e51753-e51753.
[http://dx.doi.org/10.1371/journal.pone.0051753] [PMID: 23300564]
[111]
Panahi, Y.; Ghanei, M.; Hajhashemi, A.; Sahebkar, A. Effects of Curcuminoids-piperine combination on systemic oxidative stress, clinical symptoms and quality of life in subjects with chronic pulmonary complications due to sulfur mustard: a randomized controlled trial. J. Diet. Suppl., 2016, 13(1), 93-105.
[http://dx.doi.org/10.3109/19390211.2014.952865] [PMID: 25171552]
[112]
Oliveira, S.; Monteiro-Alfredo, T.; Silva, S.; Matafome, P. Curcumin derivatives for Type 2 Diabetes management and prevention of complications. Arch. Pharm. Res., 2020, 43(6), 567-581.
[http://dx.doi.org/10.1007/s12272-020-01240-3] [PMID: 32557163]
[113]
Eghbaliferiz, S.; Farhadi, F.; Barreto, G.E.; Majeed, M.; Sahebkar, A. Effects of curcumin on neurological diseases: focus on astrocytes. Pharmacol. Rep., 2020, 72(4), 769-782.
[http://dx.doi.org/10.1007/s43440-020-00112-3] [PMID: 32458309]
[114]
Zhang, Y.; Li, L.; Zhang, J. Curcumin in antidepressant treatments: An overview of potential mechanisms, pre-clinical/clinical trials and ongoing challenges. Basic Clin. Pharmacol. Toxicol., 2020, 127(4), 243-253.
[http://dx.doi.org/10.1111/bcpt.13455] [PMID: 32544307]
[115]
Koushki, M.; Amiri-Dashatan, N.; Ahmadi, N.; Abbaszadeh, H.A.; Rezaei-Tavirani, M. Resveratrol: A miraculous natural compound for diseases treatment. Food Sci. Nutr., 2018, 6(8), 2473-2490.
[http://dx.doi.org/10.1002/fsn3.855] [PMID: 30510749]
[116]
Wiciński, M.; Socha, M.; Walczak, M.; Wódkiewicz, E.; Malinowski, B.; Rewerski, S.; Górski, K.; Pawlak-Osińska, K. Beneficial effects of resveratrol administration-focus on potential biochemical mechanisms in cardiovascular conditions. Nutrients, 2018, 10(11), 1813.
[http://dx.doi.org/10.3390/nu10111813] [PMID: 30469326]
[117]
Li, Y.; Qian, W.; Wang, D.; Meng, Y.; Wang, X.; Chen, Y.; Li, X.; Xie, C.; Zhong, C.; Fu, S. Resveratrol relieves particulate matter (mean diameter < 2.5 μm)-induced oxidative injury of lung cells through attenuation of autophagy deregulation. J. Appl. Toxicol., 2018, 38(9), 1251-1261.
[http://dx.doi.org/10.1002/jat.3636] [PMID: 29781141]
[118]
Ding, S.; Wang, H.; Wang, M.; Bai, L.; Yu, P.; Wu, W. Resveratrol alleviates chronic “real-world” ambient particulate matter-induced lung inflammation and fibrosis by inhibiting NLRP3 inflammasome activation in mice. Ecotoxicol. Environ. Saf., 2019, 182, 109425.
[http://dx.doi.org/10.1016/j.ecoenv.2019.109425] [PMID: 31295660]
[119]
Tsai, M-H.; Hsu, L-F.; Lee, C-W.; Chiang, Y-C.; Lee, M-H.; How, J-M.; Wu, C.M.; Huang, C.L.; Lee, I.T. Resveratrol inhibits urban particulate matter-induced COX-2/PGE2 release in human fibroblast-like synoviocytes via the inhibition of activation of NADPH oxidase/ROS/NF-κB. Int. J. Biochem. Cell Biol., 2017, 88, 113-123.
[http://dx.doi.org/10.1016/j.biocel.2017.05.015] [PMID: 28495310]
[120]
Li, Y.; Fu, S.; Li, E.; Sun, X.; Xu, H.; Meng, Y.; Wang, X.; Chen, Y.; Xie, C.; Geng, S.; Wu, J.; Zhong, C.; Xu, P. Modulation of autophagy in the protective effect of resveratrol on PM2.5-induced pulmonary oxidative injury in mice. Phytother. Res., 2018, 32(12), 2480-2486.
[http://dx.doi.org/10.1002/ptr.6187] [PMID: 30238534]
[121]
Khan, N.; Mukhtar, H. Tea polyphenols for health promotion. Life Sci., 2007, 81(7), 519-533.
[http://dx.doi.org/10.1016/j.lfs.2007.06.011] [PMID: 17655876]
[122]
Fürst, R.; Zündorf, I. Plant-derived anti-inflammatory compounds: hopes and disappointments regarding the translation of preclinical knowledge into clinical progress. Mediators Inflamm., 2014, 2014, 146832.
[http://dx.doi.org/10.1155/2014/146832] [PMID: 24987194]
[123]
PubChem. PubChem compound summary for CID 5280343; Quercetin, 2004.
[124]
Sato, S.; Mukai, Y. Modulation of chronic inflammation by quercetin: the beneficial effects on obesity. J. Inflamm. Res., 2020, 13, 421-431.
[http://dx.doi.org/10.2147/JIR.S228361] [PMID: 32848440]
[125]
Yang, G-Z.; Wang, Z-J.; Bai, F.; Qin, X-J.; Cao, J.; Lv, J-Y.; Zhang, M.S. Epigallocatechin-3-gallate protects HUVECs from PM2.5-induced oxidative stress injury by activating critical antioxidant pathways. Molecules, 2015, 20(4), 6626-6639.
[http://dx.doi.org/10.3390/molecules20046626] [PMID: 25875041]
[126]
Jin, X.; Su, R.; Li, R.; Song, L.; Chen, M.; Cheng, L.; Li, Z. Amelioration of particulate matter-induced oxidative damage by vitamin c and quercetin in human bronchial epithelial cells. Chemosphere, 2016, 144, 459-466.
[http://dx.doi.org/10.1016/j.chemosphere.2015.09.023] [PMID: 26386771]
[127]
Liu, W.; Zhang, M.; Feng, J.; Fan, A.; Zhou, Y.; Xu, Y. The influence of quercetin on maternal immunity, oxidative stress, and inflammation in mice with exposure of fine particulate matter during gestation. Int. J. Environ. Res. Public Health, 2017, 14(6), E592.
[http://dx.doi.org/10.3390/ijerph14060592] [PMID: 28574437]
[128]
Zhang, M.; Liu, W.; Zhou, Y.; Li, Y.; Qin, Y.; Xu, Y. Neurodevelopmental toxicity induced by maternal PM2.5 exposure and protective effects of quercetin and Vitamin C. Chemosphere, 2018, 213, 182-196.
[http://dx.doi.org/10.1016/j.chemosphere.2018.09.009] [PMID: 30218877]
[129]
Ward, E. Addressing nutritional gaps with multivitamin and mineral supplements. Nutr. J., 2014, 13, 72.
[http://dx.doi.org/10.1186/1475-2891-13-72] [PMID: 25027766]
[130]
Lentjes, M.A.H. The balance between food and dietary supplements in the general population. Proc. Nutr. Soc., 2019, 78(1), 97-109.
[http://dx.doi.org/10.1017/S0029665118002525] [PMID: 30375305]
[131]
Institute of Medicine. Dietary Reference Intakes Summary Tables. Diet. Ref. Intakes Calcium Vitam. D; The National Academies Press: Washington, DC, 2011.
[132]
Lunn, J.; Theobald, H.E. The health effects of dietary unsaturated fatty acids. Nutr. Bull., 2006, 31, 178-224.
[http://dx.doi.org/10.1111/j.1467-3010.2006.00571.x]
[133]
Miller, C.N.; Rayalam, S. The role of micronutrients in the response to ambient air pollutants: Potential mechanisms and suggestions for research design. J. Toxicol. Environ. Health B Crit. Rev., 2017, 20(1), 38-53.
[http://dx.doi.org/10.1080/10937404.2016.1261746] [PMID: 28145849]
[134]
Ding, L.; Sui, X.; Yang, M.; Zhang, Q.; Sun, S.; Zhu, F.; Cheng, H.; Zhang, C.; Chen, H.; Ding, R.; Cao, J. Toxicity of cooking oil fume derived particulate matter: Vitamin D3 protects tubule formation activation in human umbilical vein endothelial cells. Ecotoxicol. Environ. Saf., 2020, 188, 109905.
[http://dx.doi.org/10.1016/j.ecoenv.2019.109905] [PMID: 31706245]
[135]
Bo, L.; Jiang, S.; Xie, Y.; Kan, H.; Song, W.; Zhao, J. Effect of vitamin E and Omega-3 fatty acids on protecting ambient pm2.5-induced inflammatory response and oxidative stress in vascular endothelial cells. PLoS One, 2016, 11(3), e0152216-e0152216.
[http://dx.doi.org/10.1371/journal.pone.0152216] [PMID: 27007186]
[136]
Zhang, H.; Deng, W.; Yang, Y.; Wei, S.; Xue, L.; Tao, S. Pharmaceutic application of vitamin D3 on particle-induced fibrotic effects through induction of Nrf2 signals. Toxicol. Res. (Camb.), 2020, 9(1), 55-66.
[http://dx.doi.org/10.1093/toxres/tfaa003] [PMID: 32742635]
[137]
Li, J.; Li, H.; Li, H.; Guo, W.; An, Z.; Zeng, X.; Li, W.; Li, H.; Song, J.; Wu, W. Amelioration of PM2.5-induced lung toxicity in rats by nutritional supplementation with fish oil and Vitamin E. Respir. Res., 2019, 20(1), 76.
[http://dx.doi.org/10.1186/s12931-019-1045-7] [PMID: 30992001]
[138]
Panebianco, C.; Eddine, F.B.N.; Forlani, G.; Palmieri, G.; Tatangelo, L.; Villani, A.; Xu, L.; Accolla, R.; Pazienza, V. Probiotic Bifidobacterium lactis, anti-oxidant vitamin E/C and anti-inflammatory dha attenuate lung inflammation due to PM2.5 exposure in mice. Benef. Microbes, 2019, 10(1), 69-75.
[http://dx.doi.org/10.3920/BM2018.0060] [PMID: 30525952]
[139]
Li, X-Y.; Hao, L.; Liu, Y-H.; Chen, C-Y.; Pai, V.J.; Kang, J.X. Protection against fine particle-induced pulmonary and systemic inflammation by omega-3 polyunsaturated fatty acids. Biochim. Biophys. Acta, Gen. Subj., 2017, 1861(3), 577-584.
[http://dx.doi.org/10.1016/j.bbagen.2016.12.018] [PMID: 28011301]
[140]
Du, X.; Jiang, S.; Bo, L.; Liu, J.; Zeng, X.; Xie, Y.; He, Q.; Ye, X.; Song, W.; Zhao, J. Combined effects of vitamin E and omega-3 fatty acids on protecting ambient PM2.5-induced cardiovascular injury in rats. Chemosphere, 2017, 173, 14-21.
[http://dx.doi.org/10.1016/j.chemosphere.2017.01.042] [PMID: 28104476]
[141]
Liu, X.; Zhang, Y.; Yang, X. Vitamin E reduces the extent of mouse brain damage induced by combined exposure to formaldehyde and PM2.5. Ecotoxicol. Environ. Saf., 2019, 172, 33-39.
[http://dx.doi.org/10.1016/j.ecoenv.2019.01.048] [PMID: 30669072]
[142]
Guan, L.; Geng, X.; Shen, J.; Yip, J.; Li, F.; Du, H.; Ji, Z.; Ding, Y. PM2.5 inhalation induces intracranial atherosclerosis which may be ameliorated by omega 3 fatty acids. Oncotarget, 2017, 9(3), 3765-3778.
[http://dx.doi.org/10.18632/oncotarget.23347] [PMID: 29423081]
[143]
Zhen, A.X.; Piao, M.J.; Kang, K.A.; Fernando, P.D.S.M.; Kang, H.K.; Koh, Y.S.; Yi, J.M.; Hyun, J.W. Niacinamide protects skin cells from oxidative stress induced by particulate matter. Biomol. Ther. (Seoul), 2019, 27, 562-569.
[http://dx.doi.org/10.4062/biomolther.2019.061] [PMID: 31272139]
[144]
Lin, Z.; Niu, Y.; Jiang, Y.; Chen, B.; Peng, L.; Mi, T. Protective effects of dietary fish-oil supplementation on skin inflammatory and oxidative stress biomarkers induced by fine particulate air pollution: a pilot randomized, double-blind, placebo-controlled trial. Br. J. Dermatol., 2020.
[145]
Lin, Z.; Chen, R.; Jiang, Y.; Xia, Y.; Niu, Y.; Wang, C.; Liu, C.; Chen, C.; Ge, Y.; Wang, W.; Yin, G.; Cai, J.; Clement, V.; Xu, X.; Chen, B.; Chen, H.; Kan, H. Cardiovascular benefits of fish-oil supplementation against fine particulate air pollution in China. J. Am. Coll. Cardiol., 2019, 73(16), 2076-2085.
[http://dx.doi.org/10.1016/j.jacc.2018.12.093] [PMID: 31023432]
[146]
Brigham, E.P.; Woo, H.; McCormack, M.; Rice, J.; Koehler, K.; Vulcain, T.; Wu, T.; Koch, A.; Sharma, S.; Kolahdooz, F.; Bose, S.; Hanson, C.; Romero, K.; Diette, G.; Hansel, N.N. Omega-3 and Omega-6 intake modifies asthma severity and response to indoor air pollution in children. Am. J. Respir. Crit. Care Med., 2019, 199(12), 1478-1486.
[http://dx.doi.org/10.1164/rccm.201808-1474OC] [PMID: 30922077]
[147]
Tong, H.; Rappold, A.G.; Caughey, M.; Hinderliter, A.L.; Bassett, M.; Montilla, T.; Case, M.W.; Berntsen, J.; Bromberg, P.A.; Cascio, W.E.; Diaz-Sanchez, D.; Devlin, R.B.; Samet, J.M. Dietary supplementation with olive oil or fish oil and vascular effects of concentrated ambient particulate matter exposure in human volunteers. Environ. Health Perspect., 2015, 123(11), 1173-1179.
[http://dx.doi.org/10.1289/ehp.1408988] [PMID: 25933197]
[148]
Zhong, J.; Trevisi, L.; Urch, B.; Lin, X.; Speck, M.; Coull, B.A.; Liss, G.; Thompson, A.; Wu, S.; Wilson, A.; Koutrakis, P.; Silverman, F.; Gold, D.R.; Baccarelli, A.A. B-vitamin Supplementation mitigates effects of fine particles on cardiac autonomic dysfunction and inflammation: a pilot human intervention trial. Sci. Rep., 2017, 7, 45322-45322.
[http://dx.doi.org/10.1038/srep45322] [PMID: 28367952]
[149]
Possamai, F.P.; Júnior, S.Á.; Parisotto, E.B.; Moratelli, A.M.; Inácio, D.B.; Garlet, T.R.; Dal-Pizzol, F.; Filho, D.W. Antioxidant intervention compensates oxidative stress in blood of subjects exposed to emissions from a coal electric-power plant in South Brazil. Environ. Toxicol. Pharmacol., 2010, 30(2), 175-180.
[http://dx.doi.org/10.1016/j.etap.2010.05.006] [PMID: 21787649]
[150]
Nelson, K.M.; Dahlin, J.L.; Bisson, J.; Graham, J.; Pauli, G.F.; Walters, M.A. The essential medicinal chemistry of curcumin. J. Med. Chem., 2017, 60(5), 1620-1637.
[http://dx.doi.org/10.1021/acs.jmedchem.6b00975] [PMID: 28074653]
[151]
Riva, A.; Ronchi, M.; Petrangolini, G.; Bosisio, S.; Allegrini, P. Improved oral absorption of quercetin from quercetin phytosome®, a new delivery system based on food grade lecithin. Eur. J. Drug Metab. Pharmacokinet., 2019, 44(2), 169-177.
[http://dx.doi.org/10.1007/s13318-018-0517-3] [PMID: 30328058]
[152]
Tang, G-Y.; Meng, X.; Gan, R-Y.; Zhao, C-N.; Liu, Q.; Feng, Y-B.; Li, S.; Wei, X.L.; Atanasov, A.G.; Corke, H.; Li, H.B. Health functions and related molecular mechanisms of tea components: An update review. Int. J. Mol. Sci., 2019, 20(24), E6196.
[http://dx.doi.org/10.3390/ijms20246196] [PMID: 31817990]
[153]
Lao, C.D.; Ruffin, M.T., IV; Normolle, D.; Heath, D.D.; Murray, S.I.; Bailey, J.M.; Boggs, M.E.; Crowell, J.; Rock, C.L.; Brenner, D.E. Dose escalation of a curcuminoid formulation. BMC Complement. Altern. Med., 2006, 6, 10-10.
[http://dx.doi.org/10.1186/1472-6882-6-10] [PMID: 16545122]
[154]
Moghaddam, S.J.; Barta, P.; Mirabolfathinejad, S.G.; Ammar-Aouchiche, Z.; Garza, N.T.; Vo, T.T.; Newman, R.A.; Aggarwal, B.B.; Evans, C.M.; Tuvim, M.J.; Lotan, R.; Dickey, B.F. Curcumin inhibits COPD-like airway inflammation and lung cancer progression in mice. Carcinogenesis, 2009, 30(11), 1949-1956.
[http://dx.doi.org/10.1093/carcin/bgp229] [PMID: 19793800]
[155]
Boots, A.W.; Veith, C.; Albrecht, C.; Bartholome, R.; Drittij, M-J.; Claessen, S.M.H.; Bast, A.; Rosenbruch, M.; Jonkers, L.; van Schooten, F.J.; Schins, R.P.F. The dietary antioxidant quercetin reduces hallmarks of bleomycin-induced lung fibrogenesis in mice. BMC Pulm. Med., 2020, 20(1), 112.
[http://dx.doi.org/10.1186/s12890-020-1142-x] [PMID: 32349726]
[156]
Bieger, J.; Cermak, R.; Blank, R.; de Boer, V.C.J.; Hollman, P.C.H.; Kamphues, J.; Wolffram, S. Tissue distribution of quercetin in pigs after long-term dietary supplementation. J. Nutr., 2008, 138(8), 1417-1420.
[http://dx.doi.org/10.1093/jn/138.8.1417] [PMID: 18641184]
[157]
Subramani, P.A.; Narala, V.R. Challenges of curcumin bioavailability: novel aerosol remedies. Nat. Prod. Commun., 2013, 8(1), 121-124.
[http://dx.doi.org/10.1177/1934578X1300800129] [PMID: 23472475]
[158]
Naksuriya, O.; Okonogi, S.; Schiffelers, R.M.; Hennink, W.E. Curcumin nanoformulations: a review of pharmaceutical properties and preclinical studies and clinical data related to cancer treatment. Biomaterials, 2014, 35(10), 3365-3383.
[http://dx.doi.org/10.1016/j.biomaterials.2013.12.090] [PMID: 24439402]
[159]
Baghdan, E.; Duse, L.; Schüer, J.J.; Pinnapireddy, S.R.; Pourasghar, M.; Schäfer, J.; Schneider, M.; Bakowsky, U. Development of inhalable curcumin loaded Nano-in-Microparticles for bronchoscopic photodynamic therapy. Eur. J. Pharm. Sci., 2019, 132, 63-71.
[http://dx.doi.org/10.1016/j.ejps.2019.02.025] [PMID: 30797026]
[160]
Zhang, T.; Chen, Y.; Ge, Y.; Hu, Y.; Li, M.; Jin, Y. Inhalation treatment of primary lung cancer using liposomal curcumin dry powder inhalers. Acta Pharm. Sin. B, 2018, 8(3), 440-448.
[http://dx.doi.org/10.1016/j.apsb.2018.03.004] [PMID: 29881683]
[161]
Gonçalves, R.F.S.; Martins, J.T.; Duarte, C.M.M.; Vicente, A.A.; Pinheiro, A.C. Advances in nutraceutical delivery systems: From formulation design for bioavailability enhancement to efficacy and safety evaluation. Trends Food Sci. Technol., 2018, 78, 270-291.
[http://dx.doi.org/10.1016/j.tifs.2018.06.011]
[162]
Whitley, H.; Lindsey, W. Sex-based differences in drug activity. Am. Fam. Physician, 2009, 80(11), 1254-1258.
[PMID: 19961138]
[163]
Mahale, J.; Singh, R.; Howells, L.M.; Britton, R.G.; Khan, S.M.; Brown, K. Detection of plasma curcuminoids from dietary intake of turmeric-containing food in human volunteers. Mol. Nutr. Food Res., 2018, 62(16), e1800267.
[http://dx.doi.org/10.1002/mnfr.201800267] [PMID: 29943914]
[164]
Schiborr, C.; Kocher, A.; Behnam, D.; Jandasek, J.; Toelstede, S.; Frank, J. The oral bioavailability of curcumin from micronized powder and liquid micelles is significantly increased in healthy humans and differs between sexes. Mol. Nutr. Food Res., 2014, 58(3), 516-527.
[http://dx.doi.org/10.1002/mnfr.201300724] [PMID: 24402825]
[165]
Muñoz, O.; Bustamante, S. Pharmacological properties of resveratrol. A pre-clinical and clinical review. Biochem. Pharmacol. Open Access., 2015, 4, 184.
[166]
Clougherty, J.E. A growing role for gender analysis in air pollution epidemiology. Environ. Health Perspect., 2010, 118(2), 167-176.
[http://dx.doi.org/10.1289/ehp.0900994] [PMID: 20123621]
[167]
Kim, H.; Noh, J.; Noh, Y.; Oh, S.S.; Koh, S-B.; Kim, C. Gender difference in the effects of outdoor air pollution on cognitive function among elderly in Korea. Front. Public Health, 2019, 7, 375.
[http://dx.doi.org/10.3389/fpubh.2019.00375] [PMID: 31921740]
[168]
Santangelo, R.; Silvestrini, A.; Mancuso, C. Ginsenosides, catechins, quercetin and gut microbiota: Current evidence of challenging interactions. Food Chem. Toxicol., 2019, 123, 42-49.
[http://dx.doi.org/10.1016/j.fct.2018.10.042] [PMID: 30336256]
[169]
Papillo, V.A.; Arlorio, M.; Locatelli, M.; Fuso, L.; Pellegrini, N.; Fogliano, V. In vitro evaluation of gastro-intestinal digestion and colonic biotransformation of curcuminoids considering different formulations and food matrices. J. Funct. Foods, 2019, 59, 156-163.
[http://dx.doi.org/10.1016/j.jff.2019.05.031]
[170]
Di Pede, G.; Bresciani, L.; Calani, L.; Petrangolini, G.; Riva, A.; Allegrini, P.; Del Rio, D.; Mena, P. The human microbial metabolism of quercetin in different formulations: An in vitro evaluation. Foods, 2020, 9(8), 1121.
[http://dx.doi.org/10.3390/foods9081121] [PMID: 32823976]
[171]
Bresciani, L.; Favari, C.; Calani, L.; Francinelli, V.; Riva, A.; Petrangolini, G.; Allegrini, P.; Mena, P.; Del Rio, D. The effect of formulation of curcuminoids on their metabolism by human colonic microbiota. Molecules, 2020, 25(4), 940.
[http://dx.doi.org/10.3390/molecules25040940] [PMID: 32093121]
[172]
Etxeberria, U.; Arias, N.; Boqué, N.; Macarulla, M.T.; Portillo, M.P.; Martínez, J.A.; Milagro, F.I. Reshaping faecal gut microbiota composition by the intake of trans-resveratrol and quercetin in high-fat sucrose diet-fed rats. J. Nutr. Biochem., 2015, 26(6), 651-660.
[http://dx.doi.org/10.1016/j.jnutbio.2015.01.002] [PMID: 25762527]
[173]
Bond, T.; Derbyshire, E. Tea compounds and the gut microbiome: findings from trials and mechanistic studies. Nutrients, 2019, 11(10), 2364.
[http://dx.doi.org/10.3390/nu11102364] [PMID: 31623411]
[174]
Heirali, A.A.; Workentine, M.L.; Acosta, N.; Poonja, A.; Storey, D.G.; Somayaji, R.; Rabin, H.R.; Whelan, F.J.; Surette, M.G.; Parkins, M.D. The effects of inhaled aztreonam on the cystic fibrosis lung microbiome. Microbiome, 2017, 5(1), 51-51.
[http://dx.doi.org/10.1186/s40168-017-0265-7] [PMID: 28476135]
[175]
Mariani, J.; Favero, C.; Del Buono, L.; Motta, V.; Pergoli, L.; Cattaneo, A. Particulate Matter exposure influences respiratory microbiota structure and functions. Eur. Respir. J., 2017, 50, PA2639.
[http://dx.doi.org/10.1183/1393003.congress-2017.PA2639]
[176]
Li, J.; Hu, Y.; Liu, L.; Wang, Q.; Zeng, J.; Chen, C. PM2.5 exposure perturbs lung microbiome and its metabolic profile in mice. Sci. Total Environ., 2020, 721, 137432.
[http://dx.doi.org/10.1016/j.scitotenv.2020.137432] [PMID: 32169651]
[177]
Lucock, M.; Jones, P.; Veysey, M.; Beckett, E. B vitamins and pollution, an interesting, emerging, yet incomplete picture of folate and the exposome. Proc. Natl. Acad. Sci. USA, 2017, 114(20), E3878-E3879.
[http://dx.doi.org/10.1073/pnas.1704662114] [PMID: 28484039]
[178]
Saedisomeolia, A.; Wood, L.G.; Garg, M.L.; Gibson, P.G.; Wark, P.A.B. Supplementation of long chain n-3 polyunsaturated fatty acids increases the utilization of lycopene in cultured airway epithelial cells. J. Food Lipids, 2008, 15, 421-432.
[http://dx.doi.org/10.1111/j.1745-4522.2008.00130.x]
[179]
Menendez, J.A.; Ropero, S.; Lupu, R.; Colomer, R. Omega-6 polyunsaturated fatty acid gamma-linolenic acid (18:3n-6) enhances docetaxel (Taxotere) cytotoxicity in human breast carcinoma cells: Relationship to lipid peroxidation and HER-2/neu expression. Oncol. Rep., 2004, 11(6), 1241-1252.
[http://dx.doi.org/10.3892/or.11.6.1241] [PMID: 15138562]
[180]
Jeong, S.Y.; Kim, J.; Park, E.K.; Baek, M-C.; Bae, J-S. Inhibitory functions of maslinic acid on particulate matter-induced lung injury through TLR4-mTOR-autophagy pathways. Environ. Res., 2020, 183, 109230.
[http://dx.doi.org/10.1016/j.envres.2020.109230] [PMID: 32058145]
[181]
Herath, K.H.I.N.M.; Kim, H.J.; Kim, A.; Sook, C.E.; Lee, B-Y.; Jee, Y. The Role of Fucoidans Isolated from the Sporophylls of Undaria pinnatifida against Particulate-matter-induced allergic airway inflammation: evidence of the attenuation of oxidative stress and inflammatory responses. Molecules, 2020, 25(12), 2869.
[http://dx.doi.org/10.3390/molecules25122869] [PMID: 32580518]
[182]
Xue, Z.; Li, A.; Zhang, X.; Yu, W.; Wang, J.; Li, Y.; Chen, K.; Wang, Z.; Kou, X. Amelioration of PM2.5-induced lung toxicity in rats by nutritional supplementation with biochanin A. Ecotoxicol. Environ. Saf., 2020, 202, 110878.
[http://dx.doi.org/10.1016/j.ecoenv.2020.110878] [PMID: 32585486]
[183]
Nam, W.; Kim, H.; Bae, C.; Kim, J.; Nam, B.; Lee, Y.; Kim, J.; Park, S.; Lee, J.; Sim, J. Lactobacillus HY2782 and Bifidobacterium HY8002 decrease airway hyperresponsiveness induced by chronic PM2.5 inhalation in mice. J. Med. Food, 2020, 23(6), 575-583.
[http://dx.doi.org/10.1089/jmf.2019.4604] [PMID: 32298595]
[184]
Pang, L.; Zou, S.; Shi, Y.; Mao, Q.; Chen, Y. Apigenin attenuates PM2.5-induced airway hyperresponsiveness and inflammation by down-regulating NF-κB in murine model of asthma. Int. J. Clin. Exp. Pathol., 2019, 12(10), 3700-3709.
[PMID: 31933758]
[185]
Zheng, Y.; Fan, J.; Chen, H.W.; Liu, E.Q. Trametes orientalis polysaccharide alleviates PM2.5-induced lung injury in mice through its antioxidant and anti-inflammatory activities. Food Funct., 2019, 10(12), 8005-8015.
[http://dx.doi.org/10.1039/C9FO01777A] [PMID: 31763641]
[186]
Choi, H.; Lee, W.; Kim, E.; Ku, S-K.; Bae, J-S. Inhibitory effects of collismycin C and pyrisulfoxin on particulate matter-induced pulmonary injury. Phytomedicine, 2019, 62, 152939.
[http://dx.doi.org/10.1016/j.phymed.2019.152939] [PMID: 31100678]
[187]
Zhang, J-B.; Zhang, L.; Li, S-Q.; Hou, A-H.; Liu, W-C.; Dai, L-L. Tubeimoside I attenuates inflammation and oxidative damage in a mice model of PM2.5-induced pulmonary injury. Exp. Ther. Med., 2018, 15(2), 1602-1607.
[http://dx.doi.org/10.3892/etm.2017.5597] [PMID: 29434745]
[188]
Xu, J.; Lu, X.; Han, F. Effects of honokiol on particulate matter 2.5-induced lung injury in asthmatic mice and its mechanisms. Zhong Nan Da Xue Xue Bao Yi Xue Ban, 2018, 43(7), 718-724.
[http://dx.doi.org/10.11817/j.issn.1672-7347.2018.07.004] [PMID: 30124206]
[189]
Liu, J.; Yang, Y.; Zeng, X.; Bo, L.; Jiang, S.; Du, X.; Xie, Y.; Jiang, R.; Zhao, J.; Song, W. Investigation of selenium pretreatment in the attenuation of lung injury in rats induced by fine particulate matters. Environ. Sci. Pollut. Res. Int., 2017, 24(4), 4008-4017.
[http://dx.doi.org/10.1007/s11356-016-8173-0] [PMID: 27921246]
[190]
Zhang, J.; Li, S.; Sun, L.; Chen, Y.; Zhang, L.; Zhang, Z. Therapeutic effects of stemonine on particulate matter 2.5-induced chronic obstructive pulmonary disease in mice. Exp. Ther. Med., 2017, 14(5), 4453-4459.
[http://dx.doi.org/10.3892/etm.2017.5092] [PMID: 29104656]
[191]
Wang, X.; Hui, Y.; Zhao, L.; Hao, Y.; Guo, H.; Ren, F. Oral administration of Lactobacillus paracasei L9 attenuates PM2.5-induced enhancement of airway hyperresponsiveness and allergic airway response in murine model of asthma. PLoS One, 2017, 12(2), e0171721.
[http://dx.doi.org/10.1371/journal.pone.0171721] [PMID: 28199353]
[192]
Zeng, X.; Liu, J.; Du, X.; Zhang, J.; Pan, K.; Shan, W.; Xie, Y.; Song, W.; Zhao, J. The protective effects of selenium supplementation on ambient PM2.5-induced cardiovascular injury in rats. Environ. Sci. Pollut. Res. Int., 2018, 25(22), 22153-22162.
[http://dx.doi.org/10.1007/s11356-018-2292-8] [PMID: 29804245]
[193]
Du, X.; Jiang, S.; Bo, L.; Liu, J.; Zeng, X.; Jiang, R.; Song, W.; Zhao, J. [Effects of vitamin E and ω-3 fatty acids on protecting ambient PM_(2.5)-induced cardiovascular injury]. Wei Sheng Yan Jiu, 2017, 46(4), 517-537. [Effects of vitamin E and ω-3 fatty acids on protecting ambient PM_(2.5)-induced cardiovascular injury.
[PMID: 29903169]
[194]
Villarreal-Calderon, R.; Torres-Jardón, R.; Palacios-Moreno, J.; Osnaya, N.; Pérez-Guillé, B.; Maronpot, R.R.; Reed, W.; Zhu, H.; Calderón-Garcidueñas, L. Urban air pollution targets the dorsal vagal complex and dark chocolate offers neuroprotection. Int. J. Toxicol., 2010, 29(6), 604-615.
[http://dx.doi.org/10.1177/1091581810383587] [PMID: 21030725]
[195]
Calderón-Garcidueñas, L.; Mora-Tiscareño, A.; Franco-Lira, M.; Cross, J.V.; Engle, R.; Aragón-Flores, M.; Gómez-Garza, G.; Jewells, V.; Medina-Cortina, H.; Solorio, E.; Chao, C.K.; Zhu, H.; Mukherjee, P.S.; Ferreira-Azevedo, L.; Torres-Jardón, R.; D’Angiulli, A. Flavonol-rich dark cocoa significantly decreases plasma endothelin-1 and improves cognition in urban children. Front. Pharmacol., 2013, 4, 104-104.
[http://dx.doi.org/10.3389/fphar.2013.00104] [PMID: 23986703]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy