Generic placeholder image

Current Pharmaceutical Biotechnology

Editor-in-Chief

ISSN (Print): 1389-2010
ISSN (Online): 1873-4316

Research Article

The Effect of Pre-operative Autologous Blood Donation on Bone Marrow Hematopoietic Functions in Rabbits after Hepatectomy

Author(s): Xiao-Fang Zhou, Yang Liu, Jia-Ming Xu, Jin-Huo Wang, Zhen-Zhou Li, Xun Zhou and Jian-Rong Guo*

Volume 23, Issue 2, 2022

Published on: 22 February, 2021

Page: [300 - 306] Pages: 7

DOI: 10.2174/1389201022666210222162311

Price: $65

Open Access Journals Promotions 2
Abstract

Background: Pre-operative autologous blood donation (PABD) is one of the most widely distributed autologous blood donation means, which has positive effects on erythropoiesis. However, whether PABD can stimulate the bone marrow hematopoiesis after hepatectomy has not been reported.

Methods: Totally 80 New Zealand rabbits were randomly divided into 4 groups that included control group, surgery group, hemodilutional autotransfusion (HA) group and PABD group. Automatic reticulocyte examination was performed to detect the content of reticulocyte and immature reticulocyte fractions (IRF). Flow cytometric analysis was employed to monitor the level of CD34+ cells and the cell cycle status. Southern blotting was conducted to determine the telomere length of CD34+ cells.

Results: The content of high fluorescence reticulocytes (HFR) and IRF was decreased at 6 h and 24 h after autotransfusion. However, the level of CD34+ cells was upregulated after PABD. Cell cycle status analysis revealed that the majority of the CD34+ cells in HA and PABD group were maintained in G0/G1 phase. The telomere length in HA and PABD group was shortened than that of the control group and surgery group.

Conclusion: PABD could promote the bone marrow hematopoietic functions in rabbits after hepatectomy via stimulating proliferation of CD34+ cells and shortening the telomere length of CD34+ cells, but the content of HFR was not increased immediately because of the stuck of CD34+ cells in the G0/G1 phase.

Keywords: Blood transfusion, PABD, hepatectomy, bone marrow hematopoiesis, autotransfusion, high fluorescence reticulocytes.

Graphical Abstract
[1]
Palmer, A.; Chen, A.; Matsumoto, T.; Murphy, M.; Price, A. Blood management in total knee arthroplasty: state-of-the-art review. Orthopaedic Sports Medicine, 2018, 3(6), 358-366.
[http://dx.doi.org/10.1136/jisakos-2017-000168]
[2]
Karger, R.; Weippert-Kretschmer, M.; Kretschmer, V. 5b Pre-operative autologous blood and plasma donation and retransfusion. Baillieres Clin. Anaesthesiol., 1997, 11(2), 319-333.
[http://dx.doi.org/10.1016/S0950-3501(97)80033-5]
[3]
Teja, B.J.; Sutherland, T.N.; Barnett, S.R.; Talmor, D.S. Cost-effectiveness research in anesthesiology. Anesth. Analg., 2018, 127(5), 1196-1201.
[http://dx.doi.org/10.1213/ANE.0000000000003334] [PMID: 29570150]
[4]
Bou Monsef, J.; Figgie, M.P.; Mayman, D.; Boettner, F. Targeted pre-operative autologous blood donation: a prospective study of two thousand and three hundred and fifty total hip arthroplasties. Int. Orthop., 2014, 38(8), 1591-1595.
[http://dx.doi.org/10.1007/s00264-014-2339-5] [PMID: 24722787]
[5]
Hill, G.E.; Frawley, W.H.; Griffith, K.E.; Forestner, J.E.; Minei, J.P. Allogeneic blood transfusion increases the risk of postoperative bacterial infection: a meta-analysis. J. Trauma, 2003, 54(5), 908-914.
[http://dx.doi.org/10.1097/01.TA.0000022460.21283.53] [PMID: 12777903]
[6]
He, Y.K.; Li, H.Z.; Lu, H.D. Is blood transfusion associated with an increased risk of infection among spine surgery patients?: A meta-analysis. Medicine (Baltimore), 2019, 98(28)e16287
[http://dx.doi.org/10.1097/MD.0000000000016287] [PMID: 31305412]
[7]
Saha, S.; Krishna, D.; Prasath, R.; Sachan, D. Incidence and Analysis of 7 Years Adverse Transfusion Reaction: A Retrospective Analysis. Indian J. Hematol. Blood Transfus., 2020, 36(1), 149-155.
[http://dx.doi.org/10.1007/s12288-019-01174-x] [PMID: 32158098]
[8]
Perez, A.; Bakhtary, S.; Nedelcu, E.; Manuel, S. Overtransfusion of autologous blood identifies opportunities for improving patient blood management. Cureus, 2019, 11(3)e4202
[http://dx.doi.org/10.7759/cureus.4202] [PMID: 31114721]
[9]
Mijovic, A.; Britten, C.; Regan, F.; Harrison, J. Preoperative autologous blood donation for bone marrow harvests: are we wasting donors’ time and blood? Transfus. Med., 2006, 16(1), 57-62.
[http://dx.doi.org/10.1111/j.1365-3148.2005.00635.x] [PMID: 16480440]
[10]
Kickler, T.S.; Spivak, J.L. Effect of repeated whole blood donations on serum immunoreactive erythropoietin levels in autologous donors. JAMA, 1988, 260(1), 65-67.
[http://dx.doi.org/10.1001/jama.1988.03410010073038] [PMID: 3379725]
[11]
Wong, A.Y.; Irwin, M.G.; Hui, T.W.; Fung, S.K.; Fan, S.T.; Ma, E.S. Desmopressin does not decrease blood loss and transfusion requirements in patients undergoing hepatectomy. Can. J. Anaesth., 2003, 50(1), 14-20.
[http://dx.doi.org/10.1007/BF03020180] [PMID: 12514144]
[12]
Perazzo, P.; Viganò, M.; De Girolamo, L.; Verde, F.; Vinci, A.; Banfi, G.; Romagnoli, S. Blood management and transfusion strategies in 600 patients undergoing total joint arthroplasty: an analysis of pre-operative autologous blood donation. Blood Transfus., 2013, 11(3), 370-376.
[PMID: 23736922]
[13]
Torres, A.; Sánchez, J.; Lakomsky, D.; Serrano, J.; Alvarez, M.A.; Martín, C.; Valls, C.; Nevado, L.; Rodriguez, A.; Casaño, J.; Martínez, F.; Gómez, P. Assessment of hematologic progenitor engraftment by complete reticulocyte maturation parameters after autologous and allogeneic hematopoietic stem cell transplantation. Haematologica, 2001, 86(1), 24-29.
[PMID: 11146566]
[14]
Chang, C.C.; Kass, L. Clinical significance of immature reticulocyte fraction determined by automated reticulocyte counting. Am. J. Clin. Pathol., 1997, 108(1), 69-73.
[http://dx.doi.org/10.1093/ajcp/108.1.69] [PMID: 9208980]
[15]
Abdellatif, H. Circulating CD34+ hematopoietic stem/progenitor cells paralleled with level of viremia in patients chronically infected with hepatitis B virus. Regen. Med. Res., 2018, 6, 1.
[http://dx.doi.org/10.1051/rmr/170005] [PMID: 29461203]
[16]
Koenig, J.M.; Luttge, B.; Benson, N.A.; Christensen, R.D. Cell cycle status of CD34+ cells in human fetal bone marrow. Early Hum. Dev., 2001, 65(2), 159-163.
[http://dx.doi.org/10.1016/S0378-3782(01)00226-2] [PMID: 11641036]
[17]
Bonetti, D.; Longhese, M.P. Analysis of De Novo Telomere Addition by Southern Blot. Methods Mol. Biol., 2018, 1672, 363-373.
[http://dx.doi.org/10.1007/978-1-4939-7306-4_25] [PMID: 29043636]
[18]
Xu, X.; Chen, X.; Zhang, X.; Liu, Y.; Wang, Z.; Wang, P.; Du, Y.; Qin, Y.; Chen, Z.J. Impaired telomere length and telomerase activity in peripheral blood leukocytes and granulosa cells in patients with biochemical primary ovarian insufficiency. Hum. Reprod., 2017, 32(1), 201-207.
[PMID: 27836977]
[19]
Kageoka, T. Reticulocyte as indication of the erythroid hematopoiesis: reticulocyte fractions in peripheral blood and bone marrow Rinsho Byori, 2001, 49(5), 485-489.
[PMID: 11402570]
[20]
Werner, B.; Beier, F.; Hummel, S.; Balabanov, S.; Lassay, L.; Orlikowsky, T.; Dingli, D.; Brümmendorf, T.H.; Traulsen, A. Reconstructing the in vivo dynamics of hematopoietic stem cells from telomere length distributions. eLife, 2015, 4, 4.
[http://dx.doi.org/10.7554/eLife.08687] [PMID: 26468615]
[21]
Kawaguchi, Y.; Nomi, T.; Fuks, D.; Mal, F.; Kokudo, N.; Gayet, B. Hemorrhage control for laparoscopic hepatectomy: technical details and predictive factors for intraoperative blood loss. Surg. Endosc., 2016, 30(6), 2543-2551.
[http://dx.doi.org/10.1007/s00464-015-4520-3] [PMID: 26310533]
[22]
Yoshida, H.; Taniai, N.; Yoshioka, M.; Hirakata, A.; Kawano, Y.; Shimizu, T.; Ueda, J.; Takata, H.; Nakamura, Y.; Mamada, Y. Current Status of Laparoscopic Hepatectomy. J. Nippon Med. Sch., 2019, 86(4), 201-206.
[http://dx.doi.org/10.1272/jnms.JNMS.2019_86-411] [PMID: 31204380]
[23]
Kim, J.L.; Park, J.H.; Han, S.B.; Cho, I.Y.; Jang, K.M. Allogeneic blood transfusion is a significant risk factor for surgical-site infection following total hip and knee arthroplasty: a meta-analysis. J. Arthroplasty, 2017, 32(1), 320-325.
[http://dx.doi.org/10.1016/j.arth.2016.08.026] [PMID: 27682006]
[24]
Ding, J.; Hua, K.; Chen, H.; Yang, D.; Wang, L. The effect of pre-operative autologous blood donation self-transfusion on hormone and postpartum convalescence in Lying-in women. Int. J. Clin. Exp. Med., 2015, 8(3), 4515-4520.
[PMID: 26064377]
[25]
Furuta, Y.; Nakamura, Y.; Tokida, M.; Ichikawa, K.; Ohsawa, T.; Ohkubo, M.; Ohsaka, A. Pre-operative autologous blood donation and transfusion-related adverse reactions: A 14-year experience at a university hospital. Transfus. Apheresis Sci., 2018, 57(5), 651-655.
[http://dx.doi.org/10.1016/j.transci.2018.07.016] [PMID: 30078740]
[26]
Jakovina Blazekovic, S.; Bicanic, G.; Hrabac, P.; Tripkovic, B.; Delimar, D. Pre-operative autologous blood donation versus no blood donation in total knee arthroplasty: a prospective randomised trial. Int. Orthop., 2014, 38(2), 341-346.
[http://dx.doi.org/10.1007/s00264-013-2185-x] [PMID: 24305788]
[27]
Domenech, J.; Linassier, C.; Gihana, E.; Dayan, A.; Truglio, D.; Bout, M.; Petitdidier, C.; Delain, M.; Petit, A.; Brémond, J.L. Prolonged impairment of hematopoiesis after high-dose therapy followed by autologous bone marrow transplantation. Blood, 1995, 85(11), 3320-3327.
[http://dx.doi.org/10.1182/blood.V85.11.3320.bloodjournal85113320] [PMID: 7756665]
[28]
Jillella, A.P.; Ustun, C. What is the optimum number of CD34+ peripheral blood stem cells for an autologous transplant? Stem Cells Dev., 2004, 13(6), 598-606.
[http://dx.doi.org/10.1089/scd.2004.13.598] [PMID: 15684827]
[29]
Hirose, A.; Yamane, T.; Shibata, H.; Kamitani, T.; Hino, M. Automated analyzer evaluation of reticulocytes in bone marrow and peripheral blood of hematologic disorders. Acta Haematol., 2005, 114(3), 141-145.
[http://dx.doi.org/10.1159/000087887] [PMID: 16227676]
[30]
Shi, X.; Zhou, L.; Mao, W. Parameters of peripheral reticulocytes in assessment of perioperative liver function in liver transplantation patients; Zhejiang Med J, 2014, pp. 1608-1611.

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy