Generic placeholder image

Nanoscience & Nanotechnology-Asia


ISSN (Print): 2210-6812
ISSN (Online): 2210-6820

Review Article

Synthesis and Applications of Nanoparticles: State of the Art and Future Perspective

Author(s): Smriti Shukla, Mitali Sharma, Sapna Yadav, Avinash Raghupathy, Kartikeya Shukla, Ajit Varma and Arti Mishra*

Volume 12, Issue 1, 2022

Published on: 24 February, 2021

Article ID: e070921191803 Pages: 14

DOI: 10.2174/2210681211666210224154613

Price: $65


Nanoparticles are being extensively studied these days to grab more knowledge on how they can be used in various fields to increase the yield and hence be beneficial for biotic components of the ecosystem. Chemicals being used in agriculture have caused a lot of damage to the soil and water quality along with the crops, ultimately affecting human health severely. Better alternatives are thus required to achieve higher yields with a better quality of crop plants that enhance human health. A variety of nanoparticles exist in nature, while others have been manufactured accidentally or engineered purposefully. These nanoparticles can play many beneficial roles in crop plants, increasing the yield of crops and the quality of the grains. They can be applied at various stages and for different doses. The effect that they exhibit would be dependent on many factors. Different nanoparticles have diverse effects on different plants. Some nanoparticles may be beneficial to one species of crop plant and may be disadvantageous to the other ones. Therefore, an elaborative study is required for all the types of nanoparticles exhibiting their advantageous and disadvantageous impacts on different species of crop plants for the dose and stage in which they have been applied. This review explains that the different types of nanoparticles are categorized based on their manufacture and the different effects they cause in different plant species. More research knowledge works are yet to be obtained before using nanoparticles in crop plants since the way they affect human health is a serious matter of concern.

Keywords: Nanoparticles, crop yield, human health, synthesis, sol-gel, engineered nanoparticle.

Graphical Abstract
Patra, J. K.; Baek, K. H. Green nanobiotechnology: factors affecting synthesis and characterization techniques J. Nanomater., 2014,, 2014.
Li, Y.; Duan, X.; Qian, Y.; Yang, L.; Liao, H. Nanocrystalline silver particles: synthesis, agglomeration, and sputtering induced by electron beam. J. Colloid Interface Sci., 1999, 209(2), 347-349.
[] [PMID: 9885261]
Parveen, A.; Mazhari, B.B.Z.; Rao, S. Impact of bio-nanogold on seed germination and seedling growth in Pennisetum glaucum. Enzyme Microb. Technol., 2016, 95, 107-111.
[ PMID: 27866604]
Tan, Y.; Dai, X.; Li, Y.; Zhu, D. Preparation of gold, platinum, palladium and silver nanoparticles by the reduction of their salts with a weak reductant–potassium bitartrate. J. Mater. Chem., 2003, 13(5), 1069-1075.
Kim, J.S.; Kuk, E.; Yu, K.N.; Kim, J.H.; Park, S.J.; Lee, H.J.; Kim, S.H.; Park, Y.K.; Park, Y.H.; Hwang, C.Y.; Kim, Y.K.; Lee, Y.S.; Jeong, D.H.; Cho, M.H. Antimicrobial effects of silver nanoparticles. Nanomedicine (Lond.), 2007, 3(1), 95-101.
[] [PMID: 17379174]
Mallick, K.; Witcomb, M.J.; Scurrell, M.S. Polymer stabilized silver nanoparticles: A photochemical synthesis route. J. Mater. Sci., 2004, 39(14), 4459-4463.
Balantrapu, K.; Goia, D.V. Silver nanoparticles for printable elec-tronics and biological applications. J. Mater. Res., 2009, 24(9), 2828-2836.
Rodriguez-Sanchez, L.; Blanco, M.C.; Lopez-Quintela, M.A. Electrochemical synthesis of silver nanoparticles. J. Phys. Chem. B, 2000, 104(41), 9683-9688.
Taleb, A.; Petit, C.; Pileni, M.P. Synthesis of highly monodisperse silver nanoparticles from AOT reverse micelles: A way to 2D and 3D self-organization. Chem. Mater., 1997, 9(4), 950-959.
Chen, Y.; Glumac, N.; Kear, B. H.; Skandan, G. High rate synthesis of nanophase materials. Nanostructured Materials, 1997, 9((1-8)), 101-104.
[ ]
Buzea, C.; Pacheco, I.I.; Robbie, K. Nanomaterials and nanoparti-cles: sources and toxicity. Biointerphases, 2007, 2(4), MR17-MR71.
[] [PMID: 20419892]
Loomba, L.; Scarabelli, T. Metallic nanoparticles and their medicinal potential. Part II: aluminosilicates, nanobiomagnets, quantum dots and cochleates. Ther. Deliv., 2013, 4(9), 1179-1196.
[] [PMID: 24024515]
Rai, M.; Yadav, A.; Gade, A. Silver nanoparticles as a new generation of antimicrobials. Biotechnol. Adv., 2009, 27(1), 76-83.
[] [PMID: 18854209]
Brady-Estévez, A.S.; Nguyen, T.H.; Gutierrez, L.; Elimelech, M. Impact of solution chemistry on viral removal by a single-walled carbon nanotube filter. Water Research., 2010, 44(13), 3773-3780.
Shahverdi, A.R.; Fakhimi, A.; Shahverdi, H.R.; Minaian, S. Syn-thesis and effect of silver nanoparticles on the antibacterial activity of different antibiotics against Staphylococcus aureus and Escherichia coli. Nanomedicine (Lond.), 2007, 3(2), 168-171.
[] [PMID: 17468052]
Beyth, N.; Yudovin-Farber, I.; Perez-Davidi, M.; Domb, A.J.; Weiss, E.I. Polyethyleneimine nanoparticles incorporated into resin composite cause cell death and trigger biofilm stress in vivo. Proc. Natl. Acad. Sci. USA, 2010, 107(51), 22038-22043.
[] [PMID: 21131569]
Sondi, I.; Salopek-Sondi, B. Silver nanoparticles as antimicrobial agent: a case study on E. coli as a model for Gram-negative bacteria. J. Colloid Interface Sci., 2004, 275(1), 177-182.
[] [PMID: 15158396]
Choi, O.; Deng, K.K.; Kim, N.J.; Ross, L., Jr; Surampalli, R.Y.; Hu, Z. The inhibitory effects of silver nanoparticles, silver ions, and silver chloride colloids on microbial growth. Water Res., 2008, 42(12), 3066-3074.
[] [PMID: 18359055]
Khurana, C.; Vala, A.K.; Andhariya, N.; Pandey, O.P.; Chudasama, B. Antibacterial activities of silver nanoparticles and antibiotic-adsorbed silver nanoparticles against biorecycling microbes. Environ. Sci. Process. Impacts, 2014, 16(9), 2191-2198.
[] [PMID: 25000128]
Ninganagouda, S.; Rathod, V.; Singh, D.; Hiremath, J.; Singh, A.K.; Mathew, J.; Ul-haq, M. Growth kinetics and mechanistic action of reactive oxygen species released by silver nanoparticles from aspergillus niger on Escherichia coli. BioMed Res. Int., 2014, 2014753419
Zan, L.; Fa, W.; Peng, T.; Gong, Z.K. Photocatalysis effect of nanometer TiO2 and TiO2-coated ceramic plate on Hepatitis B vi-rus. J. Photochem. Photobiol. B, 2007, 86(2), 165-169.
[] [PMID: 17055286]
Hamal, D.B.; Haggstrom, J.A.; Marchin, G.L.; Ikenberry, M.A.; Hohn, K.; Klabunde, K.J. A multifunctional biocide/sporocide and photocatalyst based on titanium dioxide (TiO2) co-doped with sil-ver, carbon, and sulfur. Langmuir, 2010, 26(4), 2805-2810.
[] [PMID: 20141214]
Palanikumar, L.; Ramasamy, S.N.; Balachandran, C. Size-dependent antimicrobial response of zinc oxide nanoparticles. IET nanobiotechnology, 2014, 8((2)), 111-117.
Jin, T.; Sun, D.; Su, J.Y.; Zhang, H.; Sue, H.J. Antimicrobial effi-cacy of zinc oxide quantum dots against Listeria monocytogenes, Salmonella Enteritidis, and Escherichia coli O157:H7. J. Food Sci., 2009, 74(1), M46-M52.
[] [PMID: 19200107]
Liu, Y.; He, L.; Mustapha, A.; Li, H.; Hu, Z.Q.; Lin, M. Antibacte-rial activities of zinc oxide nanoparticles against Escherichia coli O157:H7. J. Appl. Microbiol., 2009, 107(4), 1193-1201.
[] [PMID: 19486396]
Brown, A.N.; Smith, K.; Samuels, T.A.; Lu, J.; Obare, S.O.; Scott, M.E. Nanoparticles functionalized with ampicillin destroy multi-ple-antibiotic-resistant isolates of Pseudomonas aeruginosa and Enterobacter aerogenes and methicillin-resistant Staphylococcus aureus. Appl. Environ. Microbiol., 2012, 78(8), 2768-2774.
[] [PMID: 22286985]
Zhao, Y.; Tian, Y.; Cui, Y.; Liu, W.; Ma, W.; Jiang, X. Small mol-ecule-capped gold nanoparticles as potent antibacterial agents that target Gram-negative bacteria. J. Am. Chem. Soc., 2010, 132(35), 12349-12356.
[] [PMID: 20707350]
Chen, W.Y.; Lin, J.Y.; Chen, W.J.; Luo, L.; Wei-Guang Diau, E.; Chen, Y.C. Functional gold nanoclusters as antimicrobial agents for antibiotic-resistant bacteria. Nanomedicine (Lond.), 2010, 5(5), 755-764.
[] [PMID: 20662646]
Chamundeeswari, M.; Sobhana, S.S.; Jacob, J.P.; Kumar, M.G.; Devi, M.P.; Sastry, T.P.; Mandal, A.B. Preparation, characteriza-tion and evaluation of a biopolymeric gold nanocomposite with an-timicrobial activity. Biotechnol. Appl. Biochem., 2010, 55(1), 29-35.
[] [PMID: 19929854]
Varisco, M.; Khanna, N.; Brunetto, P.S.; Fromm, K.M. New anti-microbial and biocompatible implant coating with synergic silver-vancomycin conjugate action. ChemMedChem, 2014, 9(6), 1221-1230.
[] [PMID: 24799389]
Raji, V.; Kumar, J.; Rejiya, C.S.; Vibin, M.; Shenoi, V.N.; Abra-ham, A. Selective photothermal efficiency of citrate capped gold nanoparticles for destruction of cancer cells. Exp. Cell Res., 2011, 317(14), 2052-2058.
[] [PMID: 21565190]
Huh, A.J.; Kwon, Y.J. “Nanoantibiotics”: A new paradigm for treating infectious diseases using nanomaterials in the antibiotics resistant era. J. Control. Release, 2011, 156(2), 128-145.
[] [PMID: 21763369]
Pelgrift, R.Y.; Friedman, A.J. Nanotechnology as a therapeutic tool to combat microbial resistance. Adv. Drug Deliv. Rev., 2013, 65(13-14), 1803-1815.
[] [PMID: 23892192]
Ruparelia, J.P.; Chatterjee, A.K.; Duttagupta, S.P.; Mukherji, S. Strain specificity in antimicrobial activity of silver and copper na-noparticles. Acta Biomater., 2008, 4(3), 707-716.
[] [PMID: 18248860]
Slomberg, D.L.; Lu, Y.; Broadnax, A.D.; Hunter, R.A.; Carpenter, A.W.; Schoenfisch, M.H. Role of size and shape on biofilm eradi-cation for nitric oxide-releasing silica nanoparticles. ACS Appl. Mater. Interfaces, 2013, 5(19), 9322-9329.
[] [PMID: 24006838]
Han, G.; Martinez, L.R.; Mihu, M.R.; Friedman, A.J.; Friedman, J.M.; Nosanchuk, J.D. Nitric oxide releasing nanoparticles are therapeutic for Staphylococcus aureus abscesses in a murine model of infection. PLoS One, 2009, 4(11)e7804
[] [PMID: 19915659]
Kutner, A.J.; Friedman, A.J. Use of nitric oxide nanoparticulate platform for the treatment of skin and soft tissue infections. Wiley Interdiscip. Rev. Nanomed. Nanobiotechnol., 2013, 5(5), 502-514.
[] [PMID: 23661566]
Hetrick, E.M.; Shin, J.H.; Paul, H.S.; Schoenfisch, M.H. Anti-biofilm efficacy of nitric oxide-releasing silica nanoparticles. Biomaterials, 2009, 30(14), 2782-2789.
[] [PMID: 19233464]
Hiraki, J. Basic and applied studies on ε-polylysine. J Antibacterial Antifungul Agents, 1995, 23, 349-354.
Imada, K.; Sakai, S.; Kajihara, H.; Tanaka, S.; Ito, S. Magnesium oxide nanoparticles induce systemic resistance in tomato against bacterial wilt disease. Plant Pathol., 2016, 65(4), 551-560.
Beyth, N.; Houri-Haddad, Y.; Domb, A.; Khan, W.; Hazan, R. Alternative antimicrobial approach: Nano-antimicrobial materials. Evid. Based Complement. Alternat. Med., 2015, 2015246012
[] [PMID: 25861355]
Muñoz-Bonilla, A.; Fernández-García, M. Polymeric materials with antimicrobial activity. Prog. Polym. Sci., 2012, 37(2), 281-339.
Denyer, S.P.; Stewart, G.S.A.B. Mechanisms of action of disinfectants. Int. Biodeterior. Biodegradation, 1998, 41(3-4), 261-268.
Chung, Y.C.; Wang, H.L.; Chen, Y.M.; Li, S.L. Effect of abiotic factors on the antibacterial activity of chitosan against waterborne pathogens. Bioresour. Technol., 2003, 88(3), 179-184.
[] [PMID: 12618038]
Tavaria, F.K.; Costa, E.M.; Gens, E.J.; Malcata, F.X.; Pintado, M.E. Influence of abiotic factors on the antimicrobial activity of chitosan. J. Dermatol., 2013, 40(12), 1014-1019.
[] [PMID: 24330167]
Tin, S.; Sakharkar, K.R.; Lim, C.S.; Sakharkar, M.K. Activity of Chitosans in combination with antibiotics in Pseudomonas aeru-ginosa. Int. J. Biol. Sci., 2009, 5(2), 153-160.
[ ] [] [PMID: 19173037]
Ibrahim, M.; Tao, Z.; Hussain, A.; Chunlan, Y.; Ilyas, M.; Waheed, A.; Yuan, F.; Li, B.; Xie, G.L. Deciphering the role of Burkholderia cenocepacia membrane proteins in antimicrobial properties of chitosan. Arch. Microbiol., 2014, 196(1), 9-16.
[] [PMID: 24213809]
Grieger, K.D.; Hansen, S.F.; Baun, A. The known unknowns of nanomaterials: describing and characterizing uncertainty within environmental, health and safety risks. Nanotoxicology, 2009, 3(3), 222-233.
Zhang, L.; Fang, M. Nanomaterials in pollution trace detection and environmental improvement. Nano Today, 2010, 5(2), 128-142.
Matsoukas, T.; Desai, T.; Lee, K. Engineered nanoparticles and their applications. J. Nanomater., 2015, 2015, 1-2.
De La Torre-Roche, R.; Hawthorne, J.; Deng, Y.; Xing, B.; Cai, W.; Newman, L.A.; Wang, Q.; Ma, X.; Hamdi, H.; White, J.C. Multiwalled carbon nanotubes and c60 fullerenes differentially impact the accumulation of weathered pesticides in four agricultural plants. Environ. Sci. Technol., 2013, 47(21), 12539-12547.
[] [PMID: 24079803]
Santos, S.M.; Dinis, A.M.; Rodrigues, D.M.; Peixoto, F.; Videira, R.A.; Jurado, A.S. Studies on the toxicity of an aqueous suspension of C60 nanoparticles using a bacterium (gen. Bacillus) and an aquatic plant (Lemna gibba) as in vitro model systems. Aquat. Toxicol., 2013, 142-143, 347-354.
[] [PMID: 24084257]
Gao, J.; Wang, Y.; Folta, K.M.; Krishna, V.; Bai, W.; Indeglia, P.; Georgieva, A.; Nakamura, H.; Koopman, B.; Moudgil, B. Polyhy-droxy fullerenes (fullerols or fullerenols): beneficial effects on growth and lifespan in diverse biological models. PLoS One, 2011, 6(5)e19976
[] [PMID: 21637768]
Kole, C.; Kole, P.; Randunu, K.M.; Choudhary, P.; Podila, R.; Ke, P.C.; Rao, A.M.; Marcus, R.K. Nanobiotechnology can boost crop production and quality: first evidence from increased plant bio-mass, fruit yield and phytomedicine content in bitter melon (Momordica charantia). BMC Biotechnol., 2013, 13(1), 37.
[] [PMID: 23622112]
Collins, P. G.; Bradley, K.; Ishigami, M.; Zettl, D. A. Extreme oxygen sensitivity of electronic properties of carbon nanotubes science2000, 287(5459), 1801-1804.
Mani, M.K.; Viola, G.; Reece, M.J.; Hall, J.P.; Evans, S.L. Fabrication of carbon nanotube reinforced iron based magnetic alloy composites by spark plasma sintering. J. Alloys Compd., 2014, 601, 146-153.
Khodakovskaya, M.V.; Kim, B.S.; Kim, J.N.; Alimohammadi, M.; Dervishi, E.; Mustafa, T.; Cernigla, C.E. Carbon nanotubes as plant growth regulators: Effects on tomato growth, reproductive system, and soil microbial community. Small, 2013, 9(1), 115-123.
[] [PMID: 23019062]
Lin, S.; Reppert, J.; Hu, Q.; Hudson, J.S.; Reid, M.L.; Ratnikova, T.A.; Rao, A.M.; Luo, H.; Ke, P.C. Uptake, translocation, and transmission of carbon nanomaterials in rice plants. Small, 2009, 5(10), 1128-1132.
[] [PMID: 19235197]
Warheit, D.B.; Laurence, B.R.; Reed, K.L.; Roach, D.H.; Reyn-olds, G.A.; Webb, T.R. Comparative pulmonary toxicity assess-ment of single-wall carbon nanotubes in rats. Toxicol. Sci., 2004, 77(1), 117-125.
[] [PMID: 14514968]
Ren, J.; Tilley, R.D. Shape-controlled growth of platinum nanopar-ticles. Small, 2007, 3(9), 1508-1512.
[] [PMID: 17647261]
Chen, S.; Zhao, X.; Xie, H.; Liu, J.; Duan, L.; Ba, X.; Zhao, J. Photoluminescence of undoped and Ce-doped SnO2 thin films de-posited by sol–gel-dip-coating method. Appl. Surf. Sci., 2012, 258(7), 3255-3259.
Parise, A.; Thakor, H.; Zhang, X. Activity inhibition on municipal activated sludge by single-walled carbon nanotubes. J. Nanopart. Res., 2014, 16(1), 2159.
Begum, P.; Ikhtiari, R. Graphene phytotoxicity in the seedling stage of cabbage, tomato, red spinach, and lettuce. Carbon, 2011, 49(12), 3907-3919.
Fugetsu Parvin.Graphene phytotoxicity in the seedling stage of cabbage, tomato, red spinach, and lettuce In carbon nanotubes - from research to applications; InTech, 2011.
Ahmed, S.; Ahmad, M.; Swami, B.L.; Ikram, S. A review on plants extract mediated synthesis of silver nanoparticles for antimicrobial applications: A green expertise. J. Adv. Res., 2016, 7(1), 17-28.
[] [PMID: 26843966]
Iqbal, P.; Preece, J. A.; Mendes, P. M. Nanotechnology: The “Top‐ Down” and “Bottom‐Up” Approaches Supramolecular chemistry: from molecules to nanomaterials, 2012.
Pokropivny, V.; Lohmus, R.; Hussainova, I.; Pokropivny, A.; Vlassov, S. Introduction to nanomaterials and nanotechnology; Tartu University Press: Ukraine, 2007, pp. 45-100.
Abou El-Nour, K.M.; Eftaiha, A.A.; Al-Warthan, A.; Ammar, R.A. Synthesis and applications of silver nanoparticles. Arab. J. Chem., 2010, 3(3), 135-140.
Kulkarni, S.K. Nanotechnology: Principles and Practices; Springer International Publishing: Cham, 2015.
Alexandrescu, R.; Morjan, I.; Scarisoreanu, M.; Birjega, R.; Popo-vici, E.; Soare, I. Structural investigations on TiO2 and Fe-doped TiO2 nanoparticles synthesized by laser pyrolysis. Thin Solid Films, 2007, 515(24), 8438-8445.
Dhand, C.; Dwivedi, N.; Xian, Jun Loh Methods and strategies for the synthesis of diverse nanoparticles and their applications: a comprehensive overview, 2015.
Adschiri, T.; Hakuta, Y.; Sue, K.; Arai, K. Hydrothermal synthesis of metal oxide nanoparticles at supercritical conditions. J. Nanopart. Res., 2001, 3(2-3), 227-235.
Hulkoti, N.I.; Taranath, T.C. Biosynthesis of nanoparticles using microbes- a review. Colloids Surf. B Biointerfaces, 2014, 121, 474-483.
[] [PMID: 25001188]
Rauwel, P.; Küünal, S.; Ferdov, S.; Rauwel, E. A Review on the Green Synthesis of Silver Nanoparticles and Their Morphologies Studied via TEM. Adv. Mater. Sci. Eng. 2015, 2015, 1-9.
Thakkar, K.N.; Mhatre, S.S.; Parikh, R.Y. Biological synthesis of metallic nanoparticles. Nanomedicine (Lond.), 2010, 6(2), 257-262.
[] [PMID: 19616126]
Mata, Y.N.; Torres, E.; Blázquez, M.L.; Ballester, A.; González, F.; Muñoz, J.A. Gold(III) biosorption and bioreduction with the brown alga Fucus vesiculosus. J. Hazard. Mater., 2009, 166(2-3), 612-618.
[] [PMID: 19124199]
El-Rafie, H.M.; El-Rafie, M.H.; Zahran, M.K. Green synthesis of silver nanoparticles using polysaccharides extracted from marine macro algae. Carbohydr. Polym., 2013, 96(2), 403-410.
[] [PMID: 23768580]
MubarakAli. D.; Arunkumar, J.; Nag, K.H.; SheikSyedIshack, K.A.; Baldev, E.; Pandiaraj, D.; Thajuddin, N. Gold nanoparticles from pro and eukaryotic photosynthetic microorganisms-comp-arative studies on synthesis and its application on biolabelling. Colloids Surf. B Biointerfaces, 2013, 103, 166-173.
[] [PMID: 23201734]
Kalishwaralal, K.; Deepak, V.; Ram Kumar Pandian, S.; Guruna-than, S. Biological synthesis of gold nanocubes from Bacillus li-cheniformis. Bioresour. Technol., 2009, 100(21), 5356-5358.
[] [PMID: 19574037]
Das, S.K.; Das, A.R.; Guha, A.K. Microbial synthesis of multishaped gold nanostructures. Small, 2010, 6(9), 1012-1021.
[] [PMID: 20376859]
Rangnekar, A.; Sarma, T.K.; Singh, A.K.; Deka, J.; Ramesh, A.; Chattopadhyay, A. Retention of enzymatic activity of α-amylase in the reductive synthesis of gold nanoparticles. Langmuir, 2007, 23(10), 5700-5706.
[] [PMID: 17425338]
Kumar, B.; Smita, K.; Cumbal, L.; Debut, A. One pot synthesis and characterization of gold nanocatalyst using Sacha inchi (Plukenetia volubilis) oil: Green approach. J. Photochem. Photobiol. B, 2016, 158, 55-60.
[] [PMID: 26945647]
Zhu, H.; Han, J.; Xiao, J.Q.; Jin, Y. Uptake, translocation, and accumulation of manufactured iron oxide nanoparticles by pump-kin plants. J. Environ. Monit., 2008, 10(6), 713-717.
[] [PMID: 18528537]
Serag, M.F.; Kaji, N.; Gaillard, C.; Okamoto, Y.; Terasaka, K.; Jabasini, M.; Tokeshi, M.; Mizukami, H.; Bianco, A.; Baba, Y. Trafficking and subcellular localization of multiwalled carbon nanotubes in plant cells. ACS Nano, 2011, 5(1), 493-499.
[] [PMID: 21141871]
Etxeberria, E.; Gonzalez, P.; Baroja-Fernandez, E.; Romero, J.P. Fluid phase endocytic uptake of artificial nano-spheres and fluorescent quantum dots by sycamore cultured cells: evidence for the distribution of solutes to different intracellular compartments. Plant Signal. Behav., 2006, 1(4), 196-200.
[] [PMID: 19521485]
Khodakovskaya, M.; Dervishi, E.; Mahmood, M.; Xu, Y.; Li, Z.; Watanabe, F.; Biris, A.S. Carbon nanotubes are able to penetrate plant seed coat and dramatically affect seed germination and plant growth. ACS Nano, 2009, 3(10), 3221-3227.
[] [PMID: 19772305]
Larue, C.; Laurette, J.; Herlin-Boime, N.; Khodja, H.; Fayard, B.; Flank, A.M.; Brisset, F.; Carriere, M. Accumulation, translocation and impact of TiO2 nanoparticles in wheat (Triticum aestivum spp.): influence of diameter and crystal phase. Sci. Total Environ., 2012, 431, 197-208.
[] [PMID: 22684121]
López-Moreno, M.L.; de la Rosa, G.; Hernández-Viezcas, J.A.; Peralta-Videa, J.R.; Gardea-Torresdey, J.L. X-ray absorption spectroscopy (XAS) corroboration of the uptake and storage of CeO(2) nanoparticles and assessment of their differential toxicity in four edible plant species. J. Agric. Food Chem., 2010, 58(6), 3689-3693.
[] [PMID: 20187606]
Gui, X.; Deng, Y.; Rui, Y.; Gao, B.; Luo, W.; Chen, S.; Nhan, V.; Li, X.; Liu, S.; Han, Y.; Liu, L.; Xing, B. Response difference of transgenic and conventional rice (Oryza sativa) to nanoparticles (γFe2O3). Environ. Sci. Pollut. Res. Int., 2015, 22(22), 17716-17723.
[] [PMID: 26154040]
Dimkpa, C.O.; Hansen, T.; Stewart, J.; McLean, J.E.; Britt, D.W.; Anderson, A.J. ZnO nanoparticles and root colonization by a beneficial pseudomonad influence essential metal responses in bean (Phaseolus vulgaris). Nanotoxicology, 2015, 9(3), 271-278.
[] [PMID: 24713073]
Milewska-Hendel, A.; Gawecki, R.; Zubko, M.; Stróż, D.; Kurczyńska, E. Diverse influence of nanoparticles on plant growth with a particular emphasis on crop plants. Acta Agrobot, 2016, 69(4)
Geisler-Lee, J.; Wang, Q.; Yao, Y.; Zhang, W.; Geisler, M.; Li, K.; Huang, Y.; Chen, Y.; Kolmakov, A.; Ma, X. Phytotoxicity, accumulation and transport of silver nanoparticles by Arabidopsis thaliana. Nanotoxicology, 2013, 7(3), 323-337.
[] [PMID: 22263604]
Lin, D.; Xing, B. Phytotoxicity of nanoparticles: inhibition of seed germination and root growth. Environ. Pollut., 2007, 150(2), 243-250.
[] [PMID: 17374428]
Shaw, A.K.; Hossain, Z. Impact of nano-CuO stress on rice (Oryza sativa L.) seedlings. Chemosphere, 2013, 93(6), 906-915.
[] [PMID: 23791109]
Feichtmeier, N.S.; Walther, P.; Leopold, K. Uptake, effects, and regeneration of barley plants exposed to gold nanoparticles. Environ. Sci. Pollut. Res. Int., 2015, 22(11), 8549-8558.
[] [PMID: 25561260]
Kumar, V.; Parvatam, G.; Ravishankar, G.A. AgNO3: a potential regulator of ethylene activity and plant growth modulator. Electron. J. Biotechnol., 2009, 12(2), 8-9.
Thuesombat, P.; Hannongbua, S.; Akasit, S.; Chadchawan, S. Ef-fect of silver nanoparticles on rice (Oryza sativa L. cv. KDML 105) seed germination and seedling growth. Ecotoxicol. Environ. Saf., 2014, 104, 302-309.
[] [PMID: 24726943]
Begum, P.; Fugetsu, B. Induction of cell death by graphene in Arabidopsis thaliana (Columbia ecotype) T87 cell suspensions. J. Hazard. Mater., 2013, 260, 1032-1041.
[] [PMID: 23892171]
Arora, S.; Sharma, P.; Kumar, S.; Nayan, R.; Khanna, P.K.; Zaidi, M.G.H. Gold-nanoparticle induced enhancement in growth and seed yield of Brassica juncea. Plant Growth Regul., 2012, 66(3), 303-310.
Mahakham, W.; Theerakulpisut, P.; Maensiri, S.; Phumying, S.; Sarmah, A.K. Environmentally benign synthesis of phytochemi-cals-capped gold nanoparticles as nanopriming agent for promoting maize seed germination. Sci. Total Environ., 2016, 573, 1089-1102.
[] [PMID: 27639594]
Barrios, A.C.; Rico, C.M.; Trujillo-Reyes, J.; Medina-Velo, I.A.; Peralta-Videa, J.R.; Gardea-Torresdey, J.L. Effects of uncoated and citric acid coated cerium oxide nanoparticles, bulk cerium oxide, cerium acetate, and citric acid on tomato plants. Sci. Total Environ., 2016, 563-564, 956-964.
[] [PMID: 26672385]
Iannone, M.F.; Groppa, M.D.; de Sousa, M.E.; van Raap, M.B.F.; Benavides, M.P. Impact of magnetite iron oxide nanoparticles on wheat (Triticum aestivum L.) development: evaluation of oxidative damage. Environ. Exp. Bot., 2016, 131, 77-88.
Večeřová, K.; Večeřa, Z.; Dočekal, B.; Oravec, M.; Pompeiano, A.; Tříska, J.; Urban, O. Changes of primary and secondary metabolites in barley plants exposed to CdO nanoparticles. Environ. Pollut., 2016, 218, 207-218.
[] [PMID: 27503055]
Lopez-Moreno, M.; Avilés, L.; Pérez, N.G. Effect of cobalt ferrite (CoFe2O4) nanoparticles on the growth and development of Lycopersicon lycopersicum (tomato plants). Sci. Total Environ., 2016, 550, 45-52.
Adhikari, T.; Kundu, S.; Biswas, A.K.; Tarafdar, J.C.; Subba Rao, A. Characterization of zinc oxide nano particles and their effect on growth of maize (Zea mays L.) plant. J. Plant Nutr., 2015, 38(10), 1505-1515.
Kalteh, M.; Alipour, Z.T.; Ashraf, S.; Marashi Aliabadi, M.; Falah Nosratabadi, A. Effect of silica nanoparticles on basil (Ocimum basilicum) under salinity stress. J. Chem. Health Risks, 2018, 4(3)
Hazarika, A.; Maji, T.K. Strain sensing behavior and dynamic mechanical properties of carbon nanotubes/nanoclay reinforced wood polymer nanocomposite. Chem. Eng. J., 2014, 247, 33-41.
Ke, P.C.; Lamm, M.H. A biophysical perspective of understanding nanoparticles at large. Phys. Chem. Chem. Phys., 2011, 13(16), 7273-7283.
[] [PMID: 21394374]
Sasidharan, A.; Panchakarla, L.S.; Chandran, P.; Menon, D.; Nair, S.; Rao, C.N.R.; Koyakutty, M. Differential nano-bio interactions and toxicity effects of pristine versus functionalized graphene. Nanoscale, 2011, 3(6), 2461-2464.
[] [PMID: 21562671]
Wang, X.; Han, H.; Liu, X.; Gu, X.; Chen, K.; Lu, D. Multi-walled carbon nanotubes can enhance root elongation of wheat (Triticum aestivum) plants. J. Nanopart. Res., 2012, 14(6), 841.
Mottier, A.; Mouchet, F.; Pinelli, É.; Gauthier, L.; Flahaut, E. Envi-ronmental impact of engineered carbon nanoparticles: from releases to effects on the aquatic biota. Curr. Opin. Biotechnol., 2017, 46, 1-6.
[] [PMID: 28088098]
Derfus, A.M.; Chan, W.C.W.; Bhatia, S.N. Probing the cytotoxicity of semiconductor quantum dots. Nano Lett., 2004, 4(1), 11-18.
[] [PMID: 28890669]
Oberdörster, E.; Zhu, S.; Blickley, T.M.; McClellan-Green, P.; Haasch, M.L. Ecotoxicology of carbon-based engineered nanoparticles: effects of fullerene (C60) on aquatic organisms. Carbon, 2006, 44(6), 1112-1120.
Federici, G.; Shaw, B.J.; Handy, R.D. Toxicity of titanium dioxide nanoparticles to rainbow trout (Oncorhynchus mykiss): gill injury, oxidative stress, and other physiological effects. Aquat. Toxicol., 2007, 84(4), 415-430.
[] [PMID: 17727975]
Smith, C.J.; Shaw, B.J.; Handy, R.D. Toxicity of single walled carbon nanotubes to rainbow trout, (Oncorhynchus mykiss): res-piratory toxicity, organ pathologies, and other physiological effects. Aquat. Toxicol., 2007, 82(2), 94-109.
[] [PMID: 17343929]
Anjum, N.A.; Singh, N.; Singh, M.K.; Sayeed, I.; Duarte, A.C.; Pereira, E.; Ahmad, I. Single-bilayer graphene oxide sheet impacts and underlying potential mechanism assessment in germinating faba bean (Vicia faba L.). Sci. Total Environ., 2014, 472, 834-841.
[] [PMID: 24342089]
Faisal, M.; Saquib, Q.; Alatar, A.A.; Al-Khedhairy, A.A.; Hegazy, A.K.; Musarrat, J. Phytotoxic hazards of NiO-nanoparticles in to-mato: A study on mechanism of cell death. J. Hazard. Mater., 2013, 250-251, 318-332.
[] [PMID: 23474406]
Musante, C.; White, J.C. Toxicity of silver and copper to Cucurbita pepo: differential effects of nano and bulk-size particles. Environ. Toxicol., 2012, 27(9), 510-517.
[] [PMID: 22887766]
Asli, S.; Neumann, P.M. Colloidal suspensions of clay or titanium dioxide nanoparticles can inhibit leaf growth and transpiration via physical effects on root water transport. Plant Cell Environ., 2009, 32(5), 577-584.
[ PMID: 19210640]
Abd-Alla, M.H.; Nafady, N.A.; Khalaf, D.M. Assessment of silver nanoparticles contamination on faba bean-Rhizobium legumi-nosarumbv. viciae-Glomus aggregatum symbiosis: implications for induction of autophagy process in root nodule. Agric. Ecosyst. Environ., 2016, 218, 163-177.
Du, W.; Gardea-Torresdey, J.L.; Ji, R.; Yin, Y.; Zhu, J.; Peralta-Videa, J.R.; Guo, H. Physiological and biochemical changes im-posed by CeO2 nanoparticles on wheat: a life cycle field study. Environ. Sci. Technol., 2015, 49(19), 11884-11893.
[] [PMID: 26368651]
Rico, C.M.; Morales, M.I.; Barrios, A.C.; McCreary, R.; Hong, J.; Lee, W.Y.; Nunez, J.; Peralta-Videa, J.R.; Gardea-Torresdey, J.L. Effect of cerium oxide nanoparticles on the quality of rice (Oryza sativa L.) grains. J. Agric. Food Chem., 2013, 61(47), 11278-11285.
[] [PMID: 24188281]
Lahiani, M.H.; Chen, J.; Irin, F.; Puretzky, A.A.; Green, M.J.; Khodakovskaya, M.V. Interaction of carbon nanohorns with plants: uptake and biological effects. Carbon, 2015, 81, 607-619.
Santos, A.R.; Miguel, A.S.; Tomaz, L.; Malhó, R.; Maycock, C.; Vaz Patto, M.C.; Fevereiro, P.; Oliva, A. The impact of CdSe/ZnS Quantum Dots in cells of Medicago sativa in suspension culture. J. Nanobiotechnology, 2010, 8(1), 24.
[] [PMID: 20929583]
Patil, S.S.; Lekhak, U.M. Toxic effects of engineered carbon nanoparticles on environment. Carbon Nanomaterials for Agri-Food and Environmental Applications; Elsevier, 2020, pp. 237-260.
Ocsoy, I.; Paret, M.L.; Ocsoy, M.A.; Kunwar, S.; Chen, T.; You, M.; Tan, W. Nanotechnology in plant disease management: DNA-directed silver nanoparticles on graphene oxide as an antibacterial against Xanthomonas perforans. ACS Nano, 2013, 7(10), 8972-8980.
[] [PMID: 24016217]
Petersen, E.J.; Flores-Cervantes, D.X.; Bucheli, T.D.; Elliott, L.C.; Fagan, J.A.; Gogos, A.; Hanna, S.; Kägi, R.; Mansfield, E.; Bustos, A.R.; Plata, D.L.; Reipa, V.; Westerhoff, P.; Winchester, M.R. Quantification of carbon nanotubes in environmental matrices: current capabilities, case studies, and future prospects. Environ. Sci. Technol., 2016, 50(9), 4587-4605.
[] [PMID: 27050152]
Bottini, M.; Bruckner, S.; Nika, K.; Bottini, N.; Bellucci, S.; Ma-grini, A.; Bergamaschi, A.; Mustelin, T. Multi-walled carbon nanotubes induce T lymphocyte apoptosis. Toxicol. Lett., 2006, 106(2), 121-126.
Ding, L.H.; Shingyoji, M.; Chen, F.; Chatterjee, A.; Kasai, K.E.; Chen, D.J. Gene expression changes in normal human skin fibro-blasts induced by HZE-particle radiation. Radiat. Res., 2005, 164(4 Pt 2), 523-526.
[] [PMID: 16187761]
Silva, L.F.; Oliveira, M.L.; Philippi, V.; Serra, C.; Dai, S.; Xue, W.; Chen, W.; O’Keefe, J.M.; Romanek, C.S.; Hopps, S.G.; Hower, J.C. Geochemistry of carbon nanotube assemblages in coal fire soot, Ruth Mullins fire, Perry County, Kentucky. Int. J. Coal Geol., 2012, 94, 206-213.
Helland, A.; Wick, P.; Koehler, A.; Schmid, K.; Som, C. Review-ing the environmental and human health knowledge base of carbon nanotubes. Environ. Health Perspect., 2007, 115(8), 1125-1131.
[] [PMID: 17687437]
Ullah, S.; Adeel, M.; Zain, M.; Rizwan, M.; Irshad, M.K.; Jilani, G.; Hameed, A.; Khan, A.; Arshad, M.; Raza, A.; Baluch, M.A.; Rui, Y. Physiological and biochemical response of wheat (Triticum aestivum) to TiO2 nanoparticles in phosphorous amended soil: A full life cycle study. J. Environ. Manage., 2020, 263110365
[] [PMID: 32883473]
Priyanka, N.; Geetha, N.; Ghorbanpour, M.; Venkatachalam, P. Role of engineered zinc and copper oxide nanoparticles in pro-moting plant growth and yield: Present status and future pro-spects.Advances in Phytonanotechnology; Academic Press, 2019, pp. 183-201.
Leonardi, P.; Lugli, F.; Iotti, M.; Puliga, F.; Piana, F.; Gallo, M.; Baldi, F.; Vittori Antisari, L.; Zambonelli, A.; Chiarantini, L. Ef-fects of biogenerated ferric hydroxides nanoparticles on truffle mycorrhized plants. Mycorrhiza, 2020, 30(2-3), 211-219.
[] [PMID: 32219547]
Bao, Y.; Sherwood, J.A.; Sun, Z. Magnetic iron oxide nanoparticles as T 1 contrast agents for magnetic resonance imaging. J. Mater. Chem. C Mater. Opt. Electron. Devices, 2018, 6(6), 1280-1290.
Schreiber, H.A.; Prechl, J.; Jiang, H.; Zozulya, A.; Fabry, Z.; Denes, F.; Sandor, M. Using carbon magnetic nanoparticles to tar-get, track, and manipulate dendritic cells. J. Immunol. Methods, 2010, 356(1-2), 47-59.
[] [PMID: 20219468]
Pardo, J.; Peng, Z.; Leblanc, R.M. Cancer targeting and drug delivery using carbon-based quantum dots and nanotubes. Molecules, 2018, 23(2), 378.
[] [PMID: 29439409]
Ma, Y.; Xie, C.; He, X.; Zhang, B.; Yang, J.; Sun, M.; Luo, W.; Feng, S.; Zhang, J.; Wang, G.; Zhang, Z. Effects of ceria nanopar-ticles and CeCl3 on plant growth, biological and physiological pa-rameters, and nutritional value of soil grown common bean (Phaseolus vulgaris). Small, 2020.1907435
Dykman, L.A.; Shchyogolev, S.Y. The effect of gold and silver nanoparticles on plant growth and development. Metal Nanoparti-cles: Properties; Synthesis and Applications, 2018, pp. 263-300.

Rights & Permissions Print Export Cite as
© 2023 Bentham Science Publishers | Privacy Policy