Generic placeholder image

Current Organic Chemistry

Editor-in-Chief

ISSN (Print): 1385-2728
ISSN (Online): 1875-5348

Mini-Review Article

New Anticancer Vinca Alkaloids in the Last Decade - A Mini-Review

Author(s): Szabolcs Mayer, Péter Keglevich*, András Keglevich and László Hazai

Volume 25, Issue 10, 2021

Published on: 16 February, 2021

Page: [1224 - 1234] Pages: 11

DOI: 10.2174/1385272825666210216123256

Price: $65

Abstract

The chemistry and pharmacology of the important Vinca alkaloids such as vinblastine and vincristine used in anticancer therapy are still investigated widely. Several new derivatives, e.g., vinflunine, vinorelbine, and vindesine, have been synthesized and become successful medicines in anti-cancer therapy. In 2012, we published a paper that reviewed the Vinca derivatives. Nevertheless, the interest in the preparation of new modified structures is not decreasing either in recent years. In this review, the vinblastine-type molecules with several substituents, e.g., amide, nitrile, hydrazide, substituted side chains, etc. in different positions of catharanthine and/or vindoline cores are presented. An important part of the review is the derivatization of the monomer alkaloid vindoline, which possesses no antitumor effect. Additionally, new hybrid molecules of these alkaloids are also discussed in this mini-review.

Keywords: Vinca alkaloids, vinblastine, vincristine, new derivatives, anticancer therapy, hybrid molecules.

Graphical Abstract
[1]
Blasko, G.; Cordell, G.A. Isolation, Structure Elucidation, and Biosynthesis of The Bisindole Alkaloids of Catharanthus. In: The Alkaloids; Brossi, A.; Suffness, M. (Eds.); Academic Press Inc. New York, NY, USA, 1990; 37, pp. 1-240.
[2]
Moudi, M.; Go, R.; Yien, C.Y.; Nazre, M. Vinca alkaloids. Int. J. Prev. Med., 2013, 4, 1231-1235.
[PMID: 24404355]
[3]
Sertel, S.; Fu, Y.; Zu, Y.; Rebacz, B.; Konkimalla, B.; Plinkert, K.P.; Krämer, A.; Gertsch, J.; Efferth, T. Molecular docking and pharmacogenomics of vinca alkaloids and their monomeric precursors, vindoline and catharanthine. Biochem. Pharmacol., 2011, 81, 723-735.
[http://dx.doi.org/10.1016/j.bcp.2010.12.026] [PMID: 21219884]
[4]
Sottomayor, M.; Barceló, R.A. The Vinca alkaloids: from biosynthesis and accumulation in plant cells, to uptake, activity and metabolism in animal cells. Studies in Nat. Prod. Chem., 2006, 33, 813-857.
[http://dx.doi.org/10.1016/S1572-5995(06)80041-4]
[5]
Types of chemotherapy agents and regimens: http://chemoth.com/types/vinca-alkaloids (Accessed on December 8, 2020).
[6]
Gigant, B.; Wang, C.; Ravelli, B.G.R.; Roussi, F.; Steinmetz, O.M.; Curmi, A.P.; Sobel, A.; Knossow, M. Structural basis for the regulation of tubulin by vinblastine. Nature Lett., 2005, 435, 519-522.
[http://dx.doi.org/10.1038/nature03566] [PMID: 15917812]
[7]
Wang, Y.; Benz, W.F.; Wu, Y.; Wang, Q.; Chen, Y.; Chen, X.; Li, H.; Zhang, Y.; Zhang, R.; Yang, J. Structural insights into the pharmacophore of vinca domain inhibitors of microtubules. Molecular Pharmacol., 2016, 89, 233-242.
[http://dx.doi.org/10.1124/mol.115.100149] [PMID: 26660762]
[8]
Lee, C.T.; Huang, Y.W.; Yang, C.H.; Huang, K.S. Drug delivery systems and combination therapy by using vinca alkaloids. Curr. Top. Med. Chem., 2015, 15, 1491-1500.
[http://dx.doi.org/10.2174/1568026615666150414120547] [PMID: 25877096]
[9]
Levêque, D.; Jehl, F. Molecular pharmacokinetics of catharanthus (vinca) alkaloids. J. Clin. Pharmacol., 2007, 47, 579-588.
[http://dx.doi.org/10.1177/0091270007299430] [PMID: 17442684]
[10]
Eric, R. Microtubule-Targeting Natural Products. In: Holland, F.J.; Frei, E. Cancer Medicine; Hamilton (ON): B.C. Decker, BC Decker Inc, 2003.
[11]
Barthomeuf, C.; Grassi, J.; Demeule, M.; Fournier, C.; Boivin, D.; Béliveau, R. Inhibition of P-glycoprotein transport function and reversion of MDR1 multidrug resistance by cnidiadin. Cancer Chemother. Pharmacol., 2005, 56, 173-181.
[http://dx.doi.org/10.1007/s00280-004-0914-y] [PMID: 15824923]
[12]
Hu, L.; Song, W.; Meng, Y.; Guo, D.; Liu, X.; Hu, L. Synthesis and structure-activity relationship studies of cytotoxic vinorelbine amide analogues. Bioorg. Med. Chem. Lett., 2012, 22, 7547-7550.
[http://dx.doi.org/10.1016/j.bmcl.2012.10.024] [PMID: 23107481]
[13]
Allemann, O.; Brutsch, M.; Lukesh, III, C.J.; Brody, M.D.; Boger, L.D. Synthesis of a potent vinblastine: rationally designed added benign complexity. J. Am. Chem. Soc., 2016, 138, 8376-8379.
[http://dx.doi.org/10.1021/jacs.6b04330] [PMID: 27356080]
[14]
Keglevich, P.; Hazai, L.; Kalaus, G.; Szántay, C. Modifications on the basic skeleton of vinblastine and vincristine. Molecules, 2012, 17, 5893-5914.
[http://dx.doi.org/10.3390/molecules17055893] [PMID: 22609781]
[15]
Narender, T. Recent advances in the natural products drug discovery. J. Pharmacognosy, 2012, 3, 108-111.
[16]
Sisodiya, S.P. Plant derived anticancer agents: a review. Int. J. Res. Dev. Pharm. Life Sci., 2013, 2(2), 293-308.
[17]
Kauroo, S.; Govinden-Soulange, J.; Marie, E.P.D. Endemic plants from mauritius islands as potential anticancer bioresources. Eur. J. Biomed. Pharm. Sci., 2015, 2, 61-84.
[18]
Yu, F.; De Luca, V. ATP-binding cassette transporter controls leaf surface secretion of anticancer drug components in Catharanthus roseus. Proc. Natl. Acad. Sci., 2013, 110, 15830-15835.
[http://dx.doi.org/10.1073/pnas.1307504110] [PMID: 24019465]
[19]
Khursheed, A.; Rather, A.M.; Rashid, R. Plant-based natural compounds and herbal extracts as promising apoptopic agents: their implications for cancer prevention and treatment. Adv. Biomed. Pharma., 2016, 3, 245-269.
[http://dx.doi.org/10.19046/abp.v03i04.08]
[20]
Hua, F.; Shang, S.; Hu, Z. Seeking new anti-cancer agents from autophagy-regulating natural products. J. Asian Nat. Prod. Res., 2017, 19, 305-313.
[http://dx.doi.org/10.1080/10286020.2017.1304385] [PMID: 28347180]
[21]
Barik, K.; Sao, S.; Parihar, K.D. Phytochemical and pharmaceutical panorama of Catharanthus roseus. Indo Amer. J. Pharmaceut. Sci., 2016, 3, 288-293.
[22]
Pereira, D.M.; Ferreres, F.; Oliveira, J.M.A.; Gaspar, L.; Faria, J.; Valentao, P.; Sottomayor, M.; Andrade, P.B. Pharmacological effects of Catharanthus roseus root alkaloids in acetylcholinesterase inhibition and cholinergic neurotransmission. Phytomedicine, 2010, 17, 645-652.
[http://dx.doi.org/10.1016/j.phymed.2009.10.008] [PMID: 19962870]
[23]
Arias, H.R.; Feuerbach, D.; Targowska-Duda, K.M.; Jozwiak, K. Structure-Activity relationship of ibogaine analogs interacting with nicotinic acetylcholine receptors in different conformational states. Int. J. Biochem. Cell Biol., 2011, 43, 1330-1339.
[http://dx.doi.org/10.1016/j.biocel.2011.05.011] [PMID: 21642011]
[24]
Arias, H.R.; Feuerbach, D.; Targowska-Duda, K.M.; Jozwiak, K. Catharanthine alkaloids are noncompetitive antagonists of muscle-type nicotinic acetylcholine receptors. Neurochem. Int., 2010, 57, 153-161.
[http://dx.doi.org/10.1016/j.neuint.2010.05.007] [PMID: 20493225]
[25]
Jadhav, A.; Liang, W.; Papageorgiou, P.C.; Shoker, A.; Kanthan, S.C.; Balsevich, J.; Lavy, A.S.; Heximer, S.; Backx, P.H.; Gopalakrishnan, V. Catharanthine dilates small mesenteric arteries and decreases heart rate and cardiac contractility by inhibition of voltage-operated calcium channels on vascular smoots muscle cells and cardiomyocytes. J. Pharmacol. Exp. Ther., 2013, 345, 383-392.
[http://dx.doi.org/10.1124/jpet.112.199661] [PMID: 23532933]
[26]
Fernández-Pérez, F.; Almagro, L.; Pedreno, M.A.; Ros, L.V.G. Synergistic and cytotoxic action of indole alkaloids produced from elicited cell cultures of Catharanthus roseus. Pharmaceut Biol., 2013, 51, 304-310.
[http://dx.doi.org/10.3109/13880209.2012.722646] [PMID: 23137274]
[27]
Karhu, E.; Isojarvi, J.; Vuorela, P.; Hanski, L.; Fallarero, A. Identification and privileged antichlamydial natural products by a ligand-based strategy. J. Nat. Prod., 2017, 80, 2602-2608.
[http://dx.doi.org/10.1021/acs.jnatprod.6b01052] [PMID: 29043803]
[28]
Li, X-T.; He, M-L.; Zhou, Z-Y.; Jiang, Y.; Cheng, L. The antitumor activity of PNA modified vinblastine cationic liposomes on Lewis lung tumor cells: in vitro and in vivo evaluation. Int. J. Pharm., 2015, 487, 223-233.
[http://dx.doi.org/10.1016/j.ijpharm.2015.04.035] [PMID: 25895716]
[29]
Nepali, K.; Sharma, S.; Sharma, M.; Bedi, P.M.S.; Dhar, K.L. Rational approaches, design, strategies, structure activity relationship and mechanistic insights for anticancer hybrids. Eur. J. Med. Chem., 2014, 77, 422-487.
[http://dx.doi.org/10.1016/j.ejmech.2014.03.018] [PMID: 24685980]
[30]
Wang, N.; Liu, J.; Wang, C.; Bai, L.; Jiang, X. Asymmetric total syntheses of (-)-jerantinines A, C, and E, (-)-16-methoxytabersonine, (-)-vindoline, and (+)-vinblastine. Org. Lett., 2018, 20, 292-295.
[http://dx.doi.org/10.1021/acs.orglett.7b03694] [PMID: 29272137]
[31]
White, L.V.; Banwell, M.G. Conversion of the eznymatically derived (1S,2S)-3-bromocyclohexa-3,5-diene-1,2-diol in to enantiomerically pure compounds embodying the pentacyclic framework of vindoline. J. Org. Chem., 2016, 81, 1617-1626.
[http://dx.doi.org/10.1021/acs.joc.5b02788] [PMID: 26788805]
[32]
Beatty, J.W.; Stephenson, C.R.J. Synthesis of (-)-pseudotabersonine, (-)-pseudovincadifformine, and (+)-coronaridine enabled by photoredox catalysis in flow. J. Am. Chem. Soc., 2014, 136, 10270-10273.
[http://dx.doi.org/10.1021/ja506170g] [PMID: 25003992]
[33]
Allemann, O.; Cross, R.M.; Brütsch, M.M.; Radakovic, A.; Boger, D.L. Key analogs of a uniquely potent synthetic vinblastine that contain modifications of the C20¢ ethyl substituent. Bioorg. Med. Chem. Lett., 2017, 27, 3055-3059.
[http://dx.doi.org/10.1016/j.bmcl.2017.05.058] [PMID: 28551101]
[34]
Zhang, Y.; Xue, Y.; Li, G.; Yuan, H.; Luo, T. Enantioselective synthesis of Iboga alkaloids and vinblastine via rearrangements of quaternary ammoniums. Chem. Sci., 2016, 7, 5530-5536.
[http://dx.doi.org/10.1039/C6SC00932H] [PMID: 30034694]
[35]
Lukesh, III, J.C.; Carney, D.W.; Dong, H.; Cross, R.M.; Shukla, V.; Duncan, K.K.; Yang, S.; Brody, D.M.; Brütsch, M.M.; Radakovic, A.; Boger, D.L. Vinblastine 20¢ amides: synthetic analogues that maintain or improve potency and simultaneously overcome Pgp-derived efflux and resistance. J. Med. Chem., 2017, 60, 7591-7604.
[http://dx.doi.org/10.1021/acs.jmedchem.7b00958] [PMID: 28857558]
[36]
Leggans, E.K.; Duncan, K.K.; Barker, T.J.; Schleicher, K.D.; Boger, D.L. A remarkable series of vinblastine analogues displaying enhanced activity and an unprecedented tubulin binding steric tolerance: C20¢ urea derivatives. J. Med. Chem., 2013, 56, 628-639.
[http://dx.doi.org/10.1021/jm3015684] [PMID: 23244701]
[37]
Silvestri, R. New prospects for vinblastine analogues as anticancer agents. J. Med. Chem., 2013, 56, 625-627.
[http://dx.doi.org/10.1021/jm400002j] [PMID: 23316748 ]
[38]
Barker, T.J.; Duncan, K.K.; Otrubova, K.; Boger, D.L. Potent vinblastine C20’ureas displaying additionally improved activity against a vinblastine-resistant cancer cell line. Med. Chem. Lett., 2013, 4, 985-988.
[http://dx.doi.org/10.1021/ml400281w]
[39]
Carney, D.W.; Lukesh, III, J.C.; Brody, D.M.; Brütsch, M.M.; Boger, D.L. Ultrapotent vinblastines in which added molecular complexity further disrupts the target tubulin dimer-dimer interface. Proc. Natl. Acad. Sci., 2016, 113, 9691-9698.
[http://dx.doi.org/10.1073/pnas.1611405113] [PMID: 27512044]
[40]
Vo, N.B.; Nguyen, L.A.; Pham, T.L.; Doan, D.T.; Nguyen, T.B. Straightforward access to new vinca-alkaloids via selective reduction of a nitrile containing anhydrovinblastine derivative. Tetrahedron Lett., 2017, 58, 2503-2506.
[http://dx.doi.org/10.1016/j.tetlet.2017.05.054]
[41]
Gherbovet, O.; Coderch, C.; Alvarez, M.C.G.; Bignon, J.; Thoret, S.; Martin, M-T.; Guéritte, F.; Gago, F.; Roussi, F. Synthesis and biological evaluation of a new series of highly functionalized 7¢-homo-anhydrovinblastine derivatives. J. Med. Chem., 2013, 56, 6088-6100.
[http://dx.doi.org/10.1021/jm4004347] [PMID: 23822556]
[42]
Gherbovet, O.; La Spisa, F.; Thoret, S.; Alvarez, M.C.G.; Levaique, H.; Bignon, J.; Roussi, F. Synthesis and biological evaluation of C-13¢ substituted 7¢-homo-anhydrovinblastine derivatives. Bioorg. Med. Chem. Lett., 2015, 25, 1771-1773.
[http://dx.doi.org/10.1016/j.bmcl.2015.02.045] [PMID: 25804719]
[43]
Gherbovet, O.; Alvarez, M.C.G.; Bignon, J.; Roussi, F. Original vinca derivatives: from P-glycoproteinsubstrates to P-glycoprotein inhibitors. J. Med. Chem., 2016, 59, 10774-10780.
[http://dx.doi.org/10.1021/acs.jmedchem.6b00525] [PMID: 27753480]
[44]
Ngo, Q.A.; Nguyen, L.A.; Vo, N.B.; Nguyen, T.H.; Roussi, F.; Nguyen, T.H.; Nguyen, V.T. Synthesis and antiproliferative activity of new vinca alkaloids containing an α,β-unsaturated aromatic side chain. Bioorg. Med. Chem. Lett., 2015, 25, 5597-5600.
[http://dx.doi.org/10.1016/j.bmcl.2015.10.040] [PMID: 26522953]
[45]
Keglevich, P.; Ábrányi-Balogh, P.; Szigetvári, Á.; Szántay, Cs., Jr; Szántay, Cs.; Hazai, L. Studies on the mechanism of quaternization of the catharanthine part of vinblastine and vincristine. Tetrahedron Lett., 2016, 57, 1672-1677.
[http://dx.doi.org/10.1016/j.tetlet.2016.03.004]
[46]
Giovanelli, E.; Moisan, L.; Comesse, S.; Leroux, S.; Rousseau, B.; Hellier, P.; Nicolas, M.; Doris, E. Synthesis of fluorinated catharabthine analogues and investigation of their biomimetic coupling with vindoline. Org. Biomol. Chem., 2013, 11, 5885-5891.
[http://dx.doi.org/10.1039/c3ob41170b] [PMID: 23903701]
[47]
Schleicher, K.D.; Sasaki, Y.; Tam, A.; Kato, D.; Duncan, K.K.; Boger, D.L. Total synthesis and evaluation of vinblastine analogues containing systematic deep-seating modifications in the vindoline subunit ring system: core redesign. J. Med. Chem., 2013, 56, 483-495.
[http://dx.doi.org/10.1021/jm3014376] [PMID: 23252481]
[48]
Song, W.; Hu, L.; Meng, Y.; Ma, L.; Guo, D.; Liu, X.; Hu, L. The effect of vindoline C-16 substituents on the biomimetic coupling reaction: synthesis and cytotoxicity evaluation of the corresponding vinorelbine analogues. Bioorg. Med. Chem. Lett., 2012, 22, 3485-3487.
[http://dx.doi.org/10.1016/j.bmcl.2012.03.082] [PMID: 22525316]
[49]
Shao, Y.; Ding, H.; Tang, W.D.; Lou, L.G.; Hu, L.H. Synthesis and structure–activity relationships study of novel anti-tumor carbamate anhydrovinblastine analogues. Bioorg. Med. Chem., 2007, 15, 5061-5075.
[http://dx.doi.org/10.1016/j.bmc.2007.05.045] [PMID: 17544278]
[50]
Xiao, C.; Tian, Y.; Lei, M.; Chen, F.; Gan, X.; Yao, X.; Shen, X.; Chen, J.; Hu, L. Synthesis and glucose-stimulate insulin secretion (GSIS) evaluation of vindoline derivatives. Bioorg. Med. Chem. Lett., 2017, 27, 1316-1318.
[http://dx.doi.org/10.1016/j.bmcl.2016.09.064] [PMID: 28162858]
[51]
Noble, R.L.; Beer, M.D.C.T.; Mcintyre, R.W. Biological effects of dihydrovinblastine. Cancer, 1967, 20, 885-890.
[http://dx.doi.org/10.1002/1097-0142(1967)20:5<885:AID-CNCR2820200549>3.0.CO;2-V] [PMID: 6024297]
[52]
Ishikawa, H.; Colby, D.A.; Seto, S.; Va, P.; Tam, A.; Kakei, H.; Rayl, T.J.; Hwang, I.; Boger, D.L. Total synthesis of vinblastine, vincristine, related natural products, and key structural analogues. J. Am. Chem. Soc., 2009, 131, 4904-4916.
[http://dx.doi.org/10.1021/ja809842b] [PMID: 19292450]
[53]
Keglevich, P.; Hazai, L.; Dubrovay, Z.S.; Dékány, M.; Szántay, C.S. Jr.; Kalaus, G.Y.; Szántay, C.S. Bisindole alkaloids condensed with a cyclopropane ring. Part 1. 4,15-Cyclopropanovinblastine and -vincristine. Heterocycles, 2014, 89, 653-668.
[http://dx.doi.org/10.3987/COM-13-12918]
[54]
Keglevich, P.; Hazai, L.; Dubrovay, Zs.; Sánta, Zs.; Dékány, M.; Szántay, Cs., Jr; Kalaus, Gy.; Szántay, Cs. Bisindole alkaloids condensed with a cyclopropane ring. Part 2. Cyclopropano-vinorelbine and its derivatives. Heterocycles, 2015, 90, 316-326.
[http://dx.doi.org/10.3987/COM-14-S(K)20]
[55]
Keglevich, P.; Hazai, L.; Kalaus, G.Y.; Szántay, C.S. Cyclopropanation of some alkaloids. Period. Polytech. Chem. Eng., 2015, 59, 3-15.
[http://dx.doi.org/10.3311/PPch.7257]
[56]
Mayer, S.; Keglevich, A.; Sepsey, F.C.; Bölcskei, H.; Ilkei, V.; Keglevich, P.; Hazai, L. Results in chemistry of natural organic compounds. synthesis of new anticancer vinca alkaloids and flavone alkaloids. Chemistry, 2020, 2, 714-726.
[http://dx.doi.org/10.3390/chemistry2030046]
[57]
Keglevich, A.; Mayer, S.Z.; Pápai, R.; Szigetvári, Á.; Sánta, Zs.; Dékány, M.; Szántay, C.S., Jr; Keglevich, P.; Hazai, L. Attempted synthesis of vinca alkaloids condensed with three-membered rings. Molecules, 2018, 23, 2574-2595.
[http://dx.doi.org/10.3390/molecules23102574] [PMID: 30304796]
[58]
Szigetvári, Á.; Keglevich, A.; Keglevich, P.; Dékány, M.; Hazai, L.; Szántay, C.S. A mainly NMR-based structure elucidation of a surprising vindoline trimer with the aid of non-uniform sampled 1H-13C HSQC and HMBC spectra. Struct. Chem., 2019, 30, 795-804.
[http://dx.doi.org/10.1007/s11224-018-1267-1]
[59]
Salerno, C.; Capuozzo, E. Effects of the semisynthetic bis-indole derivativeKAR-2 on store-operated calcium entry in human neutrophils. Arch. Biochem. Biophys., 2013, 537, 133-137.
[http://dx.doi.org/10.1016/j.abb.2013.07.011] [PMID: 23876240]
[60]
Serpe, L.; Gallicchio, M.; Canaparo, R.; Dosio, F. Targeted treatment of folate receptor-positive platinum-resistant ovarian cancer and companion diagnostics, with specific focus on vintafolide and etarfolatide. Pharmacogenom. Pers. Med., 2014, 7, 31-42.
[PMID: 24516337]
[61]
Lei, X.; Chen, M.; Nie, Q.; Hu, J.; Zhuo, Z.; Yiu, A. Chen. H.; Xu, N.; Huang, M.; Ye, K.; Bai, L.; Ye, W.; Zhang, D. In vitro and in vivo antiangiogenic activity of desacetylvinblastine monohydrazide through inhibition of VEGFR2 and Axl pathways. Am. J. Cancer Res., 2016, 6, 843-858.
[PMID: 27186435]
[62]
Sun, G.; Lv, X.; Zhang, Y.; Lei, M.; Hu, L. Palladium-catalyzed formylation of aryl iodides with HCOOH as CO source. Org. Lett., 2017, 19, 4235-4238.
[http://dx.doi.org/10.1021/acs.orglett.7b01882] [PMID: 28782963]
[63]
Wang, Y.; Zhan, Z.; Zhou, Y.; Lei, M.; Hu, L. A green, efficient, and rapid procedure for the hydrogenation of nitroarenes to formanilides in water. Monatsh. Chem., 2018, 149, 527-533.
[http://dx.doi.org/10.1007/s00706-017-2071-0]
[64]
Keglevich, A.; Hegedűs, L.; Péter, L.; Gyenese, J.; Szántay, Cs.; Dubrovay, Zs.; Dékány, M.; Szigetvári, Á.; Martins, A.; Molnár, J.; Hunyadi, A.; Keglevich, P.; Hazai, L. anomalous products in the halogenation reactions of vinca alkaloids. Curr. Org. Chem., 2016, 20, 2639-2646.
[http://dx.doi.org/10.2174/1385272820666160617080202]
[65]
Mayer, S.Z.; Keglevich, P.; Ábrányi-Balogh, P.; Szigetvári, Á.; Dékány, M.; Szántay, C.S. Jr.; Hazai, L. Attempted diels-alder reactions on vindoline derivatives. Period. Polytech. Chem. Eng., 2017, 61, 258-263.
[http://dx.doi.org/10.3311/PPch.11087]
[66]
Keglevich, P.; Hazai, L.; Gorka-Kereskényi, Á.; Péter, L.; Gyenese, J.; Lengyel, Z.S.; Kalaus, G.Y.; Dubrovay, Z.S.; Dékány, M.; Orbán, E.; Szabó, I.; Bánóczi, Z.; Szántay, C.S. Jr.; Szántay, CS. Synthesis and in vitro antitumor effect of new vindoline derivatives coupled with amino acid esters. Heterocycles, 2013, 87, 2299-2317.
[http://dx.doi.org/10.3987/COM-13-12827]
[67]
Bánóczi, Z.; Keglevich, A.; Szabó, I.; Ranđelović, I.; Hegedüs, Z.; Regenbach, F.L.; Keglevich, P.; Lengyel, Z.S.; Gorka‐Kereskényi, Á.; Dubrovay, Z.S.; Háda, V.; Szigetvári, Á.; Szántay, C.S., Jr Hazai, L.; Tóvári, J.; Hudecz, F. The effect of conjugation on antitumor activity of vindoline derivatives with octaarginine, a cell-penetrating peptide. J. Pept. Sci., 2018, 24, e3118 (1-8).
[http://dx.doi.org/10.1002/psc.3118]
[68]
Keglevich, A.; Szigetvári, Á.; Dékány, M.; Szántay, C.S. Jr.; Keglevich, P.; Hazai, L. Synthesis of vinca alkaloid-triphenylphosphine derivatives having potential antitumor effect. Phosphorus Sulfur Silicon Relat. Elem., 2019, 606-609.
[http://dx.doi.org/10.1080/10426507.2018.1550780 ]
[69]
Keglevich, A.; Szigetvári, Á.; Dékány, M.; Szántay, C.S. Jr.; Keglevich, P.; Hazai, L. Synthesis and in vitro antitumor effect of new vindoline derivatives coupled with triphenylphosphine. Curr. Org. Chem., 2019, 23, 852-858.
[http://dx.doi.org/10.2174/1385272823666190524083236]
[70]
Keglevich, A.; Zsiros, V.; Keglevich, P.; Szigetvári, Á.; Dékány, M.; Szántay, C.S. Jr.; Mernyák, E.; Wölfling, J.; Hazai, L. Synthesis and in vitro antitumor effect of new vindoline-steroid hybrids. Curr. Org. Chem., 2019, 23, 958-966.
[http://dx.doi.org/10.2174/1385272823666190614113218]
[71]
Keglevich, A.; Dányi, L.; Rieder, A.; Horváth, D.; Szigetvári, Á.; Dékány, M.; Szántay, Cs., Jr; Latif, A.D.; Hunyadi, A.; Zupkó, I.; Keglevich, P.; Hazai, L. Synthesis and cytotoxic activity of new vindoline derivatives coupled to natural and synthetic pharmacophores. Molecules, 2020, 25, 1010-1029.
[http://dx.doi.org/10.3390/molecules25041010] [PMID: 32102414]
[72]
Zhou, Y.; Chen, P.; Lv, X.; Niu, J.; Wang, Y.; Lei, M.; Hu, L. A facile and efficient method for the synthesis of N-substituted isoindolin-1-one derivatives under Pd(OAc)2/HCOOH system. Tetrahedron Lett., 2017, 58, 2232-2235.
[http://dx.doi.org/10.1016/j.tetlet.2017.04.073]
[73]
Ilkei, V.; Bana, P.; Tóth, F.; Palló, A.; Holczbauer, T.; Czugler, M.; Sánta, Z.S.; Dékány, M.; Szigetvári, Á.; Hazai, L.; Szántay, C.S. Jr.; Szántay, C.S.; Kalaus, Gy. A simple synthesis of bannucine and 5¢-epibannucine from (−)-vindoline. Tetrahedron, 2015, 71, 9579-9586.
[http://dx.doi.org/10.1016/j.tet.2015.10.020]
[74]
Gotoh, H.; Sears, J.E.; Eschenmoser, A.; Boger, D.L. New insights into the mechanism and an expanded scope of the Fe(III) mediated vinblastine coupling reaction. J. Am. Chem. Soc., 2012, 134, 13240-13243.
[http://dx.doi.org/10.1021/ja306229x] [PMID: 22856867]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy