Generic placeholder image

Current Molecular Medicine

Editor-in-Chief

ISSN (Print): 1566-5240
ISSN (Online): 1875-5666

Review Article

The Roles of Mitochondrial Dysfunction and Reactive Oxygen Species in Aging and Senescence

Author(s): Aliabbas Zia, Tahereh Farkhondeh, Ali Mohammad Pourbagher-Shahri and Saeed Samarghandian*

Volume 22, Issue 1, 2022

Published on: 18 February, 2021

Page: [37 - 49] Pages: 13

DOI: 10.2174/1566524021666210218112616

Price: $65

Abstract

The aging process deteriorates organs' function at different levels, causing its progressive decline to resist stress, damage, and disease. In addition to alterations in metabolic control and gene expression, the rate of aging has been connected with the generation of high amounts of Reactive Oxygen Species (ROS). The essential perspective in free radical biology is that reactive oxygen species (ROS) and free radicals are toxic, mostly cause direct biological damage to targets, and are thus a major cause of oxidative stress. Different enzymatic and non-enzymatic compounds in the cells have roles in neutralizing this toxicity. Oxidative damage in aging is mostly high in particular molecular targets, such as mitochondrial DNA and aconitase, and oxidative stress in mitochondria can cause tissue aging across intrinsic apoptosis. Mitochondria's function and morphology are impaired through aging, following a decrease in the membrane potential by an increase in peroxide generation and size of the organelles. Telomeres may be the significant trigger of replicative senescence. Oxidative stress accelerates telomere loss, whereas antioxidants slow it down. Oxidative stress is a crucial modulator of telomere shortening, and that telomere-driven replicative senescence is mainly a stress response. The age-linked mitochondrial DNA mutation and protein dysfunction aggregate in some organs like the brain and skeletal muscle, thus contributing considerably to these post-mitotic tissues' aging. The aging process is mostly due to accumulated damage done by harmful species in some macromolecules such proteins, DNA, and lipids. The degradation of non-functional, oxidized proteins is a crucial part of the antioxidant defenses of cells, in which the clearance of these proteins occurs through autophagy in the cells, which is known as mitophagy for mitochondria.

Keywords: Mitochondrial dysfunction, reactive oxygen species, aging, senescente, oxidation stress, apoptosis.

[1]
Harraan D. Aging: a theory based on free radical and radiation chemistry 1955.
[2]
Uttara B, Singh AV, Zamboni P, Mahajan RT. Oxidative stress and neurodegenerative diseases: A review of upstream and downstream antioxidant therapeutic options. Curr Neuropharmacol 2009; 7(1): 65-74.
[http://dx.doi.org/10.2174/157015909787602823] [PMID: 19721819]
[3]
Phaniendra A, Jestadi DB, Periyasamy L. Free radicals: properties, sources, targets, and their implication in various diseases. Indian J Clin Biochem 2015; 30(1): 11-26.
[http://dx.doi.org/10.1007/s12291-014-0446-0] [PMID: 25646037]
[4]
Ozcan A, Ogun M. Biochemistry of reactive oxygen and nitrogen species Basic principles and clinical significance of oxidative stress 2015; 3: 37-58
[http://dx.doi.org/10.5772/61193]
[5]
Pizzino G, Irrera N, Cucinotta M, et al. Oxidative stress: harms and benefits for human health Oxid Med Cell Longev 2017; 2017
[http://dx.doi.org/10.1155/2017/8416763] [PMID: 28819546]
[6]
He S, Sharpless NE. Senescence in health and disease. Cell 2017; 169(6): 1000-11.
[http://dx.doi.org/10.1016/j.cell.2017.05.015] [PMID: 28575665]
[7]
Matsumoto R, Takahashi Y. Telomeres and Cellular Senescence in Metabolic and Endocrine Diseases. Telomere 2016; 143.
[http://dx.doi.org/10.5772/64759]
[8]
Peroni LA, Ferreira RR, Figueira A, Machado MA, Stach-Machado DR. Expression profile of oxidative and antioxidative stress enzymes based on ESTs approach of citrus. Genet Mol Biol 2007; 30(3): 872-80.
[http://dx.doi.org/10.1590/S1415-47572007000500016]
[9]
Turrens JF. Mitochondrial formation of reactive oxygen species. J Physiol 2003; 552(Pt 2): 335-44.
[http://dx.doi.org/10.1113/jphysiol.2003.049478] [PMID: 14561818]
[10]
Stefanatos R, Sanz A. The role of mitochondrial ROS in the aging brain. FEBS Lett 2018; 592(5): 743-58.
[http://dx.doi.org/10.1002/1873-3468.12902] [PMID: 29106705]
[11]
Shigenaga MK, Hagen TM, Ames BN. Oxidative damage and mitochondrial decay in aging. Proc Natl Acad Sci USA 1994; 91(23): 10771-8.
[http://dx.doi.org/10.1073/pnas.91.23.10771] [PMID: 7971961]
[12]
Toscano A, Musumeci O. Mitochondrial disorders in adults. Curr Mol Med 2014; 14(8): 1001-8.
[http://dx.doi.org/10.2174/1566524014666141010152340] [PMID: 28315632]
[13]
Richter C, Park JW, Ames BN. Normal oxidative damage to mitochondrial and nuclear DNA is extensive. Proc Natl Acad Sci USA 1988; 85(17): 6465-7.
[http://dx.doi.org/10.1073/pnas.85.17.6465] [PMID: 3413108]
[14]
Lopez-Otin C, Blasco MA, Partridge L, Serrano M, Kroemer G. The hallmarks of aging. Cell 2013; 153(6): 1194-217.
[15]
Stauch KL, Purnell PR, Fox HS. Quantitative proteomics of synaptic and nonsynaptic mitochondria: insights for synaptic mitochondrial vulnerability. J Proteome Res 2014; 13(5): 2620-36.
[http://dx.doi.org/10.1021/pr500295n] [PMID: 24708184]
[16]
Navarro A, Boveris A. Rat brain and liver mitochondria develop oxidative stress and lose enzymatic activities on aging. Am J Physiol Regul Integr Comp Physiol 2004; 287(5): R1244-9.
[http://dx.doi.org/10.1152/ajpregu.00226.2004] [PMID: 15271654]
[17]
Scial F, Sriram A. Fern?ndez-Ayala D, et al Mitochondrial ROS produced via reverse electron transport extend animal lifespan. Cell Metab 2016; 23(4): 725-34.
[18]
Hiona A, Sanz A, Kujoth GC, et al. Mitochondrial DNA mutations induce mitochondrial dysfunction, apoptosis and sarcopenia in skeletal muscle of mitochondrial DNA mutator mice. PLoS One 2010; 5(7)
[http://dx.doi.org/10.1371/journal.pone.0011468] [PMID: 20628647]
[19]
Bulteau AL, Szweda LI, Friguet B. Mitochondrial protein oxidation and degradation in response to oxidative stress and aging. Exp Gerontol 2006; 41(7): 653-7.
[http://dx.doi.org/10.1016/j.exger.2006.03.013] [PMID: 16677792]
[20]
Page MM, Robb EL, Salway KD, Stuart JA. Mitochondrial redox metabolism: aging, longevity and dietary effects. Mech Ageing Dev 2010; 131(4): 242-52.
[http://dx.doi.org/10.1016/j.mad.2010.02.005] [PMID: 20219522]
[21]
Rohrbach S, Gruenler S, Teschner M, Holtz J. The thioredoxin system in aging muscle: key role of mitochondrial thioredoxin reductase in the protective effects of caloric restriction? Am J Physiol Regul Integr Comp Physiol 2006; 291(4): R927-35.
[http://dx.doi.org/10.1152/ajpregu.00890.2005] [PMID: 16675629]
[22]
Svensson MJ, Larsson J. Thioredoxin-2 affects lifespan and oxidative stress in Drosophila. Hereditas 2007; 144(1): 25-32.
[http://dx.doi.org/10.1111/j.2007.0018-0661.01990.x] [PMID: 17567437]
[23]
Ngo JK, Davies KJ. Importance of the lon protease in mitochondrial maintenance and the significance of declining lon in aging. Ann N Y Acad Sci 2007; 1119(1): 78-87.
[http://dx.doi.org/10.1196/annals.1404.015] [PMID: 18056957]
[24]
Ahmed S, Passos JF, Birket MJ, et al. Telomerase does not counteract telomere shortening but protects mitochondrial function under oxidative stress. J Cell Sci 2008; 121(Pt 7): 1046-53.
[http://dx.doi.org/10.1242/jcs.019372] [PMID: 18334557]
[25]
Neiman M, Taylor DR. The causes of mutation accumulation in mitochondrial genomes. Proc Biol Sci 2009; 276(1660): 1201-9.
[http://dx.doi.org/10.1098/rspb.2008.1758] [PMID: 19203921]
[26]
Cottrell DA, Blakely EL, Johnson MA, Ince PG, Borthwick GM, Turnbull DM. Cytochrome c oxidase deficient cells accumulate in the hippocampus and choroid plexus with age. Neurobiol Aging 2001; 22(2): 265-72.
[http://dx.doi.org/10.1016/S0197-4580(00)00234-7] [PMID: 11182476]
[27]
Fayet G, Jansson M, Sternberg D, et al. Ageing muscle: clonal expansions of mitochondrial DNA point mutations and deletions cause focal impairment of mitochondrial function. Neuromuscul Disord 2002; 12(5): 484-93.
[http://dx.doi.org/10.1016/S0960-8966(01)00332-7] [PMID: 12031622]
[28]
Cortopassi GA, Arnheim N. Detection of a specific mitochondrial DNA deletion in tissues of older humans. Nucleic Acids Res 1990; 18(23): 6927-33.
[http://dx.doi.org/10.1093/nar/18.23.6927] [PMID: 2263455]
[29]
Kujoth GC, Hiona A, Pugh TD, et al. Mitochondrial DNA mutations, oxidative stress, and apoptosis in mammalian aging. Science 2005; 309(5733): 481-4.
[http://dx.doi.org/10.1126/science.1112125] [PMID: 16020738]
[30]
Vermulst M, Bielas JH, Kujoth GC, et al. Mitochondrial point mutations do not limit the natural lifespan of mice. Nat Genet 2007; 39(4): 540-3.
[http://dx.doi.org/10.1038/ng1988] [PMID: 17334366]
[31]
Reddy PH. Mitochondrial medicine for aging and neurodegenerative diseases. Neuromolecular Med 2008; 10(4): 291-315.
[http://dx.doi.org/10.1007/s12017-008-8044-z] [PMID: 18566920]
[32]
Trifunovic A, Wredenberg A, Falkenberg M, et al. Premature ageing in mice expressing defective mitochondrial DNA polymerase. Nature 2004; 429(6990): 417-23.
[http://dx.doi.org/10.1038/nature02517] [PMID: 15164064]
[33]
Cooper JM, Mann VM, Schapira AHV. Analyses of mitochondrial respiratory chain function and mitochondrial DNA deletion in human skeletal muscle: Effect of ageing. J Neurol Sci 1992; 113(1): 91-8.
[http://dx.doi.org/10.1016/0022-510X(92)90270-U] [PMID: 1469460]
[34]
Lu T, Pan Y, Kao SY, et al. Gene regulation and DNA damage in the ageing human brain. Nature 2004; 429(6994): 883-91.
[http://dx.doi.org/10.1038/nature02661] [PMID: 15190254]
[35]
Wang AL, Lukas TJ, Yuan M, Neufeld AH. Age-related increase in mitochondrial DNA damage and loss of DNA repair capacity in the neural retina. Neurobiol Aging 2010; 31(11): 2002-10.
[http://dx.doi.org/10.1016/j.neurobiolaging.2008.10.019] [PMID: 19084291]
[36]
Schriner S E, Linford N J, Martin G M, et al. Extension of murine life span by overexpression of catalase targeted to mitochondria science 2005; 308(5730): 1909-11
[37]
Ahlqvist KJ, Leoncini S, Pecorelli A, et al. MtDNA mutagenesis impairs elimination of mitochondria during erythroid maturation leading to enhanced erythrocyte destruction. Nat Commun 2015; 6: 6494.
[http://dx.doi.org/10.1038/ncomms7494] [PMID: 25751021]
[38]
Parkinson GM, Dayas CV, Smith DW. Increased mitochondrial DNA deletions in substantia nigra dopamine neurons of the aged rat. Curr Aging Sci 2014; 7(3): 155-60.
[http://dx.doi.org/10.2174/1874609808666150122150850] [PMID: 25612740]
[39]
Xie Z, Klionsky DJ. Autophagosome formation: core machinery and adaptations. Nat Cell Biol 2007; 9(10): 1102-9.
[http://dx.doi.org/10.1038/ncb1007-1102] [PMID: 17909521]
[40]
Kim I, Rodriguez-Enriquez S, Lemasters JJ. Selective degradation of mitochondria by mitophagy. Arch Biochem Biophys 2007; 462(2): 245-53.
[http://dx.doi.org/10.1016/j.abb.2007.03.034] [PMID: 17475204]
[41]
Lemasters JJ. Selective mitochondrial autophagy, or mitophagy, as a targeted defense against oxidative stress, mitochondrial dysfunction, and aging. Rejuvenation Res 2005; 8(1): 3-5.
[http://dx.doi.org/10.1089/rej.2005.8.3] [PMID: 15798367]
[42]
Nowikovsky K, Reipert S, Devenish RJ, Schweyen RJ. Mdm38 protein depletion causes loss of mitochondrial K+/H+ exchange activity, osmotic swelling and mitophagy. Cell Death Differ 2007; 14(9): 1647-56.
[http://dx.doi.org/10.1038/sj.cdd.4402167] [PMID: 17541427]
[43]
Kissov? I, Deffieu M, Manon S, Camougrand N. Uth1p is involved in the autophagic degradation of mitochondria. Journal of Biological Chemistry 2004; 279(37): 39068-74.
[44]
Kanki T, Klionsky DJ. Mitophagy in yeast occurs through a selective mechanism. J Biol Chem 2008; 283(47): 32386-93.
[http://dx.doi.org/10.1074/jbc.M802403200] [PMID: 18818209]
[45]
Kanki T, Wang K, Cao Y, Baba M, Klionsky DJ. Atg32 is a mitochondrial protein that confers selectivity during mitophagy. Dev Cell 2009; 17(1): 98-109.
[http://dx.doi.org/10.1016/j.devcel.2009.06.014] [PMID: 19619495]
[46]
Kanki T, Klionsky DJ. Atg32 is a tag for mitochondria degradation in yeast. Autophagy 2009; 5(8): 1201-2.
[http://dx.doi.org/10.4161/auto.5.8.9747] [PMID: 19736522]
[47]
Okamoto K, Kondo-Okamoto N, Ohsumi Y. A landmark protein essential for mitophagy: Atg32 recruits the autophagic machinery to mitochondria. Autophagy 2009; 5(8): 1203-5.
[http://dx.doi.org/10.4161/auto.5.8.9830] [PMID: 19770589]
[48]
Weber TA, Reichert AS. Impaired quality control of mitochondria: aging from a new perspective. Exp Gerontol 2010; 45(7-8): 503-11.
[http://dx.doi.org/10.1016/j.exger.2010.03.018] [PMID: 20451598]
[49]
Novak I, Kirkin V, McEwan DG, et al. Nix is a selective autophagy receptor for mitochondrial clearance. EMBO Rep 2010; 11(1): 45-51.
[http://dx.doi.org/10.1038/embor.2009.256] [PMID: 20010802]
[50]
Chen YF, Kao CH, Chen YT, et al. Cisd2 deficiency drives premature aging and causes mitochondria-mediated defects in mice. Genes Dev 2009; 23(10): 1183-94.
[http://dx.doi.org/10.1101/gad.1779509] [PMID: 19451219]
[51]
Koppen M, Langer T. Protein degradation within mitochondria: versatile activities of AAA proteases and other peptidases. Crit Rev Biochem Mol Biol 2007; 42(3): 221-42.
[http://dx.doi.org/10.1080/10409230701380452] [PMID: 17562452]
[52]
Luce K, Osiewacz HD. Increasing organismal healthspan by enhancing mitochondrial protein quality control. Nat Cell Biol 2009; 11(7): 852-8.
[http://dx.doi.org/10.1038/ncb1893] [PMID: 19543272]
[53]
Schiavi A, Torgovnick A, Kell A, et al. Autophagy induction extends lifespan and reduces lipid content in response to frataxin silencing in C. elegans. Exp Gerontol 2013; 48(2): 191-201.
[http://dx.doi.org/10.1016/j.exger.2012.12.002] [PMID: 23247094]
[54]
Birben E, Sahiner UM, Sackesen C, Erzurum S, Kalayci O. Oxidative stress and antioxidant defense. World Allergy Organ J 2012; 5(1): 9-19.
[http://dx.doi.org/10.1097/WOX.0b013e3182439613] [PMID: 23268465]
[55]
Di Meo S, Reed TT, Venditti P, Victor VM. Role of ROS and RNS sources in physiological and pathological conditionsOxid Med Cell Longev 2016; 2016
[http://dx.doi.org/10.1155/2016/1245049] [PMID: 27478531]
[56]
Cenini G, Lloret A, Cascella R. Oxidative stress in neurodegenerative diseases: from a mitochondrial point of viewOxid Med Cell Longev 2019; 2019
[http://dx.doi.org/10.1155/2019/2105607] [PMID: 31210837]
[57]
Whitaker AM, Schaich MA, Smith MR, Flynn TS, Freudenthal BD. Base excision repair of oxidative DNA damage: from mechanism to disease. Front Biosci 2017; 22: 1493-522.
[http://dx.doi.org/10.2741/4555] [PMID: 28199214]
[58]
Aguiar PH, Furtado C, Repolês BM, et al. Oxidative stress and DNA lesions: the role of 8-oxoguanine lesions in Trypanosoma cruzi cell viability. PLoS Negl Trop Dis 2013; 7(6)
[http://dx.doi.org/10.1371/journal.pntd.0002279] [PMID: 23785540]
[59]
Herrero A, Barja G. 8-oxo-deoxyguanosine levels in heart and brain mitochondrial and nuclear DNA of two mammals and three birds in relation to their different rates of aging. Aging (Milano) 1999; 11(5): 294-300.
[http://dx.doi.org/10.1007/BF03339803] [PMID: 10631878]
[60]
Hiona A, Leeuwenburgh C. The role of mitochondrial DNA mutations in aging and sarcopenia: implications for the mitochondrial vicious cycle theory of aging. Exp Gerontol 2008; 43(1): 24-33.
[http://dx.doi.org/10.1016/j.exger.2007.10.001] [PMID: 17997255]
[61]
Leon J, Sakumi K, Castillo E, Sheng Z, Oka S, Nakabeppu Y. 8-Oxoguanine accumulation in mitochondrial DNA causes mitochondrial dysfunction and impairs neuritogenesis in cultured adult mouse cortical neurons under oxidative conditions. Sci Rep 2016; 6: 22086.
[http://dx.doi.org/10.1038/srep22086] [PMID: 26912170]
[62]
Barja G, Herrero A. Oxidative damage to mitochondrial DNA is inversely related to maximum life span in the heart and brain of mammals. FASEB J 2000; 14(2): 312-8.
[http://dx.doi.org/10.1096/fasebj.14.2.312] [PMID: 10657987]
[63]
Fleming JE, Quattrocki E, Latter G, et al. Age-dependent changes in proteins of Drosophila melanogaster. Science 1986; 231(4742): 1157-9.
[http://dx.doi.org/10.1126/science.3080809] [PMID: 3080809]
[64]
Himmelfarb J, McMonagle E, McMenamin E. Plasma protein thiol oxidation and carbonyl formation in chronic renal failure. Kidney Int 2000; 58(6): 2571-8.
[http://dx.doi.org/10.1046/j.1523-1755.2000.00443.x] [PMID: 11115093]
[65]
Ryan BJ, Nissim A, Winyard PG. Oxidative post-translational modifications and their involvement in the pathogenesis of autoimmune diseases. Redox Biol 2014; 2: 715-24.
[http://dx.doi.org/10.1016/j.redox.2014.05.004] [PMID: 24955328]
[66]
Yan LJ, Levine RL, Sohal RS. Oxidative damage during aging targets mitochondrial aconitase. Proc Natl Acad Sci USA 1997; 94(21): 11168-72.
[http://dx.doi.org/10.1073/pnas.94.21.11168] [PMID: 9326580]
[67]
Nystr?m T Role of oxidative carbonylation in protein quality control and senescence The EMBO journal 2005; 24(7): 1311-7
[68]
Forster MJ, Sohal BH, Sohal RS. Reversible effects of long-term caloric restriction on protein oxidative damage. J Gerontol A Biol Sci Med Sci 2000; 55(11): B522-9.
[http://dx.doi.org/10.1093/gerona/55.11.B522] [PMID: 11078084]
[69]
Martinez M, Weisel JW, Ischiropoulos H. Functional impact of oxidative posttranslational modifications on fibrinogen and fibrin clots. Free Radic Biol Med 2013; 65: 411-8.
[http://dx.doi.org/10.1016/j.freeradbiomed.2013.06.039] [PMID: 23851017]
[70]
Yin H, Xu L, Porter NA. Free radical lipid peroxidation: mechanisms and analysis. Chem Rev 2011; 111(10): 5944-72.
[http://dx.doi.org/10.1021/cr200084z] [PMID: 21861450]
[71]
Naudi A, Jové M, Ayala V, Portero-Otin Barja G, Pamplona R. Membrane lipid unsaturation as physiological adaptation to animal longevity. Frontiers in physiology 2013; 4: 372.
[72]
Naud? A, Jové M, Ayala V, Portero-Otin Barja, G, Pamplona R. Regulation of membrane unsaturation as antioxidant adaptive mechanism in long-lived animal species. Free Radic Antioxid 2011; 1(3): 3-12.
[73]
Ayala A. Munoz, M. F., Argüelles, S. Lipid peroxidation: production, metabolism, and signaling mechanisms of malondialdehyde and 4-hydroxy-2-nonenal. Oxid Med Cell Longev 2014.
[http://dx.doi.org/10.1155/2014/360438]
[74]
Niki E. Lipid peroxidation: physiological levels and dual biological effects. Free Radic Biol Med 2009; 47(5): 469-84.
[http://dx.doi.org/10.1016/j.freeradbiomed.2009.05.032] [PMID: 19500666]
[75]
Hayflick L, Moorhead PS. The serial cultivation of human diploid cell strains. Exp Cell Res 1961; 25(3): 585-621.
[http://dx.doi.org/10.1016/0014-4827(61)90192-6] [PMID: 13905658]
[76]
Marcotte R, Wang E. Replicative senescence revisited. J Gerontol A Biol Sci Med Sci 2002; 57(7): B257-69.
[http://dx.doi.org/10.1093/gerona/57.7.B257] [PMID: 12084796]
[77]
Prieur A, Besnard E, Babled A, Lemaitre JM. p53 and p16(INK4A) independent induction of senescence by chromatin-dependent alteration of S-phase progression. Nat Commun 2011; 2(1): 473.
[http://dx.doi.org/10.1038/ncomms1473] [PMID: 21915115]
[78]
Chen JH, Hales CN, Ozanne SE. DNA damage, cellular senescence and organismal ageing: Causal or correlative? Nucleic Acids Res 2007; 35(22): 7417-28.
[http://dx.doi.org/10.1093/nar/gkm681] [PMID: 17913751]
[79]
Ott C, Jung T, Grune T, Höhn A. SIPS as a model to study age-related changes in proteolysis and aggregate formation. Mech Ageing Dev 2018; 170: 72-81.
[http://dx.doi.org/10.1016/j.mad.2017.07.007] [PMID: 28755850]
[80]
Raghuram GV, Mishra PK. Stress induced premature senescence: A new culprit in ovarian tumorigenesis? Indian J Med Res 2014; 140(Suppl.): S120-9.
[PMID: 25673532]
[81]
Vergel M, Marin JJ, Estevez P, Carnero A. Cellular senescence as a target in cancer control. J Aging Res 2010; 2011725365
[http://dx.doi.org/10.4061/2011/725365] [PMID: 21234095]
[82]
Lee S, Lee JS. Cellular senescence: a promising strategy for cancer therapy. BMB Rep 2019; 52(1): 35-41.
[http://dx.doi.org/10.5483/BMBRep.2019.52.1.294] [PMID: 30526771]
[83]
Itahana K, Itahana Y, Dimri GP. Colorimetric detection of senescence-associated? galactosidaseCell Senescence. Totowa, NJ: Humana Press 2013; pp. 143-56.
[http://dx.doi.org/10.1007/978-1-62703-239-1_8]
[84]
Correia-Melo C, Marques FD, Anderson R, et al. Mitochondria are required for pro-ageing features of the senescent phenotype. EMBO J 2016; 35(7): 724-42.
[85]
Georgakopoulou EA, Tsimaratou K, Evangelou K, et al. Specific lipofuscin staining as a novel biomarker to detect replicative and stress-induced senescence. A method applicable in cryo-preserved and archival tissues. Aging (Albany NY) 2013; 5(1): 37-50.
[http://dx.doi.org/10.18632/aging.100527] [PMID: 23449538]
[86]
Davis T, Kipling D. Telomeres and telomerase biology in vertebrates: Progress towards a non-human model for replicative senescence and ageing. Biogerontology 2005; 6(6): 371-85.
[http://dx.doi.org/10.1007/s10522-005-4901-4] [PMID: 16518699]
[87]
Tian X, Chen B, Liu X. Telomere and telomerase as targets for cancer therapy. Appl Biochem Biotechnol 2010; 160(5): 1460-72.
[http://dx.doi.org/10.1007/s12010-009-8633-9] [PMID: 19412578]
[88]
Lu W, Zhang Y, Liu D, Songyang Z, Wan M. Telomeres-structure, function, and regulation. Exp Cell Res 2013; 319(2): 133-41.
[http://dx.doi.org/10.1016/j.yexcr.2012.09.005] [PMID: 23006819]
[89]
Kawanishi S, Oikawa S. Mechanism of telomere shortening by oxidative stress. Ann N Y Acad Sci 2004; 1019(1): 278-84.
[http://dx.doi.org/10.1196/annals.1297.047] [PMID: 15247029]
[90]
Barnes RP, Fouquerel E, Opresko PL. The impact of oxidative DNA damage and stress on telomere homeostasis. Mech Ageing Dev 2019; 177: 37-45.
[http://dx.doi.org/10.1016/j.mad.2018.03.013] [PMID: 29604323]
[91]
von Zglinicki T, Saretzki G, Döcke W, Lotze C. Mild hyperoxia shortens telomeres and inhibits proliferation of fibroblasts: A model for senescence? Exp Cell Res 1995; 220(1): 186-93.
[http://dx.doi.org/10.1006/excr.1995.1305] [PMID: 7664835]
[92]
von Zglinicki T, Pilger R, Sitte N. Accumulation of single-strand breaks is the major cause of telomere shortening in human fibroblasts. Free Radic Biol Med 2000; 28(1): 64-74.
[http://dx.doi.org/10.1016/S0891-5849(99)00207-5] [PMID: 10656292]
[93]
Gonzalez-Hunt CP, Wadhwa M, Sanders LH. DNA damage by oxidative stress: Measurement strategies for two genomes. Curr Opin Toxicol 2018; 7: 87-94.
[http://dx.doi.org/10.1016/j.cotox.2017.11.001]
[94]
Van Houten B, Santa-Gonzalez GA, Camargo M. DNA repair after oxidative stress: Current challenges. Curr Opin Toxicol 2018; 7: 9-16.
[http://dx.doi.org/10.1016/j.cotox.2017.10.009] [PMID: 29159324]
[95]
Coluzzi E, Colamartino M, Cozzi R, et al. Oxidative stress induces persistent telomeric DNA damage responsible for nuclear morphology change in mammalian cells. PLoS One 2014; 9(10)
[http://dx.doi.org/10.1371/journal.pone.0110963] [PMID: 25354277]
[96]
Coluzzi E, Leone S, Sgura A. Oxidative stress induces telomere dysfunction and senescence by replication fork arrest. Cells 2019; 8(1): 19.
[http://dx.doi.org/10.3390/cells8010019] [PMID: 30609792]
[97]
Lee HT, Bose A, Lee CY, Opresko PL, Myong S. Molecular mechanisms by which oxidative DNA damage promotes telomerase activity. Nucleic Acids Res 2017; 45(20): 11752-65.
[http://dx.doi.org/10.1093/nar/gkx789] [PMID: 28981887]
[98]
North BJ, Verdin E. Sirtuins: Sir2-related NAD-dependent protein deacetylases. Genome Biol 2004; 5(5): 224.
[http://dx.doi.org/10.1186/gb-2004-5-5-224] [PMID: 15128440]
[99]
Kaeberlein M, McVey M, Guarente L. The SIR2/3/4 complex and SIR2 alone promote longevity in Saccharomyces cerevisiae by two different mechanisms. Genes Dev 1999; 13(19): 2570-80.
[http://dx.doi.org/10.1101/gad.13.19.2570] [PMID: 10521401]
[100]
Smith JT, White JW, Dungrawala H, Hua H, Schneider BL. Yeast lifespan variation correlates with cell growth and SIR2 expression. PLoS One 2018; 13(7)
[http://dx.doi.org/10.1371/journal.pone.0200275] [PMID: 29979754]
[101]
Chen H, Liu X, Zhu W, et al. SIRT1 ameliorates age-related senescence of mesenchymal stem cells via modulating telomere shelterin. Front Aging Neurosci 2014; 6: 103.
[http://dx.doi.org/10.3389/fnagi.2014.00103] [PMID: 24917814]
[102]
Hayakawa T, Iwai M, Aoki S, et al. SIRT1 suppresses the senescence-associated secretory phenotype through epigenetic gene regulation. PLoS One 2015; 10(1)e0116480
[http://dx.doi.org/10.1371/journal.pone.0116480] [PMID: 25635860]
[103]
Peck B, Chen CY, Ho KK, et al. SIRT inhibitors induce cell death and p53 acetylation through targeting both SIRT1 and SIRT2. Mol Cancer Ther 2010; 9(4): 844-55.
[http://dx.doi.org/10.1158/1535-7163.MCT-09-0971] [PMID: 20371709]
[104]
Hoffmann G, Breitenbücher F, Schuler M, Ehrenhofer-Murray AE. A novel sirtuin 2 (SIRT2) inhibitor with p53-dependent pro-apoptotic activity in non-small cell lung cancer. J Biol Chem 2014; 289(8): 5208-16.
[http://dx.doi.org/10.1074/jbc.M113.487736] [PMID: 24379401]
[105]
Samarghandian S, Farkhondeh T, Azimi-Nezhad M. Protective effects of chrysin against drugs and toxic agents. Dose Response 2017; 15(2)
[http://dx.doi.org/10.1177/1559325817711782] [PMID: 28694744]
[106]
Benayoun BA, Caburet S, Veitia RA. Forkhead transcription factors: Key players in health and disease. Trends Genet 2011; 27(6): 224-32.
[http://dx.doi.org/10.1016/j.tig.2011.03.003] [PMID: 21507500]
[107]
Hannenhalli S, Kaestner KH. The evolution of Fox genes and their role in development and disease. Nat Rev Genet 2009; 10(4): 233-40.
[http://dx.doi.org/10.1038/nrg2523] [PMID: 19274050]
[108]
Uno M, Nishida E. Lifespan-regulating genes in C. elegans. NPJ Aging Mech Dis 2016; 2(1): 16010.
[http://dx.doi.org/10.1038/npjamd.2016.10] [PMID: 28721266]
[109]
Yen K, Narasimhan S D, Tissenbaum H A. DAF-16/Forkhead box O transcription factor: many paths to a single Fork (head) in the road Antioxidants & redox signaling 2011; 14(4): 623- 34
[110]
Lund J, Tedesco P, Duke K, Wang J, Kim SK, Johnson TE. Transcriptional profile of aging in C. elegans. Curr Biol 2002; 12(18): 1566-73.
[http://dx.doi.org/10.1016/S0960-9822(02)01146-6] [PMID: 12372248]
[111]
Callahan A, Cifuentes JJ, Dumontier M. An evidence-based approach to identify aging-related genes in Caenorhabditis elegans. BMC Bioinforma 2015; 16(1): 40.
[http://dx.doi.org/10.1186/s12859-015-0469-4] [PMID: 25888240]
[112]
Zhao L, Zhao Y, Liu R, et al. The transcription factor DAF-16 is essential for increased longevity in C. elegans exposed to Bifidobacterium longum BB68. Sci Rep 2017; 7(1): 7408.
[http://dx.doi.org/10.1038/s41598-017-07974-3] [PMID: 28785042]
[113]
Senchuk MM, Dues DJ, Schaar CE, et al. Activation of DAF-16/FOXO by reactive oxygen species contributes to longevity in long-lived mitochondrial mutants in Caenorhabditis elegans. PLoS Genet 2018; 14(3)
[http://dx.doi.org/10.1371/journal.pgen.1007268] [PMID: 29522556]
[114]
Akasaki Y, Alvarez-Garcia O, Saito M, Caramés B, Iwamoto Y, Lotz MK. FoxO transcription factors support oxidative stress resistance in human chondrocytes. Arthritis Rheumatol 2014; 66(12): 3349-58.
[http://dx.doi.org/10.1002/art.38868] [PMID: 25186470]
[115]
Tran H, Brunet A, Grenier JM, et al. DNA repair pathway stimulated by the forkhead transcription factor FOXO3a through the Gadd45 protein. Science 2002; 296(5567): 530-4.
[http://dx.doi.org/10.1126/science.1068712] [PMID: 11964479]
[116]
Furukawa-Hibi Y, Yoshida-Araki K, Ohta T, Ikeda K, Motoyama N. FOXO forkhead transcription factors induce G(2)-M checkpoint in response to oxidative stress. J Biol Chem 2002; 277(30): 26729-32.
[http://dx.doi.org/10.1074/jbc.C200256200] [PMID: 12048180]
[117]
Zhang S, Zhao Y, Xu M, et al. FoxO3a modulates hypoxia stress induced oxidative stress and apoptosis in cardiac microvascular endothelial cells. PLoS One 2013; 8(11)
[http://dx.doi.org/10.1371/journal.pone.0080342] [PMID: 24278276]
[118]
Ramsey JJ, Tran D, Giorgio M, et al. The influence of Shc proteins on life span in mice. J Gerontol A Biol Sci Med Sci 2014; 69(10): 1177-85.
[http://dx.doi.org/10.1093/gerona/glt198] [PMID: 24336818]
[119]
Ahmed SBM, Prigent SA. Insights into the Shc family of adaptor proteins. J Mol Signal 2017; 12: 2.
[http://dx.doi.org/10.5334/1750-2187-12-2] [PMID: 30210578]
[120]
Samarghandian S, Azimi-Nezhad M, Farkhondeh T. Immunomodulatory and antioxidant effects of saffron aqueous extract (Crocus sativus L.) on streptozotocin-induced diabetes in rats. Indian Heart J 2017; 69(2): 151-9.
[http://dx.doi.org/10.1016/j.ihj.2016.09.008] [PMID: 28460761]
[121]
Bhat SS, Anand D, Khanday FA. p66Shc as a switch in bringing about contrasting responses in cell growth: Implications on cell proliferation and apoptosis. Mol Cancer 2015; 14(1): 76.
[http://dx.doi.org/10.1186/s12943-015-0354-9] [PMID: 25890053]
[122]
Francia P. delli Gatti C, Bachschmid M, et al. Deletion of p66shc gene protects against age-related endothelial dysfunction. Circulation 2004; 110(18): 2889-95.
[http://dx.doi.org/10.1161/01.CIR.0000147731.24444.4D] [PMID: 15505103]
[123]
Betts DH, Bain NT, Madan P. The p66(Shc) adaptor protein controls oxidative stress response in early bovine embryos. PLoS One 2014; 9(1)
[http://dx.doi.org/10.1371/journal.pone.0086978] [PMID: 24475205]
[124]
Doe CQ. Neural stem cells: Balancing self-renewal with differentiation. Development 2008; 135(9): 1575-87.
[http://dx.doi.org/10.1242/dev.014977] [PMID: 18356248]
[125]
Signer RA, Morrison SJ. Mechanisms that regulate stem cell aging and life span. Cell Stem Cell 2013; 12(2): 152-65.
[http://dx.doi.org/10.1016/j.stem.2013.01.001] [PMID: 23395443]
[126]
Ho JH, Chen YF, Ma WH, Tseng TC, Chen MH, Lee OK. Cell contact accelerates replicative senescence of human mesenchymal stem cells independent of telomere shortening and p53 activation: Roles of Ras and oxidative stress. Cell Transplant 2011; 20(8): 1209-20.
[http://dx.doi.org/10.3727/0963689109X546562] [PMID: 21176396]
[127]
Borodkina A, Shatrova A, Abushik P, Nikolsky N, Burova E. Interaction between ROS dependent DNA damage, mitochondria and p38 MAPK underlies senescence of human adult stem cells. Aging (Albany NY) 2014; 6(6): 481-95.
[http://dx.doi.org/10.18632/aging.100673] [PMID: 24934860]
[128]
Kurz DJ, Decary S, Hong Y, Trivier E, Akhmedov A, Erusalimsky JD. Chronic oxidative stress compromises telomere integrity and accelerates the onset of senescence in human endothelial cells. J Cell Sci 2004; 117(Pt 11): 2417-26.
[http://dx.doi.org/10.1242/jcs.01097] [PMID: 15126641]
[129]
Anversa P, Kajstura J, Leri A, Bolli R. Life and death of cardiac stem cells: A paradigm shift in cardiac biology. Circulation 2006; 113(11): 1451-63.
[http://dx.doi.org/10.1161/CIRCULATIONAHA.105.595181] [PMID: 16549650]
[130]
Torella D, Rota M, Nurzynska D, et al. Cardiac stem cell and myocyte aging, heart failure, and insulin-like growth factor-1 overexpression. Circ Res 2004; 94(4): 514-24.
[http://dx.doi.org/10.1161/01.RES.0000117306.10142.50] [PMID: 14726476]
[131]
Ito K, Hirao A, Arai F, et al. Reactive oxygen species act through p38 MAPK to limit the lifespan of hematopoietic stem cells. Nat Med 2006; 12(4): 446-51.
[http://dx.doi.org/10.1038/nm1388] [PMID: 16565722]
[132]
Jung JW, Lee S, Seo MS, et al. Histone deacetylase controls adult stem cell aging by balancing the expression of polycomb genes and jumonji domain containing 3. Cell Mol Life Sci 2010; 67(7): 1165-76.
[http://dx.doi.org/10.1007/s00018-009-0242-9] [PMID: 20049504]
[133]
Imai S, Armstrong CM, Kaeberlein M, Guarente L. Transcriptional silencing and longevity protein Sir2 is an NAD-dependent histone deacetylase. Nature 2000; 403(6771): 795-800.
[http://dx.doi.org/10.1038/35001622] [PMID: 10693811]
[134]
Yuan HF, Zhai C, Yan XL, et al. SIRT1 is required for long-term growth of human mesenchymal stem cells. J Mol Med (Berl) 2012; 90(4): 389-400.
[http://dx.doi.org/10.1007/s00109-011-0825-4] [PMID: 22038097]
[135]
Fujimaki S, Wakabayashi T, Takemasa T, Asashima M, Kuwabara T. The regulation of stem cell aging by Wnt signaling. Histol Histopathol 2015; 30(12): 1411-30.
[PMID: 26322973]
[136]
Liu H, Fergusson MM, Castilho RM, et al. Augmented Wnt signaling in a mammalian model of accelerated aging. Science 2007; 317(5839): 803-6.
[http://dx.doi.org/10.1126/science.1143578] [PMID: 17690294]
[137]
Brack AS, Conboy MJ, Roy S, et al. Increased Wnt signaling during aging alters muscle stem cell fate and increases fibrosis. Science 2007; 317(5839): 807-10.
[http://dx.doi.org/10.1126/science.1144090] [PMID: 17690295]
[138]
Meshorer E, Gruenbaum Y. Gone with the Wnt/Notch: stem cells in laminopathies, progeria, and aging. J Cell Biol 2008; 181(1): 9-13.
[http://dx.doi.org/10.1083/jcb.200802155] [PMID: 18378774]
[139]
Zhang DY, Wang HJ, Tan YZ. Wnt/β-catenin signaling induces the aging of mesenchymal stem cells through the DNA damage response and the p53/p21 pathway. PLoS One 2011; 6(6)
[http://dx.doi.org/10.1371/journal.pone.0021397] [PMID: 21712954]
[140]
Zhou X. Mutation responsible for the mouse pygmy phenotype in the developmentally regulated factor HMGI-C.--p. 771-774 (No. HEM). Nature 1995; 376(6543): 771-4.
[http://dx.doi.org/10.1038/376771a0] [PMID: 7651535]
[141]
Nishino J, Kim I, Chada K, Morrison SJ. Hmga2 promotes neural stem cell self-renewal in young but not old mice by reducing p16Ink4a and p19Arf Expression. Cell 2008; 135(2): 227-39.
[http://dx.doi.org/10.1016/j.cell.2008.09.017] [PMID: 18957199]
[142]
Yu KR, Park SB, Jung JW, et al. HMGA2 regulates the in vitro aging and proliferation of human umbilical cord blood-derived stromal cells through the mTOR/p70S6K signaling pathway. Stem Cell Res (Amst) 2013; 10(2): 156-65.
[http://dx.doi.org/10.1016/j.scr.2012.11.002] [PMID: 23276696]
[143]
Vomhof-Dekrey EE, Picklo MJ Sr. The Nrf2-antioxidant response element pathway: A target for regulating energy metabolism. J Nutr Biochem 2012; 23(10): 1201-6.
[http://dx.doi.org/10.1016/j.jnutbio.2012.03.005] [PMID: 22819548]
[144]
Tsai JJ, Dudakov JA, Takahashi K, et al. Nrf2 regulates haematopoietic stem cell function. Nat Cell Biol 2013; 15(3): 309-16.
[http://dx.doi.org/10.1038/ncb2699] [PMID: 23434824]
[145]
Paul MK, Bisht B, Darmawan DO, et al. Dynamic changes in intracellular ROS levels regulate airway basal stem cell homeostasis through Nrf2-dependent Notch signaling. Cell Stem Cell 2014; 15(2): 199-214.
[http://dx.doi.org/10.1016/j.stem.2014.05.009] [PMID: 24953182]
[146]
Yuan Z, Zhang J, Huang Y, et al. NRF2 overexpression in mesenchymal stem cells induces stem-cell marker expression and enhances osteoblastic differentiation. Biochem Biophys Res Commun 2017; 491(1): 228-35.
[http://dx.doi.org/10.1016/j.bbrc.2017.07.083] [PMID: 28720497]
[147]
Dai X, Yan X, Wintergerst KA, Cai L, Keller BB, Tan Y. Nrf2: redox and metabolic regulator of stem cell state and function. Trends 2019.
[148]
Walford RL. THE IMMUNOLOGIC THEORY OF AGING. Gerontologist 1964; 4: 195-7.
[http://dx.doi.org/10.1093/geront/4.4.195] [PMID: 14289265]
[149]
Salminen A, Huuskonen J, Ojala J, Kauppinen A, Kaarniranta K, Suuronen T. Activation of innate immunity system during aging: NF-kB signaling is the molecular culprit of inflamm-aging. Ageing Res Rev 2008; 7(2): 83-105.
[http://dx.doi.org/10.1016/j.arr.2007.09.002] [PMID: 17964225]
[150]
De la Fuente M, Miquel J. An update of the oxidation-inflammation theory of aging: The involvement of the immune system in oxi-inflamm-aging. Curr Pharm Des 2009; 15(26): 3003-26.
[http://dx.doi.org/10.2174/138161209789058110] [PMID: 19754376]
[151]
Bullone M, Lavoie J-P. The contribution of oxidative stress and inflamm-aging in human and equine asthma. Int J Mol Sci 2017; 18(12): 2612.
[http://dx.doi.org/10.3390/ijms18122612] [PMID: 29206130]
[152]
Dunn RM, Busse PJ, Wechsler ME. Asthma in the elderly and late-onset adult asthma. Allergy 2018; 73(2): 284-94.
[http://dx.doi.org/10.1111/all.13258] [PMID: 28722758]
[153]
Park HS, Kim SR, Lee YC. Impact of oxidative stress on lung diseases. Respirology 2009; 14(1): 27-38.
[http://dx.doi.org/10.1111/j.1440-1843.2008.01447.x] [PMID: 19144046]
[154]
Ghatreh-Samani M, Esmaeili N, Soleimani M, Asadi-Samani M, Ghatreh-Samani K. Oxidative stress and age-related changes in T cells: Is thalassemia a model of accelerated immune system aging? 2016; 41(1): 116
[155]
Liu H, Smith AJ, Lott MC, et al. Sulforaphane can protect lens cells against oxidative stress: Implications for cataract prevention. Invest Ophthalmol Vis Sci 2013; 54(8): 5236-48.
[http://dx.doi.org/10.1167/iovs.13-11664] [PMID: 23812493]
[156]
Ahmed N. Advanced glycation endproducts--role in pathology of diabetic complications. Diabetes Res Clin Pract 2005; 67(1): 3-21.
[http://dx.doi.org/10.1016/j.diabres.2004.09.004] [PMID: 15620429]
[157]
Xu Y, Li Y, Ma L, et al. d-galactose induces premature senescence of lens epithelial cells by disturbing autophagy flux and mitochondrial functions. Toxicol Lett 2018; 289: 99-106.
[http://dx.doi.org/10.1016/j.toxlet.2018.02.001] [PMID: 29426000]
[158]
Yu Y, Zhao Y, Teng F, et al. Berberine improves cognitive deficiency and muscular dysfunction via activation of the AMPK/SIRT1/PGC-1a pathway in skeletal muscle from naturally aging rats. J Nutr Health Aging 2018; 22(6): 710-7.
[http://dx.doi.org/10.1007/s12603-018-1015-7] [PMID: 29806860]
[159]
Plataki M, Cho SJ, Harris RM, et al. Mitochondrial dysfunction in aged macrophages and lung during primary Streptococcus pneumoniae infection is improved with pirfenidone. Sci Rep 2019; 9(1): 971.
[http://dx.doi.org/10.1038/s41598-018-37438-1] [PMID: 30700745]
[160]
Elokil AA, Bhuiyan AA, Liu HZ, et al. The capability of L-carnitine-mediated antioxidant on cock during aging: evidence for the improved semen quality and enhanced testicular expressions of GnRH1, GnRHR, and melatonin receptors MT 1/2. Poult Sci 2019; 98(9): 4172-81.
[http://dx.doi.org/10.3382/ps/pez201] [PMID: 31001634]
[161]
Kim SH, Kim BK, Park S, Park SK. Phosphatidylcholine extends lifespan via DAF-16 and reduces amyloid-betainduced toxicity in Caenorhabditis elegans Oxid Med Cell Longev 2019; 2019
[http://dx.doi.org/10.1155/2019/2860642] [PMID: 31379987]
[162]
Sonani RR, Rastogi RP, Singh NK, et al. Phycoerythrin averts intracellular ROS generation and physiological functional decline in eukaryotes under oxidative stress. Protoplasma 2017; 254(2): 849-62.
[http://dx.doi.org/10.1007/s00709-016-0996-5] [PMID: 27335008]
[163]
Onodera Y, Teramura T, Takehara T, Obora K, Mori T, Fukuda K. miR-155 induces ROS generation through downregulation of antioxidation-related genes in mesenchymal stem cells Aging Cell 2017; 16(6): 1369-80
[http://dx.doi.org/10.1111/acel.12680] [PMID: 28967703]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy