Generic placeholder image

Current Organic Chemistry

Editor-in-Chief

ISSN (Print): 1385-2728
ISSN (Online): 1875-5348

Review Article

Asymmetric Zinc Catalysis in Green One-pot Processes

Author(s): Hélène Pellissier*

Volume 25, Issue 8, 2021

Published on: 16 February, 2021

Page: [857 - 875] Pages: 19

DOI: 10.2174/1385272825666210216123607

Price: $65

Abstract

This review collects for the first time enantioselective one-pot processes promoted by green chiral zinc catalysts. It illustrates how much these cheap, non-toxic and environmentally benign catalysts allow unprecedented asymmetric domino and tandem reactions of many types to be achieved, allowing direct access to a wide variety of very complex chiral molecules.

Keywords: Asymmetric one-pot reactions, asymmetric domino reactions, asymmetric tandem reactions, asymmetric zinc catalysis, metal catalysis, chirality.

Next »
Graphical Abstract
[1]
Ye, Y.; Yang, D.; Chen, H.; Guo, S.; Yang, Q.; Chen, L.; Zhao, H.; Wang, L. A high-efficiency corrosion inhibitor of N-doped citric acid-based carbon dots for mild steel in hydrochloric acid environment. J. Hazard. Mater., 2020, 381, 121019.
[http://dx.doi.org/10.1016/j.jhazmat.2019.121019] [PMID: 31442687]
[2]
Ye, Y.; Chen, H.; Zou, Y.; Shao, H. Study on self-healing and corrosion resistance behaviors of functionalized carbon dot-intercalated graphene-based waterborne epoxy coating. J. Mater. Sci. Technol., 2021, 67, 226-236.
[http://dx.doi.org/10.1016/j.jmst.2020.06.023]
[3]
Ye, Y.; Jiang, Z.; Zou, Y.; Chen, H.; Guo, S.; Yiang, Q.; Chen, L. Evaluation of the inhibition behavior of carbon dots on carbon steel in HCl and NaCl solutions. J. Mater. Sci. Technol., 2020, 43, 144-153.
[http://dx.doi.org/10.1016/j.jmst.2020.01.025]
[4]
Rudnick, R.L.; Fountain, D.M. Nature and composition of the continental crust: A lower crustal perspective. Rev. Geophys., 1995, 33, 267-309.
[http://dx.doi.org/10.1029/95RG01302]
[5]
(a) Noyori, R. Asymmetric Catalysts in Organic Synthesis; Wiley-VCH: New-York, 1994.
(b) Beller, M.; Bolm, C. Transition Metals for Organic Synthesis; Wiley-VCH: Weinheim, 1998.
[http://dx.doi.org/10.1002/9783527619399]
(c) Jacobsen, E.N.; Pfaltz, A.; Yamamoto, H. Comprehensive Asymmetric Catalysis; Springer: Berlin, 1999.
[http://dx.doi.org/10.1007/978-3-642-58571-5]
(d) Ojima, I. Catalytic Asymmetric Synthesis; Wiley-VCH. , 2000.
[http://dx.doi.org/10.1002/0471721506]
(e) Negishi, E. Handbook of Organopalladium Chemistry for Organic Synthesis; John Wiley & Sons: Hoboken,, 2002.
(f) de Meijere, A.; von Zezschwitz, P.; Nüske, H.; Stulgies, B. New Cascade and Multiple Cross-Coupling Reactions for the Efficient Construction of Complex Molecules. J. Organomet. Chem., 2002, 653, 129-140.
[http://dx.doi.org/10.1016/S0022-328X(02)01168-3]
(g) Beller, M.; Bolm, C. Metals for Organic Synthesis, 2nd ed; Wiley-VCH: Weinheim, 2004.
(h) Tietze, L.F.; Ila, H.; Bell, H.P. Enantioselective palladium-catalyzed transformations. Chem. Rev., 2004, 104(7), 3453-3516.
[http://dx.doi.org/10.1021/cr030700x] [PMID: 15250747]
(i) Ramón, D.J.; Yus, M. In the arena of enantioselective synthesis, titanium complexes wear the laurel wreath. Chem. Rev., 2006, 106(6), 2126-2208.
[http://dx.doi.org/10.1021/cr040698p] [PMID: 16771446]
(j) Pellissier, H.; Clavier, H. Cobalt-Catalyzed Selective Hydrogenation of Nitriles to Secondary Imines. Chem. Rev., 2014, 114, 2775-2823.
[http://dx.doi.org/10.1021/cr4004055] [PMID: 24428605]
(k) Pellissier, H. Recent Advances in Enantioselective Vanadium-Catalyzed Transformations. Coord. Chem. Rev., 2015, 284, 93-110.
[http://dx.doi.org/10.1016/j.ccr.2014.09.014]
(l) Pellissier, H. Enantioselective Silver-Catalyzed Transformations. Chem. Rev., 2016, 116(23), 14868-14917.
[http://dx.doi.org/10.1021/acs.chemrev.6b00639] [PMID: 27960274]
[6]
(a) Thankachan, A.P.; Asha, S.; Sindhu, K.S.; Anilkumar, G. An overview of Zn-catalyzed enantioselective aldol type C‒C bond formation. RSC Advances, 2015, 5, 62179-62193.
[http://dx.doi.org/10.1039/C5RA10102F]
(b) Bauer, T. Enantioselective dialkylzinc-mediated alkynylation, arylation and alkenylation of carbonyl compounds. Coord. Chem. Rev., 2015, 299, 83-150.
[http://dx.doi.org/10.1016/j.ccr.2015.03.025]
(c) Saranya, S.; Harry, N.A.; Ujwaldev, S.M.; Anilkumar, G. Recent Advances and Perspectives on the Zinc-Catalyzed Nitroaldol (Henry) Reaction. Asian J. Org. Chem., 2017, 6, 1349-1360.
[http://dx.doi.org/10.1002/ajoc.201700290]
(d) Wu, H-L.; Chang, C-A.; Wu, P-Y.; Uang, B-J. Recent developments in Zn-catalyzed asymmetric addition reaction to ketones: Syntheses of chiral tertiary alcohols. Tetrahedron Lett., 2017, 58, 706-710.
[http://dx.doi.org/10.1016/j.tetlet.2017.01.034]
(e) Rohit, K.R.; Ujwaldev, S.M.; Krishnan, K.K.; Anilkumar, G. Recent Developments and Perspectives in the Zinc-Catalysed Michael Addition. Asian J. Org. Chem., 2018, 7, 85-102.
[http://dx.doi.org/10.1002/ajoc.201700491]
[7]
(a) Ho, T-L. Tandem Organic Reactions; Wiley: New York, 1992.
(b) Bunce, R.A. Recent advances in the use of tandem reactions for organic synthesis. Tetrahedron, 1995, 51, 13103-13159.
[http://dx.doi.org/10.1016/0040-4020(95)00649-S]
(c) Padwa, A.; Weingarten, M.D. Cascade Processes of Metallo Carbenoids. Chem. Rev., 1996, 96(1), 223-270.
[http://dx.doi.org/10.1021/cr950022h] [PMID: 11848752]
(d) Tietze, L.F.; Rackelmann, N. Domino reactions in the synthesis of heterocyclic natural products and analogs. Pure Appl. Chem., 2004, 76, 1967-1983.
[http://dx.doi.org/10.1351/pac200476111967]
(e) Fogg, D.E.; dos Santos, E.N. Tandem catalysis: a taxonomy and illustrative review. Coord. Chem. Rev., 2004, 248, 2365-2379.
[http://dx.doi.org/10.1016/j.ccr.2004.05.012]
(f) Wasilke, J-C.; Obrey, S.J.; Baker, R.T.; Bazan, G.C. Concurrent tandem catalysis. Chem. Rev., 2005, 105(3), 1001-1020.
[http://dx.doi.org/10.1021/cr020018n] [PMID: 15755083]
(g) Nicolaou, K.C.; Edmonds, D.J.; Bulger, P.G. Cascade reactions in total synthesis. Angew. Chem. Int. Ed. Engl., 2006, 45(43), 7134-7186.
[http://dx.doi.org/10.1002/anie.200601872] [PMID: 17075967]
(h) Chapman, C.J.; Frost, C.G. Tandem and Domino Catalytic Strategies for Enantioselective Synthesis. Synthesis, 2007, 2017(1), 1-21.
[http://dx.doi.org/10.1055/s-2006-950379]
(i) Padwa, A.; Bur, S.K. The domino way to heterocycles. Tetrahedron, 2007, 63(25), 5341-5378.
[http://dx.doi.org/10.1016/j.tet.2007.03.158] [PMID: 17940591]
(j) D’Souza, D.M.; Müller, T.J.J. Multi-component syntheses of heterocycles by transition-metal catalysis. Chem. Soc. Rev., 2007, 36(7), 1095-1108.
[http://dx.doi.org/10.1039/B608235C] [PMID: 17576477]
(k) Alba, A-N.; Companyo, X.; Viciano, M.; Rios, R. Organocatalytic Domino Reactions. Curr. Org. Chem., 2009, 13, 1432-1474.
[http://dx.doi.org/10.2174/138527209789055054]
(l) Nicolaou, K.C.; Chen, J.S. The art of total synthesis through cascade reactions. Chem. Soc. Rev., 2009, 38(11), 2993-3009.
[http://dx.doi.org/10.1039/b903290h] [PMID: 19847336]
(m) de Graaff, C.; Ruijter, E.; Orru, R.V.A. Recent developments in asymmetric multicomponent reactions. Chem. Soc. Rev., 2012, 41(10), 3969-4009.
[http://dx.doi.org/10.1039/c2cs15361k] [PMID: 22546840]
(n) Hayashi, Y. Pot economy and one-pot synthesis. Chem. Sci. (Camb.), 2016, 7(2), 866-880.
[http://dx.doi.org/10.1039/C5SC02913A] [PMID: 28791118]
[8]
(a) Posner, G.H. Multicomponent one-pot annulations forming 3 to 6 bonds. Chem. Rev., 1986, 86, 831-844.
[http://dx.doi.org/10.1021/cr00075a007]
(b) Tietze, L.F.; Beifuss, U. Sequential Transformations in Organic Chemistry: A Synthetic Strategy with a Future. Angew. Chem. Int. Ed. Engl., 1993, 32, 131-163.
[http://dx.doi.org/10.1002/anie.199301313]
(c) Tietze, L.F. Domino Reactions in Organic Synthesis. Chem. Rev., 1996, 96(1), 115-136.
[http://dx.doi.org/10.1021/cr950027e] [PMID: 11848746]
(d) Parsons, P.J.; Penkett, C.S.; Shell, A.J. Tandem Reactions in Organic Synthesis: Novel Strategies for Natural Product Elaboration and the Development of New Synthetic Methodology. Chem. Rev., 1996, 96(1), 195-206.
[http://dx.doi.org/10.1021/cr950023+] [PMID: 11848750]
(e) Dalko, P.I.; Moisan, L. In the golden age of organocatalysis. Angew. Chem. Int. Ed. Engl., 2004, 43(39), 5138-5175.
[http://dx.doi.org/10.1002/anie.200400650] [PMID: 15455437]
(f) Ramón, D.J.; Yus, M. Asymmetric multicomponent reactions (AMCRs): the new frontier. Angew. Chem. Int. Ed. Engl., 2005, 44(11), 1602-1634.
[http://dx.doi.org/10.1002/anie.200460548] [PMID: 15719349]
(g) Zhu, J.; Bienaymé, H. Multicomponent Reactions; Wiley-VCH: Weinheim, 2005.
[http://dx.doi.org/10.1002/3527605118]
(h) Tietze, L.F.; Brasche, G.; Gericke, K. Domino Reactions in Organic Synthesis; Wiley-VCH: Weinheim, 2006.
[http://dx.doi.org/10.1002/9783527609925]
(i) Pellissier, H. Asymmetric domino reactions. Part B: Reactions based on the use of chiral catalysts and biocatalysts. Tetrahedron, 2006, 62, 2143-2173.
[http://dx.doi.org/10.1016/j.tet.2005.10.041]
(j) Pellissier, H. Asymmetric domino reactions. Part A: Reactions based on the use of chiral auxiliaries. Tetrahedron, 2006, 62, 1619-1665.
[http://dx.doi.org/10.1016/j.tet.2005.10.040]
(k) Enders, D.; Grondal, C.; Hüttl, M.R.M. Asymmetric organocatalytic domino reactions. Angew. Chem. Int. Ed. Engl., 2007, 46(10), 1570-1581.
[http://dx.doi.org/10.1002/anie.200603129] [PMID: 17225236]
(l) Guillena, G.; Ramon, D.J.; Yus, M. Organocatalytic enantioselective multicomponent reactions (OEMCRs). Tetrahedron Asymmetry, 2007, 18, 693-700.
[http://dx.doi.org/10.1016/j.tetasy.2007.03.002]
(m) Touré, B.B.; Hall, D.G. Natural product synthesis using multicomponent reaction strategies. Chem. Rev., 2009, 109(9), 4439-4486.
[http://dx.doi.org/10.1021/cr800296p] [PMID: 19480390]
(n) Orru, R.V.A.; Ruijter, E. Synthesis of Heterocycles via Multicomponent Reactions, Topics in Heterocyclic Chemistry; Springer: Berlin, 2010.
(o) Pellissier, H. Recent Developments in Asymmetric Organocatalytic Domino Reactions. Adv. Synth. Catal., 2012, 354, 237-294.
[http://dx.doi.org/10.1002/adsc.201100714]
(p) Clavier, H.; Pellissier, H. Recent Developments in Enantioselective Metal-Catalyzed Domino Reactions. Adv. Synth. Catal., 2012, 354, 3347-3403.
[http://dx.doi.org/10.1002/adsc.201200254]
(q) Pellissier, H. Stereocontrolled domino reactions. Chem. Rev., 2013, 113(1), 442-524.
[http://dx.doi.org/10.1021/cr300271k] [PMID: 23157479]
(r) Pellissier, H. Asymmetric Domino Reactions; Royal Society of Chemistry: Cambridge, 2013.
(s) Tietze, L.F. Domino Reactions - Concepts for Efficient Organic Synthesis; Wiley-VCH: Weinheim, 2014.
[http://dx.doi.org/10.1002/9783527671304]
(t) Zhu, J.; Wang, Q.; Wang, M. Multicomponent Reactions in Organic Synthesis; Wiley: Weinheim, 2014.
[http://dx.doi.org/10.1002/9783527678174]
(u) Herrera, R.P.; Marques-Lopez, E. Multicomponent Reactions: Concepts and Applications for Design and Synthesis; Wiley: Weinheim, 2015.
(v) Snyder, S.A. Science of Synthesis. In:Applications of Domino Transformations in Organic Synthesis; Thieme Verlag: Stuttgart, 2016.
(w) Pellissier, H. Recent Developments in Enantioselective Metal-Catalyzed Domino Reactions. Adv. Synth. Catal., 2016, 358, 2194-2259.
[http://dx.doi.org/10.1002/adsc.201600462]
(x) Pellissier, H. Recent developments in enantioselective metal-catalyzed domino reactions. Adv. Synth. Catal., 2019, 361, 1733-1755.
[http://dx.doi.org/10.1002/adsc.201801371]
[9]
Prasad, A.S. Zinc deficiency. BMJ, 2003, 326(7386), 409-410.
[http://dx.doi.org/10.1136/bmj.326.7386.409] [PMID: 12595353]
[10]
Prakash, A.; Bharti, K.; Majeed, A.B. Zinc: indications in brain disorders. Fundam. Clin. Pharmacol., 2015, 29(2), 131-149.
[http://dx.doi.org/10.1111/fcp.12110] [PMID: 25659970]
[11]
Cherasse, Y.; Urade, Y. Dietary Zinc Acts as a Sleep Modulator. Int. J. Mol. Sci., 2017, 18(11), 2334-2346.
[http://dx.doi.org/10.3390/ijms18112334] [PMID: 29113075]
[12]
Broadley, M.R.; White, P.J.; Hammond, J.P.; Zelko, I.; Lux, A. Zinc in plants. New Phytol., 2007, 173(4), 677-702.
[http://dx.doi.org/10.1111/j.1469-8137.2007.01996.x] [PMID: 17286818]
[13]
Brandt, E.G.; Hellgren, M.; Brinck, T.; Bergman, T.; Edholm, O. Molecular dynamics study of zinc binding to cysteines in a peptide mimic of the alcohol dehydrogenase structural zinc site. Phys. Chem. Chem. Phys., 2009, 11(6), 975-983.
[http://dx.doi.org/10.1039/B815482A] [PMID: 19177216]
[14]
Rout, G.R.; Das, P. Effect of Metal Toxicity on Plant Growth and Metabolism: I. Zinc. Agronomie, 2003, 23, 3-11.
[http://dx.doi.org/10.1051/agro:2002073]
[15]
Smith, S.E.; Larson, E.J. Zinc toxicity in rats; antagonistic effects of copper and liver. J. Biol. Chem., 1946, 163, 29-38.
[http://dx.doi.org/10.1016/S0021-9258(17)41344-5] [PMID: 21023625]
[16]
Muyssen, B.T.; De Schamphelaere, K.A.; Janssen, C.R.; Janssen, C.R. Mechanisms of chronic waterborne Zn toxicity in Daphnia magna. Aquat. Toxicol., 2006, 77(4), 393-401.
[http://dx.doi.org/10.1016/j.aquatox.2006.01.006] [PMID: 16472524]
[17]
Fosmire, G.J. Zinc toxicity. Am. J. Clin. Nutr., 1990, 51(2), 225-227.
[http://dx.doi.org/10.1093/ajcn/51.2.225] [PMID: 2407097]
[18]
Ciubotariu, D.; Ghiciuc, C.M.; Lupușoru, C.E. Zinc involvement in opioid addiction and analgesia--should zinc supplementation be recommended for opioid-treated persons? Subst. Abuse Treat. Prev. Policy, 2015, 10, 29.
[http://dx.doi.org/10.1186/s13011-015-0025-2] [PMID: 26238243]
[19]
Lowicki, D.; Bas, S.; Mlynarski, J. Chiral zinc catalysts for asymmetric synthesis. Tetrahedron, 2015, 71, 1339-1394.
[http://dx.doi.org/10.1016/j.tet.2014.12.022]
[20]
(a) Enthaler, S.; Wu, X-F. Zinc Catalysis: Applications in Organic Synthesis; Wiley: Weinheim, 2015.
[http://dx.doi.org/10.1002/9783527675944]
(b) Enthaler, S. Rise of the Zinc Age in Homogeneous Catalysis? ACS Catal., 2013, 3, 150-158.
[http://dx.doi.org/10.1021/cs300685q]
(c) Wu, X-F.; Neumann, H. Zinc‐Catalyzed Organic Synthesis: C‒C, C‒N, C‒O Bond Formation Reactions. Adv. Synth. Catal., 2012, 354, 3141-3160.
[http://dx.doi.org/10.1002/adsc.201200547]
[21]
Kim, J.H.; Ko, Y.O.; Bouffard, J.; Lee, S.G. Advances in tandem reactions with organozinc reagents. Chem. Soc. Rev., 2015, 44(8), 2489-2507.
[http://dx.doi.org/10.1039/C4CS00430B] [PMID: 25708795]
[22]
Krishnan, K.K.; Ujwaldev, S.M.; Saranya, S.; Anilkumar, G.; Beller, M. Recent advances and perspectives in the synthesis of heterocycles via zinc catalysis. Adv. Synth. Catal., 2019, 361, 382-404.
[http://dx.doi.org/10.1002/adsc.201800868]
[23]
Neetha, M.; Rohit, K.R.; Sranya, S.; Anilkumar, G. Zinc‐Catalysed Multi‐Component Reactions: An Overview. ChemistrySelect, 2020, 5, 1054-1070.
[http://dx.doi.org/10.1002/slct.201904146]
[24]
(a) Zhang, W.; Loebach, J.L.; Wilson, S.R.; Jacobsen, E.N. Enantioselective epoxidation of unfunctionalized olefins catalyzed by salen manganese complexes. J. Am. Chem. Soc., 1990, 112, 2801-2803.
[http://dx.doi.org/10.1021/ja00163a052]
(b) Sawamura, M.; Nagata, H.; Sakamoto, H.; Ito, Y. Chiral phosphine ligands modified by crown ethers: an application to palladium-catalyzed asymmetric allylation of. beta.-diketones. J. Am. Chem. Soc., 1992, 114, 2586-2592.
[http://dx.doi.org/10.1021/ja00033a035]
[25]
Trost, B.M.; Ito, H. A Direct Catalytic Enantioselective Aldol Reaction via a Novel Catalyst Design. J. Am. Chem. Soc., 2000, 122, 12003-12004.
[http://dx.doi.org/10.1021/ja003033n]
[26]
Trost, B.M.; Bartlett, M.J. ProPhenol-catalyzed asymmetric additions by spontaneously assembled dinuclear main group metal complexes. Acc. Chem. Res., 2015, 48(3), 688-701.
[http://dx.doi.org/10.1021/ar500374r] [PMID: 25650587]
[27]
Trost, B.M.; Yeh, V.S.C. A dinuclear Zn catalyst for the asymmetric nitroaldol (Henry) reaction. Angew. Chem. Int. Ed. Engl., 2002, 41(5), 861-863.
[http://dx.doi.org/10.1002/1521-3773(20020301)41:5<861::AID-ANIE861>3.0.CO;2-V] [PMID: 12491361]
[28]
(a) Trost, B.M.; Terrell, L.R. A direct catalytic asymmetric mannich-type reaction to syn-amino alcohols. J. Am. Chem. Soc., 2003, 125(2), 338-339.
[http://dx.doi.org/10.1021/ja028782e] [PMID: 12517138]
(b) Trost, B.M.; Jaratjaroonphong, J.; Reutrakul, V. A direct catalytic asymmetric Mannich-type reaction via a dinuclear zinc catalyst: synthesis of either anti- or syn-α-hydroxy-β-amino ketones. J. Am. Chem. Soc., 2006, 128(9), 2778-2779.
[http://dx.doi.org/10.1021/ja057498v] [PMID: 16506738]
[29]
(a) Trost, B.M.; Hitce, J. Direct asymmetric Michael addition to nitroalkenes: vinylogous nucleophilicity under dinuclear zinc catalysis. J. Am. Chem. Soc., 2009, 131(13), 4572-4573.
[http://dx.doi.org/10.1021/ja809723u] [PMID: 19281239]
(b) Trost, B.M.; Hirano, K. Highly stereoselective synthesis of α-alkyl-α-hydroxycarboxylic acid derivatives catalyzed by a dinuclear zinc complex. Angew. Chem. Int. Ed. Engl., 2012, 51(26), 6480-6483.
[http://dx.doi.org/10.1002/anie.201201116] [PMID: 22644705]
[30]
(a) Trost, B.M.; Weiss, A.H.; von Wangelin, A.J. Dinuclear Zn-catalyzed asymmetric alkynylation of unsaturated aldehydes. J. Am. Chem. Soc., 2006, 128(1), 8-9.
[http://dx.doi.org/10.1021/ja054871q] [PMID: 16390095]
(b) Trost, B.M.; Quintard, A. Asymmetric catalytic alkynylation of acetaldehyde: application to the synthesis of (+)-tetrahydropyrenophorol. Angew. Chem. Int. Ed. Engl., 2012, 51(27), 6704-6708.
[http://dx.doi.org/10.1002/anie.201203035] [PMID: 22674869]
[31]
Trost, B.M.; Müller, C. Asymmetric Friedel-Crafts alkylation of pyrroles with nitroalkenes using a dinuclear zinc catalyst. J. Am. Chem. Soc., 2008, 130(8), 2438-2439.
[http://dx.doi.org/10.1021/ja711080y] [PMID: 18237176]
[32]
Trost, B.M.; Hirano, K. Dinuclear zinc catalyzed asymmetric spirannulation reaction: an umpolung strategy for formation of α-alkylated-α-hydroxyoxindoles. Org. Lett., 2012, 14(10), 2446-2449.
[http://dx.doi.org/10.1021/ol300577y] [PMID: 22545918]
[33]
Smirnov, P.; Mathew, J.; Nijs, A.; Katan, E.; Karni, M.; Bolm, C.; Apeloig, Y.; Marek, I. One-pot zinc-promoted asymmetric alkynylation/brook-type rearrangement/ene-allene cyclization: highly selective formation of three new bonds and two stereocenters in acyclic systems. Angew. Chem. Int. Ed. Engl., 2013, 52(51), 13717-13721.
[http://dx.doi.org/10.1002/anie.201306749] [PMID: 24155160]
[34]
Song, X.; Liu, J.; Liu, M-M.; Wang, X.; Zhang, Z-F.; Wang, M-C.; Chang, J. Tetrahedron, 2014, 70, 5468-5474.
[http://dx.doi.org/10.1016/j.tet.2014.06.109]
[35]
Trost, B.M.; Hung, C-I.; Saget, T.; Gnanamani, E. Branched aldehydes as linchpins for the enantioselective and stereodivergent synthesis of 1,3-aminoalcohols featuring a quaternary stereocentre. Nature Catalysis, 2018, 1, 523-530.
[http://dx.doi.org/10.1038/s41929-018-0093-6]
[36]
Trost, B.M.; Gnanamani, E.; Hung, C.J.; Kalnmals, C.A. Synthesis of Chiral, Densely Substituted Pyrrolidones via Phosphine-Catalyzed Cycloisomerization. Org. Lett., 2019, 21(6), 1890-1894.
[http://dx.doi.org/10.1021/acs.orglett.9b00496] [PMID: 30829494]
[37]
Trost, B.M.; Gnanamani, E. Enantio- and Diastereoselective Double Mannich Reaction between Ketones and Imines Catalyzed by Zn-ProPhenol. Org. Lett., 2020, 22(4), 1675-1680.
[http://dx.doi.org/10.1021/acs.orglett.0c00318] [PMID: 32017581]
[38]
Tao, B-K.; Yang, H.; Hua, Y-Z.; Wang, M-C. Dinuclear zinc synergistic catalytic asymmetric phospha-Michael/Michael cascade reaction: synthesis of 1,2,3-trisubstituted indanes bearing phosphoryl groups. Org. Biomol. Chem., 2019, 17(17), 4301-4310.
[http://dx.doi.org/10.1039/C9OB00544G] [PMID: 30969299]
[39]
Miao, Y-H.; Hua, Y-Z.; Wang, M-C. Dinuclear zinc cooperative catalytic three-component reactions for highly enantioselective synthesis of 3,3′-dihydrofuran spirooxindoles. Org. Biomol. Chem., 2019, 17(30), 7172-7181.
[http://dx.doi.org/10.1039/C9OB01233H] [PMID: 31310252]
[40]
(a) Xu, P-W.; Yu, J-S.; Chen, C.; Cao, Z-Y.; Zhou, F.; Zhou, J. Catalytic Enantioselective Construction of Spiro Quaternary Carbon Stereocenters. ACS Catal., 2019, 9, 1820-1882.
[http://dx.doi.org/10.1021/acscatal.8b03694]
(b) Pellissier, H. Synthesis of Chiral 3-Substituted 3-Amino-2-oxindoles through Enantioselective Catalytic Domino and Tandem Reactions. Synthesis, 2019, 51, 1311-1318.
[http://dx.doi.org/10.1055/s-0037-1610350]
[41]
Guo, Y-J.; Guo, X.; Kong, D-Z.; Lu, H-J.; Liu, L-T.; Hua, Y-Z.; Wang, M-C. Catalytic Asymmetric Synthesis of Tetrahydrofuran Spirooxindoles via a Dinuclear Zinc Catalyst. J. Org. Chem., 2020, 85(6), 4195-4206.
[http://dx.doi.org/10.1021/acs.joc.9b03378] [PMID: 32083864]
[42]
Hua, Y-Z.; Han, X-W.; Yang, X-C.; Song, X.; Wang, M-C.; Chang, J-B. Photostable p-Type Dye-Sensitized Photoelectrochemical Cells for Water Reduction. J. Org. Chem., 2014, 79, 11696-11699.
[43]
Hua, Y-Z.; Liu, M-M.; Huang, P-J.; Song, X.; Wang, M-C.; Chang, J-B. A New Strategy for Enantioselective Construction of Multisubstituted Five-Membered Oxygen Heterocycles via a Domino Michael/Hemiketalization Reaction. Chemistry, 2015, 21(34), 11994-11998.
[http://dx.doi.org/10.1002/chem.201501655] [PMID: 26177976]
[44]
Liu, M-M.; Yang, X-C.; Hua, Y-Z.; Chang, J-B.; Wang, M-C. Synthesis of Chiral Bispirotetrahydrofuran Oxindoles by Cooperative Bimetallic-Catalyzed Asymmetric Cascade Reaction. Org. Lett., 2019, 21(7), 2111-2115.
[http://dx.doi.org/10.1021/acs.orglett.9b00386] [PMID: 30865463]
[45]
Liu, M-M.; Yang, X-C.; Hua, Y-Z.; Chang, J-B.; Wang, M-C. Dinuclear Zinc-Catalyzed Asymmetric Tandem Reaction of α-Hydroxy-1-indanone: Access to Spiro[1-indanone-5,2′-γ-butyrolactones]. Org. Lett., 2019, 21(17), 7089-7093.
[http://dx.doi.org/10.1021/acs.orglett.9b02658] [PMID: 31456408]
[46]
Yang, X-C.; Xu, M.; Wang, J-B.; Liu, M-M.; Mathey, F.; Hua, Y-Z.; Wang, M-C. Enantioselective synthesis of indanone spiro-isochromanone derivatives via a dinuclear zinc-catalyzed Michael/transesterification tandem reaction. Org. Biomol. Chem., 2020, 18(20), 3917-3926.
[http://dx.doi.org/10.1039/D0OB00541J] [PMID: 32400845]
[47]
Yang, X-C.; Liu, M-M.; Mathey, F.; Yang, H.; Hua, Y.Z.; Wang, M.C. Access to Chiral 2,5-Pyrrolidinyl Dispirooxindoles via Dinuclear Zinc-Catalyzed Asymmetric Cascade Reactions. J. Org. Chem., 2019, 84(12), 7762-7775.
[http://dx.doi.org/10.1021/acs.joc.9b00645] [PMID: 31145619]
[48]
(a) Stanley, L.M.; Sibi, M.P. Privileged Chiral Ligands and Catalysts; Zhou, Q., Ed.; Wiley: Weinheim, 2011, pp. 171-219.
[http://dx.doi.org/10.1002/9783527635207.ch5]
(b) Desimoni, G.; Faita, G.; Jørgensen, K.A. Update 1 of: C2-symmetric chiral bis(oxazoline) ligands in asymmetric catalysis. Chem. Rev., 2011, 111(11), PR284-PR437.
[http://dx.doi.org/10.1021/cr100339a] [PMID: 22077602]
[49]
Junge, K.; Möller, K.; Wendt, B.; Das, S.; Gördes, D.; Thurow, K.; Beller, M. Enantioselective zinc-catalyzed hydrosilylation of ketones using pybox or pybim ligands. Chem. Asian J., 2012, 7(2), 314-320.
[http://dx.doi.org/10.1002/asia.201100561] [PMID: 22174103]
[50]
Miyabe, H.; Asada, R.; Toyoda, A.; Takemoto, Y. Enantioselective cascade radical addition-cyclization-trapping reactions. Angew. Chem. Int. Ed. Engl., 2006, 45(35), 5863-5866.
[http://dx.doi.org/10.1002/anie.200602042] [PMID: 16874830]
[51]
(a) Ma, J-A.; Cahard, D. Towards perfect catalytic asymmetric synthesis: dual activation of the electrophile and the nucleophile. Angew. Chem. Int. Ed. Engl., 2004, 43(35), 4566-4583.
[http://dx.doi.org/10.1002/anie.200300635] [PMID: 15352183]
(b) Shao, Z.; Zhang, H. Combining transition metal catalysis and organocatalysis: a broad new concept for catalysis. Chem. Soc. Rev., 2009, 38(9), 2745-2755.
[http://dx.doi.org/10.1039/b901258n] [PMID: 19690751]
(c) Zhong, C.; Shi, X. When Organocatalysis Meets Transition-Metal Catalysis. Eur. J. Org. Chem., 2010, 2999-3025.
[http://dx.doi.org/10.1002/ejoc.201000004]
(d) Rueping, M.; Koenigs, R.M.; Atodiresei, I. Unifying metal and Brønsted acid catalysis--concepts, mechanisms, and classifications. Chemistry, 2010, 16(31), 9350-9365.
[http://dx.doi.org/10.1002/chem.201001140] [PMID: 20665582]
(e) Zhou, J. Recent advances in multicatalyst promoted asymmetric tandem reactions. Chem. Asian J., 2010, 5(3), 422-434.
[http://dx.doi.org/10.1002/asia.200900458] [PMID: 20052703]
(f) Ambrosini, L.M.; Lambert, T.H. Multicatalysis: Advancing Synthetic Efficiency and Inspiring Discovery. ChemCatChem, 2010, 2, 1373-1380.
[http://dx.doi.org/10.1002/cctc.200900323]
(g) Piovesana, S.; Scarpino Schietroma, D.M.; Bella, M. Multiple catalysis with two chiral units: an additional dimension for asymmetric synthesis. Angew. Chem. Int. Ed. Engl., 2011, 50(28), 6216-6232.
[http://dx.doi.org/10.1002/anie.201005955] [PMID: 21608089]
(h) Shibasaki, M.; Kanai, M.; Matsunaga, S.; Kumagai, N. Multimetallic Multifunctional Catalysts for Asymmetric Reactions. Top. Organomet. Chem., 2011, 37, 1-30.
[http://dx.doi.org/10.1007/3418_2011_1]
(i) Patil, N.T. Merging metal and N-heterocyclic carbene catalysis: on the way to discovering enantioselective organic transformations. Angew. Chem. Int. Ed. Engl., 2011, 50(8), 1759-1761.
[http://dx.doi.org/10.1002/anie.201006866] [PMID: 21271627]
(j) Patil, N.T.; Shinde, V.S.; Gajula, B. A one-pot catalysis: the strategic classification with some recent examples. Org. Biomol. Chem., 2012, 10(2), 211-224.
[http://dx.doi.org/10.1039/C1OB06432K] [PMID: 22072256]
(k) Allen, A.E.; Macmillan, D.W.C. Synergistic catalysis: A powerful synthetic strategy for new reaction development. Chem. Sci. (Camb.), 2012, 2012(3), 633-658.
[http://dx.doi.org/10.1039/c2sc00907b] [PMID: 22518271]
(l) Park, J.; Hong, S. Cooperative bimetallic catalysis in asymmetric transformations. Chem. Soc. Rev., 2012, 41(21), 6931-6943.
[http://dx.doi.org/10.1039/c2cs35129c] [PMID: 22842925]
(m) Du, Z.; Shao, Z. Combining transition metal catalysis and organocatalysis--an update. Chem. Soc. Rev., 2013, 42(3), 1337-1378.
[http://dx.doi.org/10.1039/C2CS35258C] [PMID: 23154522]
(n) Schindler, C.S.; Jacobsen, E.N. Chemistry. A new twist on cooperative catalysis. Science, 2013, 340(6136), 1052-1053.
[http://dx.doi.org/10.1126/science.1238769] [PMID: 23723222]
(o) Pellissier, H. Recent Developments in Enantioselective Multicatalysed Tandem Reactions. Tetrahedron, 2013, 69, 7171-7210.
[http://dx.doi.org/10.1016/j.tet.2013.06.020]
(p) Pellissier, H. Enantioselective Multicatalysed Tandem Reactions; Royal Society of Chemistry: Cambridge, 2014.
(q) Chen, D-F.; Han, Z-Y.; Zhou, X-L.; Gong, L-Z. Asymmetric organocatalysis combined with metal catalysis: concept, proof of concept, and beyond. Acc. Chem. Res., 2014, 47(8), 2365-2377.
[http://dx.doi.org/10.1021/ar500101a] [PMID: 24911184]
(r) Matsunaga, S.; Shibasaki, M. Recent advances in cooperative bimetallic asymmetric catalysis: dinuclear Schiff base complexes. Chem. Commun. (Camb.), 2014, 50(9), 1044-1057.
[http://dx.doi.org/10.1039/C3CC47587E] [PMID: 24281133]
(s) Parmar, D.; Sugiono, E.; Raja, S.; Rueping, M. Complete field guide to asymmetric BINOL-phosphate derived Brønsted acid and metal catalysis: history and classification by mode of activation; Brønsted acidity, hydrogen bonding, ion pairing, and metal phosphates. Chem. Rev., 2014, 114(18), 9047-9153.
[http://dx.doi.org/10.1021/cr5001496] [PMID: 25203602]
(t) Lohr, T.L.; Marks, T.J. Orthogonal tandem catalysis. Nat. Chem., 2015, 7(6), 477-482.
[http://dx.doi.org/10.1038/nchem.2262] [PMID: 25991525]
(u) Inamdar, S.M.; Shinde, V.S.; Patil, N.T. Enantioselective cooperative catalysis. Org. Biomol. Chem., 2015, 13(30), 8116-8162.
[http://dx.doi.org/10.1039/C5OB00986C] [PMID: 26123696]
(v) Zhou, J. Multicatalyst System in Asymmetric Catalysis; Wiley: Weinheim, 2015.
(w) Galvan, A.; Fananas, F.J.; Rodriguez, F. Multicomponent and Multicatalytic Reactions – A Synthetic Strategy Inspired by Nature. Eur. J. Inorg. Chem., 2016, 1306-1313.
[http://dx.doi.org/10.1002/ejic.201501287]
(x) Afewerki, S.; Córdova, A. Combinations of Aminocatalysts and Metal Catalysts: A Powerful Cooperative Approach in Selective Organic Synthesis. Chem. Rev., 2016, 116(22), 13512-13570.
[http://dx.doi.org/10.1021/acs.chemrev.6b00226] [PMID: 27723291]
[52]
Guan, X-Y.; Yang, L-P.; Hu, W. Cooperative catalysis in multicomponent reactions: highly enantioselective synthesis of γ-hydroxyketones with a quaternary carbon stereocenter. Angew. Chem. Int. Ed. Engl., 2010, 49(12), 2190-2192.
[http://dx.doi.org/10.1002/anie.200904905] [PMID: 19894243]
[53]
Ohara, M.; Nakamura, S.; Shibata, N. Direct Enantioselective Three‐Component Kabachnik–Fields Reaction Catalyzed by Chiral Bis(imidazoline)‐Zinc(II) Catalysts. Adv. Synth. Catal., 2011, 353, 3285-3289.
[http://dx.doi.org/10.1002/adsc.201100482]
[54]
Tan, F.; Lu, L-Q.; Yang, Q-Q.; Guo, W.; Bian, Q.; Chen, J-R.; Xiao, W-J. Enantioselective cascade Michael addition/cyclization reactions of 3-nitro-2H-chromenes with 3-isothiocyanato oxindoles: efficient synthesis of functionalized polycyclic spirooxindoles. Chemistry, 2014, 20(12), 3415-3420.
[http://dx.doi.org/10.1002/chem.201303583] [PMID: 24677230]
[55]
Zhao, J-Q.; Wu, Z-J.; Zhou, M-Q.; Xu, X-Y.; Zhang, X-M.; Yuan, W-C. Zn-Catalyzed Diastereo- and Enantioselective Cascade Reaction of 3-Isothiocyanato Oxindoles and 3-Nitroindoles: Stereocontrolled Syntheses of Polycyclic Spirooxindoles. Org. Lett., 2015, 17(20), 5020-5023.
[http://dx.doi.org/10.1021/acs.orglett.5b02489] [PMID: 26412346]
[56]
Yue, D-F.; Zhao, J-Q.; Chen, Y-Z.; Zhang, X-M.; Xu, X-Y.; Yuan, W-C. Zinc‐Catalyzed Enantioselective Dearomative [3+2] Cycloaddition Reaction of 3‐Nitrobenzothiophenes and 3‐Nitrothieno[2,3‐b]yridine with 3‐Isothiocyanato Oxindoles. Adv. Synth. Catal., 2018, 360, 1420-1425.
[http://dx.doi.org/10.1002/adsc.201701557]
[57]
Zhao, J.-Q.; Zhou, X.-J.; Chen, Y.-Z.; Xu, X.-Y.; Zhang, X. M.; Yuan, W.-C. Zn‐Catalyzed Diastereo‐ and Enantioselective Dearomative [3+2] Cycloaddition Reaction of 2‐Nitroindoles and 2‐Nitrobenzothiophenes. Adv. Synth. Catal., 2018, 360, 2482-2487.
[http://dx.doi.org/10.1002/adsc.201800266]
[58]
Masson, G.; Lalli, C.; Benohoud, M.; Dagousset, G. Catalytic enantioselective [4 + 2]-cycloaddition: a strategy to access aza-hexacycles. Chem. Soc. Rev., 2013, 42(3), 902-923.
[http://dx.doi.org/10.1039/C2CS35370A] [PMID: 23172010]
[59]
Chu, J.C.K.; Dalton, D.M.; Rovis, T. Zn-catalyzed enantio- and diastereoselective formal [4 + 2] cycloaddition involving two electron-deficient partners: asymmetric synthesis of piperidines from 1-azadienes and nitro-alkenes. J. Am. Chem. Soc., 2015, 137(13), 4445-4452.
[http://dx.doi.org/10.1021/jacs.5b00033] [PMID: 25821893]
[60]
Zhao, S.; Cheng, S.; Liu, H.; Zhang, J.; Liu, M.; Yuan, W.; Zhang, X. Synthesis of chiral [2,3]-fused indolines through enantioselective dearomatization inverse-electron-demand Diels-Alder reaction/oxidation of indoles with 2-(2-nitrovinyl)-1,4-benzoquinone. Chem. Commun. (Camb.), 2020, 56(30), 4200-4203.
[http://dx.doi.org/10.1039/D0CC00693A] [PMID: 32167511]
[61]
(a) Liu, X.; Lin, L.; Feng, X. Chiral N,N′-dioxides: new ligands and organocatalysts for catalytic asymmetric reactions. Acc. Chem. Res., 2011, 44(8), 574-587.
[http://dx.doi.org/10.1021/ar200015s] [PMID: 21702458]
(b) Liu, X.; Lin, L.; Feng, X.; Chiral, N. N -dioxide ligands: synthesis, coordination chemistry and asymmetric catalysis. Org. Chem. Front., 2014, 1, 298-302.
[http://dx.doi.org/10.1039/c3qo00059a]
[62]
Chen, W.; Cai, Y.; Fu, X.; Liu, X.; Lin, L.; Feng, X. Enantioselective one-pot synthesis of 2-amino-4-(indol-3-yl)-4H-chromenes. Org. Lett., 2011, 13(18), 4910-4913.
[http://dx.doi.org/10.1021/ol2019949] [PMID: 21859119]
[63]
Kang, T.; Cao, W.; Hou, L.; Tang, Q.; Zou, S.; Liu, X.; Feng, X. Chiral Zinc(II)-Catalyzed Enantioselective Tandem α-Alkenyl Addition/Proton Shift Reaction of Silyl Enol Ethers with Ketimines. Angew. Chem. Int. Ed. Engl., 2019, 58(8), 2464-2468.
[http://dx.doi.org/10.1002/anie.201810961] [PMID: 30644632]
[64]
Xu, C.; Wang, K.; Li, D.; Lin, L.; Feng, X. Asymmetric Synthesis of Oxa-Bridged Oxazocines through a Catalytic RhII /ZnII Relay [4+3] Cycloaddition Reaction. Angew. Chem. Int. Ed. Engl., 2019, 58(51), 18438-18442.
[http://dx.doi.org/10.1002/anie.201910898] [PMID: 31613040]
[65]
Yin, C.; Hu, X-Q.; Hui, X-P.; Xu, P-F. Alkylzinc‐Mediated Addition of Alkynes to N‐Tosylaldimines: Enantioselective Synthesis of (E)‐(2‐En‐3‐ynyl)‐amines. Adv. Synth. Catal., 2009, 351, 1512-1516.
[http://dx.doi.org/10.1002/adsc.200900219]
[66]
Ishihara, J.; Nakadachi, S.; Watanabe, Y.; Hatakeyama, S. Lewis acid template-catalyzed asymmetric diels-alder reaction. J. Org. Chem., 2015, 80(4), 2037-2041.
[http://dx.doi.org/10.1021/acs.joc.5b00055] [PMID: 25621816]
[67]
Huang, H.; Zong, H.; Bian, G.; Song, L. Chemo- and Enantioselective Addition and β-Hydrogen Transfer Reduction of Carbonyl Compounds with Diethylzinc Reagent in One Pot Catalyzed by a Single Chiral Organometallic Catalyst. J. Org. Chem., 2015, 80(24), 12614-12619.
[http://dx.doi.org/10.1021/acs.joc.5b01871] [PMID: 26579727]
[68]
Węglarz, I.; Szewczyk, M.; Mlynarski, J. Zinc Acetate Catalyzed Enantioselective Reductive Aldol Reaction of Ketones. Adv. Synth. Catal., 2020, 362, 1532-1536.
[http://dx.doi.org/10.1002/adsc.201901457]
[69]
Zani, L.; Eichhorn, T.; Bolm, C. Dimethylzinc-mediated, enantioselective synthesis of propargylic amines. Chemistry, 2007, 13(9), 2587-2600.
[http://dx.doi.org/10.1002/chem.200601347] [PMID: 17186561]
[70]
Shiomi, N.; Kuroda, M.; Nakamura, S. Desymmetrization of aziridine with malononitrile using cinchona alkaloid amide/zinc(ii) catalysts. Chem. Commun. (Camb.), 2017, 53(11), 1817-1820.
[http://dx.doi.org/10.1039/C6CC09457K] [PMID: 28106898]
[71]
Chen, T.; Gan, L.; Wang, R.; Deng, Y.; Peng, F.; Lautens, M.; Shao, Z. Rhodium(I)/Zn(OTf)2 -Catalyzed Asymmetric Ring Opening/Cyclopropanation of Oxabenzonorbornadienes with Phosphorus Ylides. Angew. Chem. Int. Ed. Engl., 2019, 58(44), 15819-15823.
[http://dx.doi.org/10.1002/anie.201909596] [PMID: 31489736]
[72]
Liu, R.; Yang, S.; Chen, Z.; Kong, X.; Ding, H.; Fang, X. Lewis-Acid-Catalyzed Asymmetric Alkynylation of Alkynyl 1,2-Diketones: Controllable Formation of 3(2H)-Furanones and α-Hydroxy Ketones. Org. Lett., 2020, 22(17), 6948-6953.
[http://dx.doi.org/10.1021/acs.orglett.0c02505] [PMID: 32822188]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy