Generic placeholder image

Current Computer-Aided Drug Design

Editor-in-Chief

ISSN (Print): 1573-4099
ISSN (Online): 1875-6697

Research Article

Screening and Development of Transglutaminase-2 Inhibitors and their Derivative as Anti-lung Cancer Agent by in silico and in vitro Approaches

Author(s): Prachi P. Parvatikar*, Sumangala Patil, Joy Hoskeri, Sandeep Swargam, Raghvendra V. Kulkarni and Kusal K Das

Volume 18, Issue 1, 2022

Published on: 22 March, 2021

Page: [41 - 51] Pages: 11

DOI: 10.2174/1573409917666210322120350

Price: $65

Abstract

Aim: This study aimed at screening and development of TG2 inhibitors as anti lung cancer agent.

Background: Transglutaminase 2 (TG2) is multifunctional and ubiquitously expressed protein from the transglutaminase family. It takes part in various cellular processes and plays an important role in the pathogenesis of autoimmune, neurodegerative diseases, and also cancer.

Objective: The proposed study focused on screening potent inhibitors of TG2 by in-silico method and synthesize their derivative as well as analyse its activity by utilizing an in-vitro approach.

Materials and Methods: Molecular docking studies have been carried out on the different classes of TG2 inhibitors against the target protein. Nearly thirty TG2 inhibitors were selected from literature and docking was performed against transglutaminase 2. The computational ADME property screening was also carried out to check their pharmacokinetic properties. The compounds which exhibited positive ADME properties with good interaction while possessing the least binding energy were further validated for their anti-lung cancer inhibition property against A549 cell lines using cytotoxicity studies.

Results: The results of the present study indicate that the docked complex formed by cystamine showed better binding affinity towards target protein, so this derivative of cystamine was formed using 2,5 dihydrobenzoic acid. Invitro results revealed that both molecules proved to be good cytotoxic agents against A549 lung cancer (875.10, 553.22 μg/ml), respectively. Further, their activity needs to be validated on TG2 expressing lung cancer.

Conclusion: Cystamine and its derivative can act as a potential therapeutic target for lung cancer but its activity should be further validated on TG2 expressing lung cancer.

Keywords: TG2, lung cancer, simulation, molecular interaction, cystamine derivative, molecular docking

Graphical Abstract
[1]
Kris, M.G.; Gaspar, L.E.; Chaft, J.E.; Kennedy, E.B.; Azzoli, C.G.; Ellis, P.M.; Lin, S.H.; Pass, H.I.; Seth, R.; Shepherd, F.A.; Spigel, D.R.; Strawn, J.R.; Ung, Y.C.; Weyant, M. Adjuvant systemic therapy and adjuvant radiation therapy for stage I to IIIA completely resected non-small-cell lung cancers: American Society of Clinical Oncology/Cancer Care Ontario clinical practice guideline update. J. Clin. Oncol., 2017, 35(25), 2960-2974.
[http://dx.doi.org/10.1200/JCO.2017.72.4401] [PMID: 28437162]
[2]
Adams, VR; Harvey, RD Histological and genetic markers for non-small-cell lung cancer: customizing treatment based on individual tumor biology. Am. J. Health-System Pharm., 2010, 67(1), S3-S9.
[http://dx.doi.org/10.2146/ajhp090456]
[3]
Griffin, M.; Casadio, R.; Bergamini, C.M. Transglutaminases: nature’s biological glues. Biochem. J., 2002, 368(Pt 2), 377-396.
[http://dx.doi.org/10.1042/bj20021234] [PMID: 12366374]
[4]
Lorand, L; Graham, RM Transglutaminases: crosslinking enzymes with pleiotropic functions. Nature Rev. Mol. Cell Biol.,, 2003, 4(2), 140-156.
[http://dx.doi.org/10.1038/nrm1014]
[5]
Park, S.C.; Kim, W.H.; Lee, M.C.; Seong, S.C.; Song, K.Y.; Choe, M.A. Modulation of transglutaminase expression in rat skeletal muscle by induction of atrophy and endurance training. J. Korean Med. Sci., 1994, 9(6), 490-496.
[http://dx.doi.org/10.3346/jkms.1994.9.6.490] [PMID: 7786446]
[6]
Beninati, S.; Piacentini, M. The transglutaminase family: an overview: minireview article. Amino Acids, 2004, 26(4), 367-372.
[http://dx.doi.org/10.1007/s00726-004-0091-7] [PMID: 15290342]
[7]
Lee, C.S.; Park, H.H. Structural aspects of transglutaminase 2: functional, structural, and regulatory diversity. Apoptosis, 2017, 22(9), 1057-1068.
[http://dx.doi.org/10.1007/s10495-017-1396-9] [PMID: 28677093]
[8]
Piacentini, M.; Fesus, L.; Farrace, M. G.; Ghibelli, L.; Piredda, L.; Melino, G. The expression of "tissue" transglutaminase in two human cancer cell lines is related with the programmed cell death (apoptosis). Euro. J. Cell Bio., 1991, 54, 246-254.
[9]
Mehta, K.; Han, A. Tissue transglutaminase (TG2)-induced inflammation in initiation, progression, and pathogenesis of pancreatic cancer. Cancers (Basel), 2011, 3(1), 897-912.
[http://dx.doi.org/10.3390/cancers3010897] [PMID: 24212645]
[10]
Jeitner, T.M.; Delikatny, E.J.; Ahlqvist, J.; Capper, H.; Cooper, A.J. Mechanism for the inhibition of transglutaminase 2 by cystamine. Biochem. Pharmacol., 2005, 69(6), 961-970.
[http://dx.doi.org/10.1016/j.bcp.2004.12.011] [PMID: 15748707]
[11]
Mangala, LS; Mehta, K Tissue transglutaminase (TG2) in cancer biology. In: Transglutaminases; Karger Publishers., 2005; 38, pp. 125-138.
[12]
Laskowski, R.A. PDBsum: summaries and analyses of PDB structures. Nucleic Acids Res., 2001, 29(1), 221-222.
[http://dx.doi.org/10.1093/nar/29.1.221] [PMID: 11125097]
[13]
Csizmadia, P. MarvinSketch and MarvinView: molecule applets for the World Wide Web.
[http://dx.doi.org/10.3390/ecsoc-3-01775]
[14]
Daina, A.; Michielin, O.; Zoete, V. SwissADME: a free web tool to evaluate pharmacokinetics, drug-likeness and medicinal chemistry friendliness of small molecules. Sci. Rep., 2017, 7, 42717.
[http://dx.doi.org/10.1038/srep42717] [PMID: 28256516]
[15]
Release, S. 2: Maestro, version 9.8; Schrödinger, LLC: New York, NY, 2014.
[16]
Chow, E.; Rendleman, C.A.; Bowers, K.J.; Dror, R.O.; Hughes, D.H.; Gullingsrud, J.; Sacerdoti, F.D.; Shaw, D.E. Desmond performance on a cluster of multicore processors. DE ShawResearch Technical Report DESRES/TR-, 2008.
[17]
Hahn, V.; Davids, T.; Lalk, M.; Schauer, F.; Mikolasch, A. Enzymatic cyclizations using laccases: multiple bond formation between dihydroxybenzoic acid derivatives and aromatic amines. Green Chem., 2010, 12, 879-887.
[http://dx.doi.org/10.1039/b920081a]
[18]
Niedermeyer, TH; Mikolasch, A; Lalk, M. Nuclear amination catalyzed by fungal laccases: reaction products of p-hydroquinones and primary aromatic amines. Jorg. Chem., 2005, 70, 2002-2008.
[19]
Freimoser, F.M.; Jakob, C.A.; Aebi, M.; Tuor, U. The MTT [3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide] assay is a fast and reliable method for colorimetric determination of fungal cell densities. Appl. Environ. Microbiol., 1999, 65(8), 3727-3729.
[http://dx.doi.org/10.1128/AEM.65.8.3727-3729.1999] [PMID: 10427074]
[20]
Chihong, Z.; Yutian, L.; Danying, W.; Ruibin, J.; Huaying, S.; Linhui, G.; Jianguo, F. Prognostic value of Transglutaminase 2 in non-small cell lung cancer patients. Oncotarget, 2017, 8(28), 45577-45584.
[http://dx.doi.org/10.18632/oncotarget.17374] [PMID: 28715877]
[21]
Jang, T.H.; Lee, D.S.; Choi, K.; Jeong, E.M.; Kim, I.G.; Kim, Y.W.; Park, H.H. Crystal structure of transglutaminase 2 with GTP complex and amino acid sequence evidence of evolution of GTP binding site. PloS one., 2014, 9(9), e107005.
[http://dx.doi.org/10.1371/journal.pone.0107005]
[22]
Odii, B.O.; Coussons, P. Biological functionalities of transglutaminase 2 and the possibility of its compensation by other members of the transglutaminase family. Sci. World J.,, 2014, 2014, 714561.
[http://dx.doi.org/10.1155/2014/714561] [PMID: 24778599]
[23]
Soluri, M.F.; Boccafoschi, F.; Cotella, D.; Moro, L.; Forestieri, G.; Autiero, I.; Cavallo, L.; Oliva, R.; Griffin, M.; Wang, Z.; Santoro, C.; Sblattero, D. Mapping the minimum domain of the fibronectin binding site on transglutaminase 2 (TG2) and its importance in mediating signaling, adhesion, and migration in TG2-expressing cells. FASEB J., 2019, 33(2), 2327-2342.
[http://dx.doi.org/10.1096/fj.201800054RRR] [PMID: 30285580]
[24]
Siegel, M.; Khosla, C. Transglutaminase 2 inhibitors and their therapeutic role in disease states. Pharmacol. Ther., 2007, 115(2), 232-245.
[http://dx.doi.org/10.1016/j.pharmthera.2007.05.003] [PMID: 17582505]
[25]
Keillor, J.W.; Apperley, K.Y.; Akbar, A. Erratum: Inhibitors of tissue transglutaminase. Trends Pharmacol. Sci., 2015, 36, 417.
[http://dx.doi.org/10.1016/j.tips.2015.04.009]
[26]
Budillon, A.; Carbone, C.; Di Gennaro, E. Tissue transglutaminase: a new target to reverse cancer drug resistance. Amino Acids, 2013, 44(1), 63-72.
[http://dx.doi.org/10.1007/s00726-011-1167-9] [PMID: 22130737]
[27]
Parvatikar, P.P.; Madagi, S.B. Molecular Docking Analysis: Interaction Studies of Natural Compounds with Human TG2 Protein. The World Cong on Eng & Com Sci; Springer: Singapore, 2018, pp. 101-111.
[28]
Johnson, K.A.; Terkeltaub, R.A. External GTP-bound transglutaminase 2 is a molecular switch for chondrocyte hypertrophic differentiation and calcification. J. Biol. Chem., 2005, 280(15), 15004-15012.
[http://dx.doi.org/10.1074/jbc.M500962200] [PMID: 15691824]
[29]
Park, KS; Kim, HK; Lee, JH; Choi, YB; Park, SY; Yang, SH; Kim, SY; Hong, KM Transglutaminase 2 as a cisplatin resistance marker in non-small cell lung cancer. J. Cancer & Clin. Oncol.,, 2010, 136, 493-502.
[http://dx.doi.org/10.1007/s00432-009-0681-6]
[30]
Lai, TS; Liu, Y; Tucker, T; Daniel, KR; Sane, DC; Toone, E; Burke, JR; Strittmatter, WJ; Greenberg, CS Identification of chemical inhibitors to human tissue transglutaminase by screening existing drug libraries. Chem. & Bio., 2008, 15(9), 969-978.
[http://dx.doi.org/10.1016/j.chembiol.2008.07.015]
[31]
Schaertl, S; Prime, M; Wityak, J; Dominguez, C; Munoz-Sanjuan, I; Pacifici, RE; Courtney, S A profiling platform for the characterization of transglutaminase 2 (TG2) inhibitors. J. Biomol. Scre., 2010, 15, 478-487.
[32]
Juurlink, B.H.; Azouz, H.J.; Aldalati, A.M.; AlTinawi, B.M.; Ganguly, P. Hydroxybenzoic acid isomers and the cardiovascular system. Nutr. J., 2014, 13, 63.
[http://dx.doi.org/10.1186/1475-2891-13-63] [PMID: 24943896]
[33]
Lin, H.H.; Chen, J.H.; Huang, C.C.; Wang, C.J. Apoptotic effect of 3,4-dihydroxybenzoic acid on human gastric carcinoma cells involving JNK/p38 MAPK signaling activation. Int. J. Cancer, 2007, 120(11), 2306-2316.
[http://dx.doi.org/10.1002/ijc.22571] [PMID: 17304508]
[34]
Bollag, J.M.; Shuttleworth, K.L.; Anderson, D.H. Laccase-mediated detoxification of phenolic compounds. Appl. Environ. Microbiol., 1988, 54(12), 3086-3091.
[http://dx.doi.org/10.1128/AEM.54.12.3086-3091.1988] [PMID: 3223771]
[35]
Alkaloids: biochemistry, ecology, and medicinal applications; Roberts, M.F., Ed.; 1998.
[http://dx.doi.org/10.1007/978-1-4757-2905-4]
[36]
Rodríguez Couto, S.; Toca Herrera, J.L. Industrial and biotechnological applications of laccases: a review. Biotechnol. Adv., 2006, 24(5), 500-513.
[http://dx.doi.org/10.1016/j.biotechadv.2006.04.003] [PMID: 16716556]
[37]
Riva, S. Laccases: blue enzymes for green chemistry. Trends Biotechnol., 2006, 24(5), 219-226.
[http://dx.doi.org/10.1016/j.tibtech.2006.03.006] [PMID: 16574262]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy