Generic placeholder image

Pharmaceutical Nanotechnology

Editor-in-Chief

ISSN (Print): 2211-7385
ISSN (Online): 2211-7393

Research Article

Preparation and Characterization of Liposomes Double-loaded with Amphotericin B and Amphotericin B/hydroxypropyl-beta-cyclodextrin Inclusion Complex

Author(s): Thi H. Yen Tran*, Thi T. Giang Vu and Thi M.H. Pham

Volume 9, Issue 3, 2021

Published on: 10 March, 2021

Page: [236 - 244] Pages: 9

DOI: 10.2174/2211738509666210310160436

Price: $65

Abstract

Background: Amphotericin B (AMB) is water-insoluble polyene, which has a broad spectrum of antifungal activity. The hydrophobic drug only exits in the phospholipid bilayer, leading to a low-drug liposomal loading capacity.

Objectives: This study is designed to prepare water-soluble inclusion complex (IC) between AMB and cyclodextrin (CD) to formulate liposomal vesicles, double-loaded with drug molecules in the phospholipid bilayer and AMB/CD IC in the aqueous core.

Methods: Water-soluble AMB/CD IC was prepared by pH adjustment of the aqueous media and consequently characterized by scanning electron microscopy (SEM) and differential scanning calorimetry (DSC). Liposomes double-loaded with AMB were formulated by the thin-film hydration method and accordingly evaluated for vesicle size, polydispersity index, entrapment efficiency, zeta potential, and in vitro drug leakage.

Results: Hydroxypropyl β cyclodextrin (HP-β-CD) better solubilized AMB than both α-CD and β- CD e.g., the concentration of water-soluble AMB/HP-β-CD IC could reach 465 μg/mL. Both DSC and SEM data illustrated that the drug no longer existed in its crystalline form, in AMB/HP-β-CD IC. Liposomes double-loaded with hydrophilic AMB/HP-β-CD IC and hydrophobic AMB had a diameter of 270 nm, polydispersity index less than 0.27, and zeta potential ca.-42.8 mV. Moreover, liposomes double-loaded with AMB enhanced drug-liposomal loading capacity by 25%, less leaked drug in phosphate buffer pH 7.4 at 37°C in comparison to liposomes loaded with only hydrophobic AMB.

Conclusion: Liposomes double-loaded with AMB and AMB/HP-β-CD IC increased drug-encapsulation ability and in vitro stability, suggesting potential drug delivery systems.

Keywords: Amphotericin B, liposomes, double encapsulated, drug delivery, cyclodextrin, hydroxypropyl-beta-cyclodextrin.

Graphical Abstract
[1]
Ellis D. Amphotericin B: spectrum and resistance. J Antimicrob Chemother 2002; 49(Suppl. 1): 7-10.
[http://dx.doi.org/10.1093/jac/49.suppl_1.7] [PMID: 11801575]
[2]
Adler-Moore JP, Proffitt RT. Amphotericin B lipid preparations: what are the differences? Clin Microbiol Infect 2008; 14(Suppl. 4): 25-36.
[http://dx.doi.org/10.1111/j.1469-0691.2008.01979.x] [PMID: 18430127]
[3]
Malaekeh-Nikouei B, Davies N. Double loading of cyclosporine A in liposomes using cyclodextrin complexes. PDA J Pharm Sci Technol 2009; 63(2): 139-48.
[PMID: 19634352]
[4]
Agashe H, Lagisetty P, Sahoo K, Bourne D, Grady B, Awasthi V. Liposome-encapsulated EF24-HPβCD inclusion complex: a preformulation study and biodistribution in a rat model. J Nanopart Res 2011; 13(6): 2609-23.
[http://dx.doi.org/10.1007/s11051-010-0154-5] [PMID: 21779150]
[5]
Wang F, Bao X, Fang A, et al. Nanoliposome-encapsulated brinzolamide-hydropropyl-β-cyclodextrin inclusion complex: a potential therapeutic ocular drug-delivery system. Front Pharmacol 2018; 9: 1-9.
[http://dx.doi.org/10.3389/fphar.2018.00091]
[6]
Shaji J, Iyer S. Double-loaded liposomes encapsulating Quercetin and Quercetin beta-cyclodextrin complexes: Preparation, characterization and evaluation. Asian J Pharm 2012; 6: 218-26.
[http://dx.doi.org/10.4103/0973-8398.104840]
[7]
Connors KA. The stability of cyclodextrin complexes in solution. Chem Rev 1997; 97(5): 1325-58.
[http://dx.doi.org/10.1021/cr960371r] [PMID: 11851454]
[8]
Chen J, Lu WL, Gu W, et al. Drug-in-cyclodextrin-in-liposomes: a promising delivery system for hydrophobic drugs. Expert Opin Drug Deliv 2014; 11(4): 565-77.
[http://dx.doi.org/10.1517/17425247.2014.884557] [PMID: 24490763]
[9]
van den Hoven JM, Metselaar JM, Storm G, Beijnen JH, Nuijen B. Cyclodextrin as membrane protectant in spray-drying and freeze-drying of PEGylated liposomes. Int J Pharm 2012; 438(1-2): 209-16.
[http://dx.doi.org/10.1016/j.ijpharm.2012.08.046] [PMID: 22960501]
[10]
Gharib R, Greige-Gerges H, Fourmentin S, Charcosset C, Auezova L. Liposomes incorporating cyclodextrin-drug inclusion complexes: current state of knowledge. Carbohydr Polym 2015; 129: 175-86.
[http://dx.doi.org/10.1016/j.carbpol.2015.04.048] [PMID: 26050903]
[11]
Jhan S, Pethe AM. Double-loaded liposomes encapsulating lycopene β-cyclodextrin complexes: preparation, optimization, and evaluation. J Liposome Res 2020; 30(1): 80-92.
[http://dx.doi.org/10.1080/08982104.2019.1593450] [PMID: 31044628]
[12]
Yen TTH, Nho Dan L, Duc LH, Tung BT, Hue PTM. Preparation and characterization of freeze-dried liposomes loaded with amphotericin B. Curr Drug Ther 2019; 14: 65-73.
[http://dx.doi.org/10.2174/1574885514666181217130259]
[13]
Wei Y, Zhang J, Zhou Y, et al. Characterization of glabridin/hydroxypropyl-β-cyclodextrin inclusion complex with robust solubility and enhanced bioactivity. Carbohydr Polym 2017; 159: 152-60.
[http://dx.doi.org/10.1016/j.carbpol.2016.11.093] [PMID: 28038744]
[14]
Brewster ME, Loftsson T. Cyclodextrins as pharmaceutical solubilizers. Adv Drug Deliv Rev 2007; 59(7): 645-66.
[http://dx.doi.org/10.1016/j.addr.2007.05.012] [PMID: 17601630]
[15]
Shah MR, Imran M, Ullah S. Nanosuspensions. In: Lipid-Based Nanocarriers for Drug Delivery and Diagnosis. The Netherlands: Elsevier 2017; pp. 139-72.
[http://dx.doi.org/10.1016/B978-0-323-52729-3.00005-6]
[16]
Otero-Espinar FJ, Torres-Labandeira JJ, Alvarez-Lorenzo C, Blanco-Méndez J. Cyclodextrins in drug delivery systems. J Drug Deliv Sci Technol 2010; 20: 289-301.
[http://dx.doi.org/10.1016/S1773-2247(10)50046-7]
[17]
Jansook P, Ogawa N, Loftsson T. Cyclodextrins: structure, physicochemical properties and pharmaceutical applications. Int J Pharm 2018; 535(1-2): 272-84.
[http://dx.doi.org/10.1016/j.ijpharm.2017.11.018] [PMID: 29138045]
[18]
Saokham P, Muankaew C, Jansook P, Loftsson T. Solubility of cyclodextrins and drug/cyclodextrin complexes. Molecules 2018; 23(5): 1-15.
[http://dx.doi.org/10.3390/molecules23051161] [PMID: 29751694]
[19]
Rasheed A, Kumar CKA. Sravanthi VVNSS. Cyclodextrins as drug carrier molecule: a review. Sci Pharm 2008; 76: 567-98.
[http://dx.doi.org/10.3797/scipharm.0808-05]
[20]
Loftsson T, Hreinsdóttir D, Másson M. Evaluation of cyclodextrin solubilization of drugs. Int J Pharm 2005; 302(1-2): 18-28.
[http://dx.doi.org/10.1016/j.ijpharm.2005.05.042] [PMID: 16099118]
[21]
Chakraborty KK, Naik SR. In situ liposomal preparation containing amphotericin B: related toxicity and tissue disposition studies. Pharm Dev Technol 2000; 5(4): 543-53.
[http://dx.doi.org/10.1081/PDT-100102037] [PMID: 11109253]
[22]
George S, Vasudevan D. Studies on the preparation, characterization, and solubility of 2-HP-β-cyclodextrin-meclizine hcl inclusion complexes. J Young Pharm 2012; 4(4): 220-7.
[http://dx.doi.org/10.4103/0975-1483.104365] [PMID: 23493156]
[23]
García A, Leonardi D, Salazar MO, Lamas MC. Modified β-cyclodextrin inclusion complex to improve the physicochemical properties of albendazole. Complete in vitro evaluation and characterization. PLoS One 2014; 9(2): e88234.
[http://dx.doi.org/10.1371/journal.pone.0088234] [PMID: 24551084]
[24]
Kim Y-T, Shin B-K, Garripelli VK, et al. A thermosensitive vaginal gel formulation with HPgammaCD for the pH-dependent release and solubilization of amphotericin B. Eur J Pharm Sci 2010; 41(2): 399-406.
[http://dx.doi.org/10.1016/j.ejps.2010.07.009] [PMID: 20654712]
[25]
Trissel L. Handbook on Injectable Drugs. 18th ed. United States: American Society of Health-System Pharmacists 2014.
[26]
Chen C, Han D, Cai C, Tang X. An overview of liposome lyophilization and its future potential. J Control Release 2010; 142(3): 299-311.
[http://dx.doi.org/10.1016/j.jconrel.2009.10.024] [PMID: 19874861]
[27]
Gosangari SL, Watkin KL. Effect of preparation techniques on the properties of curcumin liposomes: characterization of size, release and cytotoxicity on a squamous oral carcinoma cell line. Pharm Dev Technol 2012; 17(1): 103-9.
[http://dx.doi.org/10.3109/10837450.2010.522583] [PMID: 21091385]
[28]
Ueda S, Miyamoto S, Kaida K, et al. Safety and efficacy of treatment with liposomal amphotericin B in elderly patients at least 65 years old with hematological diseases. J Infect Chemother 2016; 22(5): 287-91.
[http://dx.doi.org/10.1016/j.jiac.2016.01.009] [PMID: 26908230]
[29]
Hamill RJ, Amphotericin B. Amphotericin B formulations: a comparative review of efficacy and toxicity. Drugs 2013; 73(9): 919-34.
[http://dx.doi.org/10.1007/s40265-013-0069-4] [PMID: 23729001]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy