Generic placeholder image

Infectious Disorders - Drug Targets

Editor-in-Chief

ISSN (Print): 1871-5265
ISSN (Online): 2212-3989

Mini-Review Article

A Mini Review on the Pathogenesis, Diagnosis and Treatment Options for COVID-19

Author(s): Farzad Rahmani, Aghigh Ziaeemehr, Sajede Alijannejad, Gordon A Ferns, Majid Khazaei, Soodabeh Shahidsales* and Amir Avan*

Volume 22, Issue 2, 2022

Published on: 01 March, 2021

Article ID: e170322191922 Pages: 9

DOI: 10.2174/1871526521666210301142223

Price: $65

Abstract

Coronavirus disease 2019 (COVID-19) is a serious viral disease caused by SARS-CoV-2, associated with high morbidity and mortality, and represents a significant public health crisis worldwide. Despite recent efforts for developing novel antiviral agents, no specific drugs are approved for the management and treatment of COVID-19. The immune responses to viral infection followed by cytokine storm and acute respiratory distress syndrome are serious issues that may cause death in patients with severe COVID-19. Therefore, developing a novel therapeutic strategy for the management of COVID-19 is urgently needed to control the virus spread and to improve the patient survival rate and clinical outcomes.

In this mini-review, we summarize the symptoms, pathogenesis, and therapeutic approaches currently being used to manage the spread of SARS-CoV-2.

Keywords: Viral infection, SARS-CoV-2, COVID-19, pathogenesis, diagnosis, anosmia.

Graphical Abstract
[1]
de Wilde AH,, et al. Host factors in coronavirus replicationRoles of Host Gene and Non-coding RNA Expression in Virus Infection. Springer 2017; pp. 1-42.
[http://dx.doi.org/10.1007/82_2017_25]
[2]
Khan RJ, et al. Targeting SARS-Cov-2: A systematic drug repurposing approach to identify promising inhibitors against 3C-like Proteinase and 2¢-O-RiboseMethyltransferase. Journal of Biomolecular Structure and Dynamics 2020; 1-40.
[3]
Su S, Wong G, Shi W, et al. Epidemiology, genetic recombination, and pathogenesis of coronaviruses. Trends Microbiol 2016; 24(6): 490-502.
[http://dx.doi.org/10.1016/j.tim.2016.03.003] [PMID: 27012512]
[4]
Zhou P, et al. A pneumonia outbreak associated with a new coronavirus of probable bat origin. nature 2020; 579(7798): 270-3.
[5]
Walls AC, et al. Structure, function, and antigenicity of the SARS-CoV-2 spike glycoprotein. Cell 2020.
[http://dx.doi.org/10.1016/j.cell.2020.11.032]
[6]
Poon LLM, Peiris M. Emergence of a novel human coronavirus threatening human health. Nat Med 2020; 26(3): 317-9.
[http://dx.doi.org/10.1038/s41591-020-0796-5] [PMID: 32108160]
[7]
Jin J-M, et al, et al. Higher severity and mortality in male patients with COVID-19 independent of age and susceptibility medRxiv 2020.
[8]
Chang L, Yan Y, Wang L. Coronavirus disease 2019: coronaviruses and blood safety. Transfus Med Rev 2020; 34(2): 75-80.
[http://dx.doi.org/10.1016/j.tmrv.2020.02.003] [PMID: 32107119]
[9]
Huang C, Wang Y, Li X, et al, et al. Clinical features of patients infected with 2019 novel coronavirus in Wuhan, China. Lancet 2020; 395(10223): 497-506.
[http://dx.doi.org/10.1016/S0140-6736(20)30183-5] [PMID: 31986264]
[10]
Wang D, Hu B, Hu C, et al, et al. Clinical characteristics of 138 hospitalized patients with 2019 novel coronavirus–infected pneumonia in Wuhan, China. JAMA 2020; 323(11): 1061-9.
[http://dx.doi.org/10.1001/jama.2020.1585] [PMID: 32031570]
[11]
Zhou S, Wang Y, Zhu T, Xia L. CT features of coronavirus disease 2019 (COVID-19) pneumonia in 62 patients in Wuhan, China. AJR Am J Roentgenol 2020; 214(6): 1287-94.
[http://dx.doi.org/10.2214/AJR.20.22975] [PMID: 32134681]
[12]
Yu N, Li W, Kang Q, et al, et al. Clinical features and obstetric and neonatal outcomes of pregnant patients with COVID-19 in Wuhan, China: a retrospective, single-centre, descriptive study. Lancet Infect Dis 2020; 20(5): 559-64.
[http://dx.doi.org/10.1016/S1473-3099(20)30176-6] [PMID: 32220284]
[13]
Liao M, et al, et al. The landscape of lung bronchoalveolar immune cells in COVID-19 revealed by single-cell RNA sequencing medRxiv 2020.
[14]
Ji X, et al, et al. TWIRLS, an automated topic-wise inference method based on massive literature, suggests a possible mechanism via ACE2 for the pathological changes in the human host after coronavirus infection medRxiv 2020.
[15]
Chen L, Zhong L. Lung Adenocarcinoma Patients Own Higher Risk of SARS-CoV-2 Infection 2020.
[16]
Wu J. Preventive, Mitigating and Treatment Strategies for Containing or Ending The COVID-19 Pandemic. 2020.
[17]
Li M, et al, et al. The ACE2 expression of maternal-fetal interface and fetal organs indicates potential risk of vertical transmission of SARS-CoV-2. bioRxiv 2020.
[18]
Chen H, Guo J, Wang C, et al, et al. Clinical characteristics and intrauterine vertical transmission potential of COVID-19 infection in nine pregnant women: a retrospective review of medical records. Lancet 2020; 395(10226): 809-15.
[http://dx.doi.org/10.1016/S0140-6736(20)30360-3] [PMID: 32151335]
[19]
Sarin SK, Choudhury A, Lau GK, et al, et al. APASL COVID Task Force, APASL COVID Liver Injury Spectrum Study (APCOLIS Study-NCT 04345640). Pre-existing liver disease is associated with poor outcome in patients with SARS CoV2 infection; The APCOLIS Study (APASL COVID-19 Liver Injury Spectrum Study). Hepatol Int 2020; 14(5): 690-700.
[http://dx.doi.org/10.1007/s12072-020-10072-8] [PMID: 32623632]
[20]
Pachetti M, Marini B, Benedetti F, et al, et al. Emerging SARS-CoV-2 mutation hot spots include a novel RNA-dependent-RNA polymerase variant. J Transl Med 2020; 18(1): 179.
[http://dx.doi.org/10.1186/s12967-020-02344-6] [PMID: 32321524]
[21]
Guo W-L, Jiang Q, Ye F, et al, et al. Effect of throat washings on detection of 2019 novel coronavirus. Clin Infect Dis 2020; 71(8): 1980-1.
[http://dx.doi.org/10.1093/cid/ciaa416] [PMID: 32271374]
[22]
Yan Y, Chang L, Wang L. Laboratory testing of SARS-CoV, MERS-CoV, and SARS-CoV-2 (2019-nCoV): Current status, challenges, and countermeasures. Rev Med Virol 2020; 30(3): e2106.
[http://dx.doi.org/10.1002/rmv.2106] [PMID: 32302058]
[23]
Sabino-Silva R, Jardim ACG, Siqueira WL. Coronavirus COVID-19 impacts to dentistry and potential salivary diagnosis. Clin Oral Investig 2020; 24(4): 1619-21.
[http://dx.doi.org/10.1007/s00784-020-03248-x] [PMID: 32078048]
[24]
Wang W, Xu Y, Gao R, et al, et al. Detection of SARS-CoV-2 in different types of clinical specimens. JAMA 2020; 323(18): 1843-4.
[http://dx.doi.org/10.1001/jama.2020.3786] [PMID: 32159775]
[25]
Jajodia A, Ebner L, Heidinger B, Chaturvedi A, Prosch H. Imaging in corona virus disease 2019 (COVID-19)-A Scoping review. Eur J Radiol Open 2020; 7100237.
[http://dx.doi.org/10.1016/j.ejro.2020.100237] [PMID: 32395567]
[26]
Ai T, Yang Z, Hou H, et al, et al. Correlation of chest CT and RT-PCR testing in coronavirus disease 2019 (COVID-19) in China: a report of 1014 cases. Radiology 2020; 296(2): E32-40.
[http://dx.doi.org/10.1148/radiol.2020200642] [PMID: 32101510]
[27]
Dong D, Tang Z, Wang S, et al, et al. The role of imaging in the detection and management of COVID-19: a review IEEE Rev Biomed Eng 2020;PP.
[PMID: 32356760]
[28]
Bernheim A, Mei X, Huang M, et al, et al. Chest CT findings in coronavirus disease-19 (COVID-19): relationship to duration of infection. Radiology 2020; 295(3): 200463.
[http://dx.doi.org/10.1148/radiol.2020200463] [PMID: 32077789]
[29]
Wilson NM, Norton A, Young FP, Collins DW. Airborne transmission of severe acute respiratory syndrome coronavirus-2 to healthcare workers: a narrative review. Anaesthesia 2020; 75(8): 1086-95.
[http://dx.doi.org/10.1111/anae.15093] [PMID: 32311771]
[30]
Chan JYK, Wong EWY, Lam W. Practical aspects of otolaryngologic clinical services during the 2019 novel coronavirus epidemic: an experience in Hong Kong. JAMA Otolaryngol Head Neck Surg 2020; 146(6): 519-20.
[http://dx.doi.org/10.1001/jamaoto.2020.0488] [PMID: 32196070]
[31]
Xu H, Zhong L, Deng J, et al, et al. High expression of ACE2 receptor of 2019-nCoV on the epithelial cells of oral mucosa. Int J Oral Sci 2020; 12(1): 8.
[http://dx.doi.org/10.1038/s41368-020-0074-x] [PMID: 32094336]
[32]
Chu M, et al, et al. Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2): An overview of viral structure and host response. Diabetes 
 Metabolic Syndrome: Clinical Research 
 Reviews 2020.
[33]
Astuti I. Ysrafil. Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2): An overview of viral structure and host response. Diabetes Metab Syndr 2020; 14(4): 407-12.
[http://dx.doi.org/10.1016/j.dsx.2020.04.020] [PMID: 32335367]
[34]
Vankadari N, Wilce JA. Emerging WuHan (COVID-19) coronavirus: glycan shield and structure prediction of spike glycoprotein and its interaction with human CD26. Emerg Microbes Infect 2020; 9(1): 601-4.
[http://dx.doi.org/10.1080/22221751.2020.1739565] [PMID: 32178593]
[35]
Sternberg A, Naujokat C. Structural features of coronavirus SARS-CoV-2 spike protein: Targets for vaccination. Life Sci 2020; 257118056.
[http://dx.doi.org/10.1016/j.lfs.2020.118056] [PMID: 32645344]
[36]
Li F. Receptor recognition mechanisms of coronaviruses: a decade of structural studies. J Virol 2015; 89(4): 1954-64.
[http://dx.doi.org/10.1128/JVI.02615-14] [PMID: 25428871]
[37]
Fehr AR, Perlman S. Coronaviruses: an overview of their replication and pathogenesis. Coronaviruses Springer. 2015; pp. 1-23.
[http://dx.doi.org/10.1007/978-1-4939-2438-7_1]
[38]
Su Z, Wu Y. A Multiscale and Comparative Model for Receptor Binding of 2019 Novel Coronavirus and the Implication of its Life Cycle in Host Cells bioRxiv 2020. 2020.02.20.958272
[PMID: 32511419]
[39]
Lan J, Ge J, Yu J, et al. Structure of the SARS-CoV-2 spike receptor-binding domain bound to the ACE2 receptor. Nature 2020; 581(7807): 215-20.
[http://dx.doi.org/10.1038/s41586-020-2180-5] [PMID: 32225176]
[40]
Sanders JM, Monogue ML, Jodlowski TZ, Cutrell JB. Pharmacologic treatments for coronavirus disease 2019 (COVID-19): a review. JAMA 2020; 323(18): 1824-36.
[PMID: 32282022]
[41]
Chen L, Hao G. The role of angiotensin-converting enzyme 2 in coronaviruses/influenza viruses and cardiovascular disease. Cardiovasc Res 2020; 116(12): 1932-6.
[http://dx.doi.org/10.1093/cvr/cvaa093] [PMID: 32267499]
[42]
Annweiler C, Cao Z, Wu Y, et al. Counter-regulatory ‘Renin-Angiotensin’ System-based Candidate Drugs to Treat COVID-19 Diseases in SARS-CoV-2-infected Patients. Infect Disord Drug Targets 2020; 20(4): 407-8.
[http://dx.doi.org/10.2174/1871526520666200518073329] [PMID: 32418532]
[43]
Zhao Y, Zhao Z, Wang Y, Zhou Y, Ma Y, Zuo W. Single-cell RNA expression profiling of ACE2, the receptor of SARS-CoV-2. Am J Respir Crit Care Med 2020; 202(5): 756-9.
[http://dx.doi.org/10.1164/rccm.202001-0179LE] [PMID: 32663409]
[44]
Yang G, Tan Z, Zhou L, et al, et al. Effects of angiotensin II receptor blockers and ACE (angiotensin-converting enzyme) inhibitors on virus infection, inflammatory status, and clinical outcomes in patients with COVID-19 and hypertension: a single-center retrospective study. Hypertension 2020; 76(1): 51-8.
[http://dx.doi.org/10.1161/HYPERTENSIONAHA.120.15143] [PMID: 32348166]
[45]
El Bekay R, Alvarez M, Monteseirín J, et al, et al. Oxidative stress is a critical mediator of the angiotensin II signal in human neutrophils: involvement of mitogen-activated protein kinase, calcineurin, and the transcription factor NF-kappaB. Blood 2003; 102(2): 662-71.
[http://dx.doi.org/10.1182/blood-2002-09-2785] [PMID: 12663441]
[46]
Li Y, Cao Y, Zeng Z, et al, et al. Angiotensin-converting enzyme 2/angiotensin-(1-7)/Mas axis prevents lipopolysaccharide-induced apoptosis of pulmonary microvascular endothelial cells by inhibiting JNK/NF-κB pathways. Sci Rep 2015; 5: 8209.
[http://dx.doi.org/10.1038/srep08209] [PMID: 25644821]
[47]
Liu Z, Huang XR, Chen HY, Penninger JM, Lan HY. Loss of angiotensin-converting enzyme 2 enhances TGF-β/Smad-mediated renal fibrosis and NF-κB-driven renal inflammation in a mouse model of obstructive nephropathy. Lab Invest 2012; 92(5): 650-61.
[http://dx.doi.org/10.1038/labinvest.2012.2] [PMID: 22330342]
[48]
Ritchie AI, Singanayagam A. Immunosuppression for hyperinflammation in COVID-19: a double-edged sword? Lancet 2020; 395(10230): 1111.
[http://dx.doi.org/10.1016/S0140-6736(20)30691-7] [PMID: 32220278]
[49]
Li Y, et al, et al. The MERS-CoV receptor DPP4 as a candidate binding target of the SARS-CoV-2 spike. Iscience 2020; p. 101160.
[50]
Solerte SB, Di Sabatino A, Galli M, Fiorina P. Dipeptidyl peptidase-4 (DPP4) inhibition in COVID-19. Acta Diabetol 2020; 57(7): 779-83.
[http://dx.doi.org/10.1007/s00592-020-01539-z] [PMID: 32506195]
[51]
Channappanavar R, Perlman S. Pathogenic human coronavirus infections: causes and consequences of cytokine storm and immunopathologySeminars in immunopathology. Springer 2017.
[http://dx.doi.org/10.1007/s00281-017-0629-x]
[52]
Pons S, Fodil S, Azoulay E, Zafrani L. The vascular endothelium: the cornerstone of organ dysfunction in severe SARS-CoV-2 infection. Crit Care 2020; 24(1): 353.
[http://dx.doi.org/10.1186/s13054-020-03062-7] [PMID: 32546188]
[53]
Battaglini D, Brunetti I, Anania P, et al. Neurological manifestations of severe SARS-CoV-2 infection: potential mechanisms and implications of individualized mechanical ventilation settings. Front Neurol 2020; 11: 845.
[http://dx.doi.org/10.3389/fneur.2020.00845] [PMID: 32903391]
[54]
Lin S, et al, et al. Molecular Modeling Evaluation of the Binding Effect of Ritonavir, Lopinavir and Darunavir to Severe Acute Respiratory Syndrome Coronavirus 2 Proteases. bioRxiv 2020.
[55]
Wu C, Liu Y, Yang Y, et al, et al. Analysis of therapeutic targets for SARS-CoV-2 and discovery of potential drugs by computational methods. Acta Pharm Sin B 2020; 10(5): 766-88.
[http://dx.doi.org/10.1016/j.apsb.2020.02.008] [PMID: 32292689]
[56]
Chang Y-C, et al. Potential therapeutic agents for COVID-19 based on the analysis of protease and RNA polymerase docking 2020.
[57]
Gao J, Tian Z, Yang X. Breakthrough: Chloroquine phosphate has shown apparent efficacy in treatment of COVID-19 associated pneumonia in clinical studies. Biosci Trends 2020; 14(1): 72-3.
[http://dx.doi.org/10.5582/bst.2020.01047] [PMID: 32074550]
[58]
Wan Y, Shang J, Graham R, Baric RS, Li F. Receptor recognition by the novel coronavirus from Wuhan: an analysis based on decade-long structural studies of SARS coronavirus. J Virol 2020; 94(7): e00127-20.
[http://dx.doi.org/10.1128/JVI.00127-20] [PMID: 31996437]
[59]
Devaux CA, Rolain JM, Colson P, Raoult D. New insights on the antiviral effects of chloroquine against coronavirus: what to expect for COVID-19? Int J Antimicrob Agents 2020; 55(5): 105938.
[http://dx.doi.org/10.1016/j.ijantimicag.2020.105938] [PMID: 32171740]
[60]
Colson P, et al, et al. Chloroquine and hydroxychloroquine as available weapons to fight COVID-19. Int J Antimicrob Agents 2020; 105932(10.1016)
[61]
Tang D, Li J, Zhang R, Kang R, Klionsky DJ. Chloroquine in fighting COVID-19: good, bad, or both? Autophagy 2020; 16(12): 2273-5.
[http://dx.doi.org/10.1080/15548627.2020.1796014] [PMID: 32713288]
[62]
Abd-Elsalam S, Elkadeem M, Glal KA. Chloroquine as chemoprophylaxis for COVID-19: Will this work? Infect Disord Drug Targets 2020.
[http://dx.doi.org/10.2174/1871526520666200726224802] [PMID: 32713336]
[63]
Cortegiani A, Ingoglia G, Ippolito M, Giarratano A, Einav S. A systematic review on the efficacy and safety of chloroquine for the treatment of COVID-19. J Crit Care 2020; 57(20): 279-83.
[http://dx.doi.org/10.1016/j.jcrc.2020.03.005] [PMID: 32173110]
[64]
Gautret P, et al, et al. Hydroxychloroquine and azithromycin as a treatment of COVID-19: results of an open-label non-randomized clinical trial. Int J Antimicrob Agents 2020; 105949.
[65]
Jean SS. Treatment options for COVID-19: The reality and challenges Journal of Microbiology, Immunology and Infection 2020; 53(436e443)
[66]
Shamim S, Khan M, Kharaba ZJ, Ijaz M, Murtaza G. Potential strategies for combating COVID-19. Arch Virol 2020; 165(11): 2419-38.
[http://dx.doi.org/10.1007/s00705-020-04768-3] [PMID: 32778950]
[67]
Pedersen SF, Ho Y-C. SARS-CoV-2: a storm is raging. J Clin Invest 2020; 130(5): 2202-5.
[http://dx.doi.org/10.1172/JCI137647] [PMID: 32217834]
[68]
Ko W-C, Rolain JM, Lee NY, et al, et al. Arguments in favour of remdesivir for treating SARS-CoV-2 infections. Int J Antimicrob Agents 2020; 55(4): 105933.
[http://dx.doi.org/10.1016/j.ijantimicag.2020.105933] [PMID: 32147516]
[69]
Arya R, et al. Potential inhibitors against papain-like protease of novel coronavirus (SARS-CoV-2) from FDA approved drugs 2020.
[70]
Hoffmann M, Kleine-Weber H, Schroeder S, et al, et al. SARS-CoV-2 cell entry depends on ACE2 and TMPRSS2 and is blocked by a clinically proven protease inhibitor. Cell 2020; 181(2): 271-280.e8.
[http://dx.doi.org/10.1016/j.cell.2020.02.052] [PMID: 32142651]
[71]
Ragia G, Manolopoulos VG. Inhibition of SARS-CoV-2 entry through the ACE2/TMPRSS2 pathway: a promising approach for uncovering early COVID-19 drug therapies. Eur J Clin Pharmacol 2020; 76(12): 1623-30.
[http://dx.doi.org/10.1007/s00228-020-02963-4] [PMID: 32696234]
[72]
Hoffmann M, Schroeder S, Kleine-Weber H, Müller MA, Drosten C, Pöhlmann S. Nafamostat mesylate blocks activation of SARS-CoV-2: New treatment option for COVID-19. Antimicrob Agents Chemother 2020; 64(6): e00754-20.
[http://dx.doi.org/10.1128/AAC.00754-20] [PMID: 32312781]
[73]
Sekhar T. Virtual Screening based prediction of potential drugs for COVID-19. Preprints 2020.
[74]
Zhang JS, Chen JT, Liu YX, et al, et al. A serological survey on neutralizing antibody titer of SARS convalescent sera. J Med Virol 2005; 77(2): 147-50.
[http://dx.doi.org/10.1002/jmv.20431] [PMID: 16121363]
[75]
Beigel JH, Voell J, Kumar P, et al, et al. Safety and tolerability of a novel, polyclonal human anti-MERS coronavirus antibody produced from transchromosomic cattle: a phase 1 randomised, double-blind, single-dose-escalation study. Lancet Infect Dis 2018; 18(4): 410-8.
[http://dx.doi.org/10.1016/S1473-3099(18)30002-1] [PMID: 29329957]
[76]
Shen C, Wang Z, Zhao F, et al, et al. Treatment of 5 critically ill patients with COVID-19 with convalescent plasma. JAMA 2020; 323(16): 1582-9.
[http://dx.doi.org/10.1001/jama.2020.4783] [PMID: 32219428]
[77]
Leng Z, Zhu R, Hou W, et al, et al. Transplantation of ACE2-mesenchymal stem cells improves the outcome of patients with COVID-19 pneumonia. Aging Dis 2020; 11(2): 216-28.
[http://dx.doi.org/10.14336/AD.2020.0228] [PMID: 32257537]
[78]
Zhou F, Yu T, Du R, et al, et al. Clinical course and risk factors for mortality of adult inpatients with COVID-19 in Wuhan, China: a retrospective cohort study. Lancet 2020; 395(10229): 1054-62.
[http://dx.doi.org/10.1016/S0140-6736(20)30566-3] [PMID: 32171076]
[79]
Mohamed AA, Mohamed N, Mohamoud S, et al, et al. SARS-CoV-2: The Path of Prevention and Control. Infect Disord Drug Targets 2020.
[http://dx.doi.org/10.2174/1871526520666200520112848] [PMID: 32433010]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy