Generic placeholder image

Current Topics in Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 1568-0266
ISSN (Online): 1873-4294

Perspectives in Medicinal Chemistry

Azithromycin Use in COVID-19 Patients: Implications on the Antimicrobial Resistance

Author(s): Gabriela Seabra, Roberta Ferreira Ventura Mendes, Luiz Felipe Vieira dos Santos Amorim, Ingrid Vianez Peregrino, Marta Helena Branquinha, André Luis Souza dos Santos* and Ana Paula Ferreira Nunes*

Volume 21, Issue 8, 2021

Published on: 19 March, 2021

Page: [677 - 683] Pages: 7

DOI: 10.2174/156802662108210319145317

Next »
[1]
Hughes, J.H.; Sweeney, K.; Ahadieh, S.; Ouellet, D. Predictions of systemic, intracellular, and lung concentrations of azithromycin with different dosing regimens used in COVID-19 clinical trials. CPT Pharmacometrics Syst. Pharmacol., 2020, 9(8), 435-443.
[http://dx.doi.org/10.1002/psp4.12537] [PMID: 32511867]
[2]
Damle, B.; Vourvahis, M.; Wang, E.; Leaney, J.; Corrigan, B. Clinical pharmacology perspectives on the antiviral activity of azithromycin and use in COVID-19. Clin. Pharmacol. Ther., 2020, 108(2), 201-211.
[http://dx.doi.org/10.1002/cpt.1857] [PMID: 32302411]
[3]
Davidson, R.J. In vitro activity and pharmacodynamic/pharmacokinetic parameters of clarithromycin and azithromycin: why they matter in the treatment of respiratory tract infections. Infect. Drug Resist., 2019, 12, 585-596.
[http://dx.doi.org/10.2147/IDR.S187226] [PMID: 30881064]
[4]
Idda, M.L.; Soru, D.; Floris, M. Overview of the first 6 months of clinical trials for COVID-19 pharmacotherapy: the most studied drugs. Front. Public Health, 2020, 8, 497.
[http://dx.doi.org/10.3389/fpubh.2020.00497] [PMID: 32974268]
[5]
He, Z.; Erdengasileng, F.; Luo, X.; Xing, A. How the clinical research community responded to the COVID-19 pandemic: An analysis of the COVID-19 clinical studies in ClinicalTrials.gov. MedRxiv, 2020. (Preprint)
[6]
Echeverría-Esnal, D.; Martin-Ontiyuelo, C.; Navarrete-Rouco, M.E.; De-Antonio Cuscó, M.; Ferrández, O.; Horcajada, J.P.; Grau, S. Azithromycin in the treatment of COVID-19: a review. Expert Rev. Anti Infect. Ther., 2020, 19(2), 147-163.
[http://dx.doi.org/10.1080/14787210.2020.1813024] [PMID: 32853038]
[7]
Kruger, D.; Prathapan, P. Azithromycin: the first broad-spectrum therapeutic. Eur. J. Med. Chem., 2020, 207(1)112739
[8]
Sandeep, S.; McGregor, K. Energetics based modeling of hydroxychloroquine and azithromycin binding to the SARS‐CoV‐2 spike (S) protein – ACE2 complex. ChemRxiv, 2020. (Preprint)
[http://dx.doi.org/10.26434/chemrxiv.12015792.v2]
[9]
Homolak, J.; Kodvanj, I. Widely available lysosome targeting agents should be considered as potential therapy for COVID-19. Int. J. Antimicrob. Agents, 2020, 56(2)106044
[http://dx.doi.org/10.1016/j.ijantimicag.2020.106044] [PMID: 32522674]
[10]
Tyteca, D.; Van Der Smissen, P.; Mettlen, M.; Van Bambeke, F.; Tulkens, P.M.; Mingeot-Leclercq, M.P.; Courtoy, P.J. Azithromycin, a lysosomotropic antibiotic, has distinct effects on fluid-phase and receptor-mediated endocytosis, but does not impair phagocytosis in J774 macrophages. Exp. Cell Res., 2002, 281(1), 86-100.
[http://dx.doi.org/10.1006/excr.2002.5613] [PMID: 12441132]
[11]
Greber, U.F.; Singh, I.; Helenius, A. Mechanisms of virus uncoating. Trends Microbiol., 1994, 2(2), 52-56.
[http://dx.doi.org/10.1016/0966-842X(94)90126-0] [PMID: 8162442]
[12]
Kanoh, S.; Rubin, B.K. Mechanisms of action and clinical application of macrolides as immunomodulatory medications. Clin. Microbiol. Rev., 2010, 23(3), 590-615.
[http://dx.doi.org/10.1128/CMR.00078-09] [PMID: 20610825]
[13]
Shimizu, T.; Shimizu, S. Azithromycin inhibits mucus hypersecretion from airway epithelial cells. Mediators Inflamm., 2012, 2012265714
[http://dx.doi.org/10.1155/2012/265714] [PMID: 22577246]
[14]
Sligl, W.I.; Asadi, L.; Eurich, D.T.; Tjosvold, L.; Marrie, T.J.; Majumdar, S.R. Macrolides and mortality in critically ill patients with community-acquired pneumonia: a systematic review and meta-analysis. Crit. Care Med., 2014, 42(2), 420-432.
[http://dx.doi.org/10.1097/CCM.0b013e3182a66b9b] [PMID: 24158175]
[15]
Gibson, P.G.; Yang, I.A.; Upham, J.W.; Reynolds, P.N.; Hodge, S.; James, A.L.; Jenkins, C.; Peters, M.J.; Marks, G.B.; Baraket, M.; Powell, H.; Taylor, S.L.; Leong, L.E.X.; Rogers, G.B.; Simpson, J.L. Effect of azithromycin on asthma exacerbations and quality of life in adults with persistent uncontrolled asthma (AMAZES): a randomised, double-blind, placebo-controlled trial. Lancet, 2017, 390(10095), 659-668.
[http://dx.doi.org/10.1016/S0140-6736(17)31281-3] [PMID: 28687413]
[16]
Jaffé, A.; Bush, A. Anti-inflammatory effects of macrolides in lung disease. Pediatr. Pulmonol., 2001, 31(6), 464-473.
[http://dx.doi.org/10.1002/ppul.1076] [PMID: 11389580]
[17]
Zimmermann, P.; Ziesenitz, V.C.; Curtis, N.; Ritz, N. The immunomodulatory effects of macrolides-a systematic review of the underlying mechanisms. Front. Immunol., 2018, 9, 302.
[http://dx.doi.org/10.3389/fimmu.2018.00302] [PMID: 29593707]
[18]
Aghai, Z.H.; Kode, A.; Saslow, J.G.; Nakhla, T.; Farhath, S.; Stahl, G.E.; Eydelman, R.; Strande, L.; Leone, P.; Rahman, I. Azithromycin suppresses activation of nuclear factor-kappa B and synthesis of pro-inflammatory cytokines in tracheal aspirate cells from premature infants. Pediatr. Res., 2007, 62(4), 483-488.
[http://dx.doi.org/10.1203/PDR.0b013e318142582d] [PMID: 17667842]
[19]
Beigelman, A.; Mikols, C.L.; Gunsten, S.P.; Cannon, C.L.; Brody, S.L.; Walter, M.J. Azithromycin attenuates airway inflammation in a mouse model of viral bronchiolitis. Respir. Res., 2010, 11(1), 90.
[http://dx.doi.org/10.1186/1465-9921-11-90] [PMID: 20591166]
[20]
Li, C.; Zu, S.; Deng, Y.Q.; Li, D.; Parvatiyar, K.; Quanquin, N.; Shang, J.; Sun, N.; Su, J.; Liu, Z.; Wang, M.; Aliyari, S.R.; Li, X.F.; Wu, A.; Ma, F.; Shi, Y.; Nielsevn-Saines, K.; Jung, J.U.; Qin, F.X.; Qin, C.F.; Cheng, G. Azithromycin protects against Zika virus infection by upregulating virus-induced type i and iii interferon responses. Antimicrob. Agents Chemother., 2019, 63(12), e00394-e19.
[http://dx.doi.org/10.1128/AAC.00394-19] [PMID: 31527024]
[21]
Menzel, M.; Akbarshahi, H.; Bjermer, L.; Uller, L. Azithromycin induces anti-viral effects in cultured bronchial epithelial cells from COPD patients. Sci. Rep., 2016, 6, 28698.
[http://dx.doi.org/10.1038/srep28698] [PMID: 27350308]
[22]
Gielen, V.; Johnston, S.L.; Edwards, M.R. Azithromycin induces anti-viral responses in bronchial epithelial cells. Eur. Respir. J., 2010, 36(3), 646-654.
[http://dx.doi.org/10.1183/09031936.00095809] [PMID: 20150207]
[23]
Ratzinger, F.; Haslacher, H.; Poeppl, W.; Hoermann, G.; Kovarik, J.J.; Jutz, S.; Steinberger, P.; Burgmann, H.; Pickl, W.F.; Schmetterer, K.G. Azithromycin suppresses CD4(+) T-cell activation by direct modulation of mTOR activity. Sci. Rep., 2014, 4, 7438.
[http://dx.doi.org/10.1038/srep07438] [PMID: 25500904]
[24]
Parnham, M.J.; Erakovic Haber, V.; Giamarellos-Bourboulis, E.J.; Perletti, G.; Verleden, G.M.; Vos, R. Azithromycin: mechanisms of action and their relevance for clinical applications. Pharmacol. Ther., 2014, 143(2), 225-245.
[http://dx.doi.org/10.1016/j.pharmthera.2014.03.003] [PMID: 24631273]
[25]
Rodríguez-Molinero, A.; Pérez-López, C.; Gálvez-Barrón, C.; Miñarro, A.; Macho, O.; López, G.F.; Robles, M.T.; Dapena, M.D.; Martínez, S.; Rodríguez, E.; Collado, I. COVID-19 research group of CSAPG. Observational study of azithromycin in hospitalized patients with COVID-19. PLoS One, 2020, 15(9)e0238681
[http://dx.doi.org/10.1371/journal.pone.0238681] [PMID: 32881982]
[28]
Horby, P.; Landray, M.; Haynes, R. Randomised evaluation of COVID-19 therapy (RECOVERY). EudraCT, 2020, 1-35. (ePub ahead of Print)
[29]
Furtado, R.H.M.; Berwanger, O.; Fonseca, H.A.; Corrêa, T.D.; Ferraz, L.R.; Lapa, M.G.; Zampieri, F.G.; Veiga, V.C.; Azevedo, L.C.P.; Rosa, R.G.; Lopes, R.D.; Avezum, A.; Manoel, A.L.O.; Piza, F.M.T.; Martins, P.A.; Lisboa, T.C.; Pereira, A.J.; Olivato, G.B.; Dantas, V.C.S.; Milan, E.P.; Gebara, O.C.E.; Amazonas, R.B.; Oliveira, M.B.; Soares, R.V.P.; Moia, D.D.F.; Piano, L.P.A.; Castilho, K.; Momesso, R.G.R.A.P.; Schettino, G.P.P.; Rizzo, L.V.; Neto, A.S.; Machado, F.R.; Cavalcanti, A.B. COALITION COVID-19 Brazil II Investigators. Azithromycin in addition to standard of care versus standard of care alone in the treatment of patients admitted to the hospital with severe COVID-19 in Brazil (COALITION II): a randomised clinical trial. Lancet, 2020, 396(10256), 959-967.
[http://dx.doi.org/10.1016/S0140-6736(20)31862-6] [PMID: 32896292]
[30]
Serisier, D.J. Risks of population antimicrobial resistance associated with chronic macrolide use for inflammatory airway diseases. Lancet Respir. Med., 2013, 1(3), 262-274.
[http://dx.doi.org/10.1016/S2213-2600(13)70038-9] [PMID: 24429132]
[31]
Chironna, M.; Sallustio, A.; Esposito, S.; Perulli, M.; Chinellato, I.; Di Bari, C.; Quarto, M.; Cardinale, F. Emergence of macrolide-resistant strains during an outbreak of Mycoplasma pneumoniae infections in children. J. Antimicrob. Chemother., 2011, 66(4), 734-737.
[http://dx.doi.org/10.1093/jac/dkr003] [PMID: 21393214]
[32]
Hyde, T.B.; Gay, K.; Stephens, D.S.; Vugia, D.J.; Pass, M.; Johnson, S.; Barrett, N.L.; Schaffner, W.; Cieslak, P.R.; Maupin, P.S.; Zell, E.R.; Jorgensen, J.H.; Facklam, R.R.; Whitney, C.G. Active Bacterial Core Surveillance/Emerging Infections Program Network. Macrolide resistance among invasive Streptococcus pneumoniae isolates. JAMA, 2001, 286(15), 1857-1862.
[http://dx.doi.org/10.1001/jama.286.15.1857] [PMID: 11597287]
[33]
Tsai, W-C.; Shen, C.; Lin, Y. Emergence of macrolide-resistant Streptococcus pyogenes emm12 in southern Taiwan from 2000 to 2019 J. Microbio. Immunol. Infect., 2020, S1684-1182(20), 30217-6.
[34]
Wang, F.; Liu, J.W.; Li, Y.Z. Surveillance and molecular epidemiology of Neisseria gonorrhoeae isolates in Shenzhen, China, from 2010 to 2017. J. Glob. Antimicrob. Resist., 2020, 23, 269-274.
[35]
Fifer, H.; Cole, M.; Hughes, G.; Padfield, S.; Smolarchuk, C.; Woodford, N.; Wensley, A.; Mustafa, N.; Schaefer, U.; Myers, R.; Templeton, K.; Shepherd, J.; Underwood, A. Sustained transmission of high-level azithromycin-resistant Neisseria gonorrhoeae in England: an observational study. Lancet Infect. Dis., 2018, 18(5), 573-581.
[http://dx.doi.org/10.1016/S1473-3099(18)30122-1] [PMID: 29523496]
[36]
CDC. Sexually transmitted diseases treatment guidelines. MMWR recommendations and reports. 2015. Available from: https://www.cdc.gov/std/tg2015/tg-2015-print.pdf
[37]
Micek, S.T.; Simmons, J.; Hampton, N.; Kollef, M.H. Characteristics and outcomes among a hospitalized patient cohort with Streptococcus pneumoniae infection. Medicine (Baltimore), 2020, 99(18)e20145
[http://dx.doi.org/10.1097/MD.0000000000020145] [PMID: 32358404]
[38]
Vaez, H.; Sahebkar, A.; Pourfarzi, F.; Yousefi-Avarvand, A.; Khademi, F. Prevalence of antibiotic resistance of Haemophilus Influenzae in Iran - a meta-analysis. Iran. J. Otorhinolaryngol., 2019, 31(107), 349-357.
[PMID: 31857979]
[39]
Xiao, Y-H.; Giske, C.G.; Wei, Z-Q.; Shen, P.; Heddini, A.; Li, L.J. Epidemiology and characteristics of antimicrobial resistance in China. Drug Resist. Updat., 2011, 14(4-5), 236-250.
[http://dx.doi.org/10.1016/j.drup.2011.07.001] [PMID: 21807550]
[40]
Zhang, Y.; Zhang, F.; Wang, H.; Zhao, C.; Wang, Z.; Cao, B.; Du, Y.; Feng, X.; Hu, Y.; Hu, B.; Ji, P.; Liu, Z.; Liu, Y.; Liao, W.; Lu, J.; Sun, H.; Wang, Z.; Xu, X.; Xu, X.; Yang, Q.; Yu, Y.; Zhang, R.; Zhuo, C. Antimicrobial susceptibility of Streptococcus pneumoniae, Haemophilus influenzae and Moraxella catarrhalis isolated from community-acquired respiratory tract infections in China: Results from the CARTIPS Antimicrobial Surveillance Program. J. Glob. Antimicrob. Resist., 2016, 5, 36-41.
[http://dx.doi.org/10.1016/j.jgar.2016.03.002] [PMID: 27436464]
[41]
Wang, H.J.; Wang, C.Q.; Hua, C.Z.; Yu, H.; Zhang, T.; Zhang, H.; Wang, S.F.; Lin, A.W.; Cao, Q.; Huang, W.C.; Deng, H.L.; Cao, S.C.; Chen, X.J. Antibiotic resistance profiles of Haemophilus influenzae isolates from children in 2016: a multicenter study in China. Can. J. Infect. Dis. Med. Microbiol., 2019, 20196456321
[http://dx.doi.org/10.1155/2019/6456321] [PMID: 31485283]
[42]
Kosikowska, U.; Andrzejczuk, S.; Grywalska, E.; Chwiejczak, E.; Winiarczyk, S.; Pietras-Ożga, D.; Stępień-Pyśniak, D. Prevalence of susceptibility patterns of opportunistic bacteria in line with CLSI or EUCAST among Haemophilus parainfluenzae isolated from respiratory microbiota. Sci. Rep., 2020, 10(1), 11512.
[http://dx.doi.org/10.1038/s41598-020-68161-5] [PMID: 32661300]
[43]
Nusrat, T.; Akter, N.; Rahman, N.A.A.; Godman, B.; D; Rozario, D.T.; Haque, M. Antibiotic resistance and sensitivity pattern of Metallo-β-Lactamase Producing Gram-Negative Bacilli in ventilator-associated pneumonia in the intensive care unit of a public medical school hospital in Bangladesh. Hosp Pract (1995),, 2020, 48(3), 128-136.
[44]
Babakhani, S.; Derikvand, S.S.; Nazer, M.R.; Kazemi, M.J. Comparison frequency and determination of antibiotic resistance pattern of Klebsiella spp. isolated from nosocomial infection in Khorramabad Shohadaye Ashayer hospital. Bull Env Pharmacol Life Sci, 2014, 3(12), 149-154.
[45]
Clancy, J.; Petitpas, J.; Dib-Hajj, F.; Yuan, W.; Cronan, M.; Kamath, A.V.; Bergeron, J.; Retsema, J.A. Molecular cloning and functional analysis of a novel macrolide-resistance determinant, mefA, from Streptococcus pyogenes. Mol. Microbiol., 1996, 22(5), 867-879.
[http://dx.doi.org/10.1046/j.1365-2958.1996.01521.x] [PMID: 8971709]
[46]
Tait-Kamradt, A.; Clancy, J.; Cronan, M.; Dib-Hajj, F.; Wondrack, L.; Yuan, W.; Sutcliffe, J. mefE is necessary for the erythromycin-resistant M phenotype in Streptococcus pneumoniae. Antimicrob. Agents Chemother., 1997, 41(10), 2251-2255.
[http://dx.doi.org/10.1128/AAC.41.10.2251] [PMID: 9333056]
[47]
Leclercq, R.; Courvalin, P. Bacterial resistance to macrolide, lincosamide, and streptogramin antibiotics by target modification. Antimicrob. Agents Chemother., 1991, 35(7), 1267-1272.
[http://dx.doi.org/10.1128/AAC.35.7.1267] [PMID: 1929280]
[48]
Gomes, C.; Martínez-Puchol, S.; Palma, N.; Horna, G.; Ruiz-Roldán, L.; Pons, M.J.; Ruiz, J. Macrolide resistance mechanisms in Enterobacteriaceae: Focus on azithromycin. Crit. Rev. Microbiol., 2017, 43(1), 1-30.
[http://dx.doi.org/10.3109/1040841X.2015.1136261] [PMID: 27786586]
[49]
Grad, Y.H.; Harris, S.R.; Kirkcaldy, R.D.; Green, A.G.; Marks, D.S.; Bentley, S.D.; Trees, D.; Lipsitch, M. Genomic epidemiology of gonococcal resistance to extended-spectrum cephalosporins, macrolides, and fluoroquinolones in the United States, 2000-2013. J. Infect. Dis., 2016, 214(10), 1579-1587.
[http://dx.doi.org/10.1093/infdis/jiw420] [PMID: 27638945]
[50]
Wan, C.; Li, Y.; Le, W.J.; Liu, Y.R.; Li, S.; Wang, B.X.; Rice, P.A.; Su, X.H. Increasing resistance to azithromycin in Neisseria gonorrhoeae in eastern Chinese cities: resistance mechanisms and genetic diversity among isolates from Nanjing. Antimicrob. Agents Chemother., 2018, 62(5), e02499-e17.
[http://dx.doi.org/10.1128/AAC.02499-17] [PMID: 29530847]
[51]
Ojo, K.K.; Ulep, C.; Van Kirk, N.; Luis, H.; Bernardo, M.; Leitao, J.; Roberts, M.C. The mef(A) gene predominates among seven macrolide resistance genes identified in gram-negative strains representing 13 genera, isolated from healthy Portuguese children. Antimicrob. Agents Chemother., 2004, 48(9), 3451-3456.
[http://dx.doi.org/10.1128/AAC.48.9.3451-3456.2004] [PMID: 15328110]
[52]
Roberts, M.C.; Sutcliffe, J.; Courvalin, P.; Jensen, L.B.; Rood, J.; Seppala, H. Nomenclature for macrolide and macrolide-lincosamide-streptogramin B resistance determinants. Antimicrob. Agents Chemother., 1999, 43(12), 2823-2830.
[http://dx.doi.org/10.1128/AAC.43.12.2823] [PMID: 10582867]
[53]
Djamin, R.S.; Talman, S.; Schrauwen, E.J.A.; von Wintersdorff, C.J.H.; Wolffs, P.F.; Savelkoul, P.H.M.; Uzun, S.; Kerstens, R.; van der Eerden, M.M.; Kluytmans, J.A.J.W. Prevalence and abundance of selected genes conferring macrolide resistance genes in COPD patients during maintenance treatment with azithromycin. Antimicrob. Resist. Infect. Control, 2020, 9(1), 116.
[http://dx.doi.org/10.1186/s13756-020-00783-w] [PMID: 32723393]
[54]
Clewell, D.B.; Flannagan, S.E.; Jaworski, D.D. Unconstrained bacterial promiscuity: the Tn916-Tn1545 family of conjugative transposons. Trends Microbiol., 1995, 3(6), 229-236.
[http://dx.doi.org/10.1016/S0966-842X(00)88930-1] [PMID: 7648031]
[55]
Cornick, J.E.; Bentley, S.D. Streptococcus pneumoniae: the evolution of antimicrobial resistance to β-lactams, fluoroquinolones and macrolides. Microbes Infect., 2012, 14(7-8), 573-583.
[http://dx.doi.org/10.1016/j.micinf.2012.01.012] [PMID: 22342898]
[56]
Bergman, M.; Huikko, S.; Huovinen, P.; Paakkari, P.; Seppälä, H. Finnish Study Group for Antimicrobial Resistance (FiRe Network). Macrolide and azithromycin use are linked to increased macrolide resistance in Streptococcus pneumoniae. Antimicrob. Agents Chemother., 2006, 50(11), 3646-3650.
[http://dx.doi.org/10.1128/AAC.00234-06] [PMID: 16940064]
[57]
Vanderkooi, O.G.; Low, D.E.; Green, K.; Powis, J.E.; McGeer, A. Toronto Invasive Bacterial Disease Network. Predicting antimicrobial resistance in invasive pneumococcal infections. Clin. Infect. Dis., 2005, 40(9), 1288-1297.
[http://dx.doi.org/10.1086/429242] [PMID: 15825031]
[58]
Blondeau, J.M. Differential impact on macrolide compounds in the selection of macrolide nonsusceptible Streptococcus pneumoniae. Therapy, 2005, 2, 813-818.
[http://dx.doi.org/10.2217/14750708.2.6.813]
[59]
Davidson, R.J.; Chan, C.C.K.; Doern, G.V. Macrolide-resistant Streptococcus pneumoniae in Canada: correlation with azithromycin use. Clin. Microbiol. Infect., 2003, 9, 240-241.
[60]
Li, H.; Liu, D.H.; Chen, L.L.; Zhao, Q.; Yu, Y.Z.; Ding, J.J.; Miao, L.Y.; Xiao, Y.L.; Cai, H.R.; Zhang, D.P.; Guo, Y.B.; Xie, C.M. Meta-analysis of the adverse effects of long-term azithromycin use in patients with chronic lung diseases. Antimicrob. Agents Chemother., 2014, 58(1), 511-517.
[http://dx.doi.org/10.1128/AAC.02067-13] [PMID: 24189261]
[61]
Kuster, S.P.; Rudnick, W.; Shigayeva, A.; Green, K.; Baqi, M.; Gold, W.L.; Lovinsky, R.; Muller, M.P.; Powis, J.E.; Rau, N.; Simor, A.E.; Walmsley, S.L.; Low, D.E.; McGeer, A. Toronto Invasive Bacterial Diseases Network. Previous antibiotic exposure and antimicrobial resistance in invasive pneumococcal disease: results from prospective surveillance. Clin. Infect. Dis., 2014, 59(7), 944-952.
[http://dx.doi.org/10.1093/cid/ciu497] [PMID: 24973312]
[62]
Kastner, U.; Guggenbichler, J.P. Influence of macrolide antibiotics on promotion of resistance in the oral flora of children. Infection, 2001, 29(5), 251-256.
[http://dx.doi.org/10.1007/s15010-001-1072-3] [PMID: 11688901]
[63]
Sultana, J.; Cutroneo, P.M.; Crisafulli, S.; Puglisi, G.; Caramori, G.; Trifirò, G. Azithromycin in COVID-19 patients: pharmacological mechanism, clinical evidence and prescribing guidelines. Drug Saf., 2020, 43(8), 691-698.
[http://dx.doi.org/10.1007/s40264-020-00976-7] [PMID: 32696429]
[64]
Berghaus, L.J.; Giguère, S.; Guldbech, K. Mutant prevention concentration and mutant selection window for 10 antimicrobial agents against Rhodococcus equi. Vet. Microbiol., 2013, 166(3-4), 670-675.
[http://dx.doi.org/10.1016/j.vetmic.2013.07.006] [PMID: 23915992]
[65]
Blondeau, J.M.; Shebelski, S.D.; Hesje, C.K. Killing of Streptococcus pneumoniae by azithromycin, clarithromycin, erythromycin, telithromycin and gemifloxacin using drug minimum inhibitory concentrations and mutant prevention concentrations. Int. J. Antimicrob. Agents, 2015, 45(6), 594-599.
[http://dx.doi.org/10.1016/j.ijantimicag.2014.12.034] [PMID: 25752567]
[66]
Metzler, K.; Drlica, K.; Blondeau, J.M. Minimal inhibitory and mutant prevention concentrations of azithromycin, clarithromycin and erythromycin for clinical isolates of Streptococcus pneumoniae. J. Antimicrob. Chemother., 2013, 68(3), 631-635.
[http://dx.doi.org/10.1093/jac/dks461] [PMID: 23169894]
[67]
Blondeau, J.M. New concepts in antimicrobial susceptibility testing: the mutant prevention concentration and mutant selection window approach. Vet. Dermatol., 2009, 20(5-6), 383-396.
[http://dx.doi.org/10.1111/j.1365-3164.2009.00856.x] [PMID: 20178475]
[68]
Zhao, X.; Drlica, K. Restricting the selection of antibiotic-resistant mutants: a general strategy derived from fluoroquinolone studies. Clin. Infect. Dis., 2001, 33(Suppl. 3), S147-S156.
[http://dx.doi.org/10.1086/321841] [PMID: 11524712]
[69]
Zhao, X.; Drlica, K. Restricting the selection of antibiotic-resistant mutant bacteria: measurement and potential use of the mutant selection window. J. Infect. Dis., 2002, 185(4), 561-565.
[http://dx.doi.org/10.1086/338571] [PMID: 11865411]
[70]
Drlica, K. The mutant selection window and antimicrobial resistance. J. Antimicrob. Chemother., 2003, 52(1), 11-17.
[http://dx.doi.org/10.1093/jac/dkg269] [PMID: 12805267]
[71]
Blondeau, J.M.; Zhao, X.; Hansen, G.; Drlica, K. Mutant prevention concentrations of fluoroquinolones for clinical isolates of Streptococcus pneumoniae. Antimicrob. Agents Chemother., 2001, 45(2), 433-438.
[http://dx.doi.org/10.1128/AAC.45.2.433-438.2001] [PMID: 11158737]
[72]
Dong, Y.; Zhao, X.; Domagala, J.; Drlica, K. Effect of fluoroquinolone concentration on selection of resistant mutants of Mycobacterium bovis BCG and Staphylococcus aureus. Antimicrob. Agents Chemother., 1999, 43(7), 1756-1758.
[http://dx.doi.org/10.1128/AAC.43.7.1756] [PMID: 10390236]
[73]
Drlica, K.; Zhao, X. Mutant selection window hypothesis updated. Clin. Infect. Dis., 2007, 44(5), 681-688.
[http://dx.doi.org/10.1086/511642] [PMID: 17278059]
[74]
Cui, J.; Liu, Y.; Wang, R.; Tong, W.; Drlica, K.; Zhao, X. The mutant selection window in rabbits infected with Staphylococcus aureus. J. Infect. Dis., 2006, 194(11), 1601-1608.
[http://dx.doi.org/10.1086/508752] [PMID: 17083047]
[75]
Croisier, D.; Etienne, M.; Piroth, L.; Bergoin, E.; Lequeu, C.; Portier, H.; Chavanet, P. In vivo pharmacodynamic efficacy of gatifloxacin against Streptococcus pneumoniae in an experimental model of pneumonia: impact of the low levels of fluoroquinolone resistance on the enrichment of resistant mutants. J. Antimicrob. Chemother., 2004, 54(3), 640-647.
[http://dx.doi.org/10.1093/jac/dkh393] [PMID: 15317743]
[76]
Allen, G.P.; Harris, K.A. In Vitro Resistance Selection in Shigella flexneri by Azithromycin, Ceftriaxone, Ciprofloxacin, Levofloxacin, and Moxifloxacin. Antimicrob. Agents Chemother., 2017, 61(7), e00086-e17.
[http://dx.doi.org/10.1128/AAC.00086-17] [PMID: 28483960]
[77]
Oldenburg, C.E.; Doan, T. Azithromycin for severe COVID-19. Lancet, 2020, 396(10256), 936-937.
[http://dx.doi.org/10.1016/S0140-6736(20)31863-8] [PMID: 32896293]

© 2024 Bentham Science Publishers | Privacy Policy