Generic placeholder image

Current Nanoscience


ISSN (Print): 1573-4137
ISSN (Online): 1875-6786

Review Article

Recent Innovations in Nano Container-Based Self-Healing Coatings in the Construction Industry

Author(s): Abhinay Thakur, Savas Kaya and Ashish Kumar*

Volume 18, Issue 2, 2022

Published on: 16 February, 2021

Page: [203 - 216] Pages: 14

DOI: 10.2174/1573413717666210216120741

Price: $65


Globally, the maintenance and repair of infrastructure cost billions of dollars and impact the day-to-day life of people. Corrosion of infrastructure and metals used in the manufacture of goods and supplies is a major cause of deterioration in the construction industry. Nanocontainerbased self-healing coatings attract enormous scientific attention as they offer a wide range of applications in conjunction with long-lasting inhibition performance. These coatings prevent the rate of crack progression by releasing active agents from micro/nanocontainers in a controllable manner and heal crack, thereby mitigating corrosion. The potential of such coatings to heal local damage induced by climatic causes or by mechanical damage is a significant contributing factor to their desirability. This review is a comprehensive analysis of nanocontainers used to manufacture self-healing anticorrosive coatings as well as explains their self-healing mechanism. The technique used to develop nanocontainers such as layer-by-layer assembly of layered double hydroxide has been clarified. An attempt has also been made to cover the latest developments in the manufacture of nanocontainermediated self-healing corrosion coatings used in several construction industries.

Keywords: Protective coating, controlled release, self-healing coating, corrosion protection, inhibitors, nanocontainer.

Graphical Abstract
Shchukin, D.G.; Lamaka, S.V.; Yasakau, K.A.; Zheludkevich, M.L.; Ferreira, M.G.S.; Möhwald, H. Active anticorrosion coatings with halloysite nanocontainers. J. Phys. Chem. C, 2008, 112(4), 958-964.
Bashir, S.; Thakur, A.; Lgaz, H.; Chung, I-M.; Kumar, A. Corrosion inhibition performance of acarbose on mild steel corrosion in acidic medium: an experimental and computational study. Arab. J. Sci. Eng., 2020, 1-11.
Vimalanandan, A.; Lv, L.P.; Tran, T.H.; Landfester, K.; Crespy, D.; Rohwerder, M. Redox-responsive self-healing for corrosion protection. Adv. Mater., 2013, 25(48), 6980-6984.
[] [PMID: 24108578]
Stankiewicz, A.; Szczygieł, I.; Szczygieł, B. Self-healing coatings in anti-corrosion applications. J. Mater. Sci., 2013, 48(23), 8041-8051.
Wei, H.; Wang, Y.; Guo, J.; Shen, N.Z.; Jiang, D.; Zhang, X.; Yan, X.; Zhu, J.; Wang, Q.; Shao, L.; Lin, H.; Wei, S.; Guo, Z. Advanced micro/nanocapsules for self-healing smart anticorrosion coatings. J. Mater. Chem. A Mater. Energy Sustain., 2015, 3(2), 469-480.
Vijayan, P.; AlMaadeed, M.A. ‘containers’ for self-healing epoxy composites and coating: trends and advances. Express Polym. Lett., 2016, 10(6), 506-524.
Aliofkhazraei, M.; Makhlouf, A.S.H. Handbook of Nanoelectrochemistry: Electrochemical Synthesis Methods, Properties, and Characterization Techniques; Handb. Nanoelectrochemistry Electrochem. Synth. Methods, Prop. Charact. Tech, 2016, pp. 1-1451.
Bashir, S.; Thakur, A.; Lgaz, H.; Chung, I.M.; Kumar, A. Corrosion inhibition efficiency of bronopol on aluminium in 0.5 M HCl solution: insights from experimental and quantum chemical studies. Surf. Interfaces, 2020, 20, 100542.
Liang, Y.; Wang, M.; Wang, C.; Feng, J.; Li, J.; Wang, L.; Fu, J. Facile synthesis of smart nanocontainers as key components for construction of self-healing coating with superhydrophobic surfaces. Nanoscale Res. Lett., 2016, 11(1), 231.
[] [PMID: 27121439]
Turkyilmazoglu, M. Fully developed slip flow in a concentric annuli via single and dual phase nanofluids models. Comput. Methods Programs Biomed., 2019, 179, 104997.
[] [PMID: 31443853]
Turkyilmazoglu, M. Single phase nanofluids in fluid mechanics and their hydrodynamic linear stability analysis. Comput. Methods Programs Biomed., 2020, 187, 105171.
[] [PMID: 31785535]
Turkyilmazoglu, M. Nanoliquid film flow due to a moving substrate and heat transfer. Eur. Phys. J. Plus, 2020, 135(10), 1-13.
Qian, B.; Song, Z.; Hao, L.; Wang, W.; Kong, D. Self-healing epoxy coatings based on nanocontainers for corrosion protection of mild steel. J. Electrochem. Soc., 2017, 164(2), C54-C60.
Huang, Y.; Deng, L.; Ju, P.; Huang, L.; Qian, H.; Zhang, D.; Li, X.; Terryn, H.A.; Mol, J.M.C. Triple-action self-healing protective coatings based on shape memory polymers containing dual-function microspheres. ACS Appl. Mater. Interfaces, 2018, 10(27), 23369-23379.
[] [PMID: 29926725]
Nguyen-Tri, P.; Nguyen, T.A.; Carriere, P.; Ngo Xuan, C. Nanocomposite coatings: preparation, characterization, properties, and applications. Int. J. Corros., 2018, 2, 1-19.
Bashir, S.; Lgaz, H.; Chung, I.M.; Kumar, A. Effective green corrosion inhibition of aluminium using analgin in acidic medium: an experimental and theoretical study. Chem. Eng. Commun., 2020, 1, 100542.
Zhang, F.; Ju, P.; Pan, M.; Zhang, D.; Huang, Y.; Li, G.; Li, X. Self-healing mechanisms in smart protective coatings: a review. Corros. Sci., 2018, 144, 74-88.
Rule, J.D.; Sottos, N.R.; White, S.R. effect of microcapsule size on the performance of self-healing polymers. Polymer (Guildf.), 2007, 48(12), 3520-3529.
Kirkby, E.L.; Rule, J.D.; Michaud, V.J.; Sottos, N.R.; White, S.R.; Månson, J.A.E. Embedded shape-memory alloy wires for improved performance of self-healing polymers. Adv. Funct. Mater., 2008, 18(15), 2253-2260.
Guadagno, L.; Raimondo, M.; Naddeo, C.; Longo, P.; Mariconda, A.; Binder, W.H. Healing efficiency and dynamic mechanical properties of self-healing epoxy systems. Smart Mater. Struct., 2014, 23(4), 045001.
Jong, K.L.; Sun, J.H.; Liu, X.; Sung, H.Y. Characterization of dicyclopentadiene and 5-ethylidene-2-norbornene as self-healing agents for polymer composite and its microcapsules. Macromol. Res., 2004, 12(5), 478-483.
Patel, A.J.; Sottos, N.R.; Wetzel, E.D.; White, S.R. Autonomic healing of low-velocity impact damage in fiber-reinforced composites, Composites Part A. In: Applied Science and Manufacturing, 2010, 41(3), 360-368.
Jin, H.; Mangun, C.L.; Stradley, D.S.; Moore, J.S.; Sottos, N.R.; White, S.R. Self-healing thermoset using encapsulated epoxy-amine healing chemistry. Polymer (Guildf.), 2012, 53(2), 581-587.
Coope, T.S.; Mayer, U.F.J.; Wass, D.F.; Trask, R.S.; Bond, I.P. Self-healing of an epoxy resin using Scandium(III) Triflate as a catalytic curing agent. Adv. Funct. Mater., 2011, 21(24), 4624-4631.
Yadav, J.S.; Kumar, V.N.; Rao, R.S.; Priyadarshini, A.D.; Rao, P.P.; Reddy, B.V.S.; Nagaiah, K. Sc(OTf)3 catalyzed highly rapid and efficient synthesis of β-Enamino compounds under solvent-free conditions. J. Mol. Catal. Chem., 2006, 256(1-2), 234-237.
Xiao, D.S.; Yuan, Y.C.; Rong, M.Z.; Zhang, M.Q. Self-healing epoxy based on cationic chain polymerization. Polymer (Guildf.), 2009, 50(13), 2967-2975.
Madara, S.R.; Sarath Raj, N.S.; Selvan, C.P. Review of research and developments in self healing composite materials. IOP Conf. Ser. Mater. Sci. Eng., 2018, 346(1), 012011.
Benito, S.M. Functionalized polymer nanocontainers for targeted drug delivery. (Doctoral dissertation, University_of_Basel). 2006.
Abulmagd, S.; Etman, Z.A. Nanotechnology in repair and protection of structures state-of-the-art. J. Civ. Environ. Eng., 2018, 8, 2.
Stankiewicz, A. Self-Healing Nanocoatings for Protection against Steel Corrosion; Elsevier Ltd, 2019, pp. 303-335.
Lim, A.T.O.; Cui, C.; Jang, H.D.; Huang, J. Self-healing microcapsule-thickened oil barrier coatings. Research (Wash DC), 2019, 2019, 3517816.
[] [PMID: 31549058]
Grigoriev, D.O.; Haase, M.F.; Fandrich, N.; Latnikova, A.; Shchukin, D.G. Emulsion route in fabrication of micro and nanocontainers for biomimetic self-healing and self-protecting functional coatings. Bioinspired. Biomim. Nanobiomaterials, 2012, 1(2), 101-116.
Shchukina, E.; Shchukin, D.G. Nanocontainer-based active systems: from self-healing coatings to thermal energy storage. Langmuir, 2019, 35(26), 8603-8611.
[] [PMID: 30810043]
Bashir, S.; Lgaz, H.; Chung, I.I.I.M.; Kumar, A. Potential of venlafaxine in the inhibition of mild steel corrosion in HCl: insights from experimental and computational studies. Chem. Pap., 2019, 73(9), 2255-2264.
Shchukina, E.; Wang, H.; Shchukin, D.G. Nanocontainer-based self-healing coatings: current progress and future perspectives. Chem. Commun. (Camb.), 2019, 55(27), 3859-3867.
[] [PMID: 30895976]
Liu, C.; Zhao, H.; Hou, P.; Qian, B.; Wang, X.; Guo, C.; Wang, L. Efficient Graphene/Cyclodextrin-based nanocontainer: synthesis and host-guest inclusion for self-healing anticorrosion application. ACS Appl. Mater. Interfaces, 2018, 10(42), 36229-36239.
[] [PMID: 30260207]
Habib, S.; Khan, A.; Nawaz, M.; Sliem, M.H.; Shakoor, R.A.; Kahraman, R.; Abdullah, A.M.; Zekri, A. Self-healing performance of multifunctional polymeric smart coatings. Polymers (Basel), 2019, 11(9), 1519.
[] [PMID: 31540527]
Wang, T.; Du, J.; Ye, S.; Tan, L.; Fu, J. Triple-stimuli-responsive smart nanocontainers enhanced self-healing anticorrosion coatings for protection of aluminum alloy. ACS Appl. Mater. Interfaces, 2019, 11(4), 4425-4438.
[] [PMID: 30608123]
Farag, A.A. Applications of nanomaterials in corrosion protection coatings and inhibitors. Corros. Rev., 2020, 38(1), 67-86.
Kim, D.M.; Song, I.H.; Choi, J.Y.; Jin, S.W.; Nam, K.N.; Chung, C.M. Self-healing coatings based on linseed-oil-loaded microcapsules for protection of cementitious materials. Coatings, 2018, 8(11), 404.
Kumar, S.S.; Kakooei, S. Container-Based Smart Nanocoatings for Corrosion Protection; Elsevier Inc., 2020, pp. 403-421.
Bashir, S.; Sharma, V.; Singh, G.; Lgaz, H.; Salghi, R.; Singh, A.; Kumar, A. Electrochemical behavior and computational analysis of phenylephrine for corrosion inhibition of aluminum in acidic medium. Metall. Mater. Trans., A Phys. Metall. Mater. Sci., 2019, 50(1), 468-479.
Kim, D.M.; Lee, J.; Choi, J.Y.; Jin, S.W.; Nam, K.N.; Park, H.J.; Lee, S.H.; Chung, C.M. Healing performance of a self-healing protective coating according to damage width. Coatings, 2020, 10(6), 543.
Weiss, J.; Takhistov, P.; McClements, D.J. Functional materials in food nanotechnology. J. Food Sci., 2006, 71(9), 107-116.
Chau, C.F.; Wu, S.H.; Yen, G.C. The development of regulations for food nanotechnology. Trends Food Sci. Technol., 2007, 18(5), 269-280.
Wiek, A.; Gasser, L.; Siegrist, M. Systemic scenarios of nanotechnology: sustainable governance of emerging technologies. Futures, 2009, 41(5), 284-300.
Imran, M.; Revol-Junelles, A.M.; Martyn, A.; Tehrany, E.A.; Jacquot, M.; Linder, M.; Desobry, S. Active food packaging evolution: transformation from micro- to nanotechnology. Crit. Rev. Food Sci. Nutr., 2010, 50(9), 799-821.
[] [PMID: 20924864]
Dasgupta, N.; Ranjan, S.; Ramalingam, C. Applications of nanotechnology in agriculture and water quality management. Environ. Chem. Lett., 2017, 15(4), 591-605.
Dhaundiyal, P.; Bashir, S.; Sharma, V.; Kumar, A. An investigation on mitigation of corrosion of mildsteel by origanum vulgare in acidic medium. J. Chem. Inf. Model., 2019, 33(1), 159-168.
[] [PMID: 30422654]
Rossi, M.; Cubadda, F.; Dini, L.; Terranova, M.L.; Aureli, F.; Sorbo, A.; Passeri, D. Scientific basis of nanotechnology, implications for the food sector and future trends. Trends Food Sci. Technol., 2014, 40(2), 127-148.
Silva, H.D.; Cerqueira, M.Â.; Vicente, A.A. Nanoemulsions for food applications: development and characterization. Food Bioprocess Technol., 2012, 5(3), 854-867.
Parveen, G.; Bashir, S.; Thakur, A.; Saha, S.K.; Banerjee, P.; Kumar, A. Experimental and computational studies of imidazolium based ionic liquid 1-Methyl- 3-propylimidazolium iodide on mild steel corrosion in acidic solution experimental and computational studies of imidazolium based ionic liquid 1-methyl- 3-propylimidazolium. Mater. Res. Express, 2020, 7(1), 016510.
Bashir, S.; Thakur, A.; Lgaz, H.; Chung, I-M.; Kumar, A. Computational and experimental studies on phenylephrine as anti-corrosion substance of mild steel in acidic medium. J. Mol. Liq., 2019, 293, 111539.
Dehghani, A.; Bahlakeh, G.; Ramezanzadeh, B. Designing a novel targeted-release nano-container based on the silanized graphene oxide decorated with cerium acetylacetonate loaded Beta-Cyclodextrin (β-CD-CeA-MGO) for epoxy anti-corrosion coating. Elsevier B.V., 2020, 400, 125860.
Besomi, D. Roy Harrod and the Oxford Economists’ Research Group’s inquiry on prices and interest, 1936-39. Oxf. Econ. Pap., 1998, 50(4), 534-562.
Wang, J.P.; Song, X.; Wang, J.K.; Cui, X.; Zhou, Q.; Qi, T.; Li, G.L. Smart-sensing polymer coatings with autonomously reporting corrosion dynamics of self-healing systems. Adv. Mater. Interfaces, 2019, 6(10), 1-8.
Chaudhry, Q.; Watkins, R.; Castle, L. Nanotechnologies in the Food Arena: New Opportunities; New Questions, New Concerns, 2010, pp. 1-17.
Can, E.; Kizak, V.; Kayim, M.; Can, S.S.; Kutlu, B.; Ates, M.; Kocabas, M.; Demirtas, N. Nanotechnological applications in aquaculture-seafood industries and adverse effects of nanoparticles on environment. J. Mar. Sci. Eng., 2011, 5, 605-609.
Hayatdavoudi, H.; Rahsepar, M. Smart inhibition action of layered double hydroxide nanocontainers in zinc-rich epoxy coating for active corrosion protection of carbon steel substrate. J. Alloys Compd., 2017, 711, 560-567.
Njoku, D.I.; Cui, M.; Xiao, H.; Shang, B.; Li, Y. Understanding the anticorrosive protective mechanisms of modified epoxy coatings with improved barrier, active and self-healing functionalities: EIS and spectroscopic techniques. Sci. Rep., 2017, 7(1), 15597.
[] [PMID: 29142312]
Singh, A.; Soni, N.; Deyuan, Y.; Kumar, A. A combined electrochemical and theoretical analysis of environmentally benign polymer for corrosion protection of N80 steel in sweet corrosive environment. Results Phys., 2019, 13, 102116.
Zheludkevich, M.L.; Serra, R.; Montemor, M.F.; Ferreira, M.G.S. Oxide nanoparticle reservoirs for storage and prolonged release of the corrosion inhibitors. Electrochem. Commun., 2005, 7(8), 836-840.
Li, D.; Chen, S.; Zhao, S.; Ma, H. The corrosion inhibition of the self-assembled au, and ag nanoparticles films on the surface of copper. Colloids Surf. A Physicochem. Eng. Asp., 2006, 273(1-3), 16-23.
Montemor, M.F.; Ferreira, M.G.S. Cerium salt activated nanoparticles as fillers for silane films: evaluation of the corrosion inhibition performance on galvanised steel substrates. Electrochim. Acta, 2007, 52(24), 6976-6987.
Sonawane, S.H.; Bhanvase, B.A.; Jamali, A.A.; Dubey, S.K.; Kale, S.S.; Pinjari, D.V.; Kulkarni, R.D.; Gogate, P.R.; Pandit, A.B. Improved active anticorrosion coatings using layer-by-layer assembled ZnO nanocontainers with benzotriazole. Chem. Eng. J., 2012, 189–190, 464-472.
Montemor, M.F.; Ferreira, M.G.S. Analytical characterization of silane films modified with cerium activated nanoparticles and its relation with the corrosion protection of galvanised steel substrates. Prog. Org. Coat., 2008, 63(3), 330-337.
Borisova, D.; Möhwald, H.; Shchukin, D.G. Mesoporous silica nanoparticles for active corrosion protection. ACS Nano, 2011, 5(3), 1939-1946.
[] [PMID: 21344888]
Zaharescu, M.; Predoana, L.; Barau, A.; Raps, D.; Gammel, F.; Rosero-Navarro, N.C.; Castro, Y.; Durán, A.; Aparicio, M. SiO2 based hybrid inorganic-organic films doped with TiO2-CeO2 nanoparticles for corrosion protection of AA2024 and Mg-AZ31B alloys. Corros. Sci., 2009, 51(9), 1998-2005.
Montemor, M.F.; Pinto, R.; Ferreira, M.G.S. Chemical composition and corrosion protection of silane films modified with CeO2 nanoparticles. Electrochim. Acta, 2009, 54(22), 5179-5189.
Tavandashti, N.P.; Sanjabi, S. Progress in organic coatings corrosion study of hybrid sol – gel coatings containing boehmite nanoparticles loaded with cerium nitrate Corrosion inhibitor. Prog. Org. Coat., 2010, 69(4), 384-391.
Bashir, S.; Singh, G.; Kumar, A. An investigation on mitigation of corrosion of aluminium by origanum vulgare in acidic medium. Prot. Met. Phys. Chem. Surf., 2018, 54(1), 148-152.
Poggi, G.; Baglioni, P.; Giorgi, R. Alkaline earth hydroxide nanoparticles for the inhibition of metal gall ink corrosion. Restaurator (Copenh.), 2011, 32(3), 247-273.
Bashir, S.; Sharma, V.; Lgaz, H.; Chung, I-M.; Singh, A.; Kumar, A. The inhibition action of analgin on the corrosion of mild steel in acidic medium: a combined theoretical and experimental approach. J. Mol. Liq., 2018, 263, 454-462.
Jabeen, H.; Chandra, V.; Jung, S.; Lee, J.W.; Kim, K.S.; Kim, S.B. Enhanced Cr(vi) removal using iron nanoparticle decorated graphene. Nanoscale, 2011, 3(9), 3583-3585.
[] [PMID: 21814702]
Sharma, V.; Kumar, S.; Bashir, S.; Ghelichkhah, Z.; Obot, I.B.K.A. Use of sapindus (Reetha) as corrosion inhibitor of aluminium in acidic medium. Mater. Res. Express, 2018, 5(7), 076510.
Shchukin, D.G.; Grigoriev, D.O.; Möhwald, H. Application of smart organic nanocontainers in feedback active coatings. Soft Matter, 2010, 6(4), 720-725.
Choi, H.; Song, Y.K.; Kim, K.Y.; Park, J.M. Encapsulation of triethanolamine as organic corrosion inhibitor into nanoparticles and its active corrosion protection for steel sheets. Surf. Coat. Tech., 2012, 206(8-9), 2354-2362.
Atta, A.M.; El-Mahdy, G.A.; Al-Lohedan, H.A. Corrosion inhibition efficiency of modified silver nanoparticles for carbon steel in 1 M HCL. Int. J. Electrochem. Sci., 2013, 8(4), 4873-4885.
Sharmila, R.; Selvakumar, N.; Jeyasubramanian, K. Evaluation of corrosion inhibition in mild steel using cerium oxide nanoparticles. Mater. Lett., 2013, 91, 78-80.
Atta, A.M.; Allohedan, H.A.; El-Mahdy, G.A.; Ezzat, A.R.O. Application of stabilized silver nanoparticles as thin films as corrosion inhibitors for carbon steel alloy in 1M hydrochloric acid. J. Nanomater., 2013, 2013, 1-8.
Rathish, R.J.; Dorothy, R.; Joany, R.M.; Pandiarajan, M.; Rajendran, S. Corrosion resistance of nanoparticle - incorporated nano coatings. Eur. Chem. Bull., 2013, 2(12), 965-970.
Azzam, E.M.S.; Abd El-Aal, A.A. Corrosion inhibition efficiency of synthesized poly 12-(3-Amino Phenoxy) Dodecane-1-thiol surfactant assembled on silver nanoparticles. Egypt. J. Pet., 2013, 22(2), 293-303.
Zand, R.Z.; Verbeken, K.; Adriaens, A. Evaluation of the corrosion inhibition performance of silane coatings filled with cerium salt-activated nanoparticles on. Int. J. Electrochem. Sci., 2013, 8, 4924-4940.
Fu, J.; Chen, T.; Wang, M.; Yang, N.; Li, S.; Wang, Y.; Liu, X. Acid and alkaline dual stimuli-responsive mechanized hollow mesoporous silica nanoparticles as smart nanocontainers for intelligent anticorrosion coatings. ACS Nano, 2013, 7(12), 11397-11408.
[] [PMID: 24261631]
Ashassi-Sorkhabi, H.; Es’haghi, M. Corrosion resistance enhancement of electroless Ni-P coating by incorporation of ultrasonically dispersed diamond nanoparticles. Corros. Sci., 2013, 77, 185-193.
Obot, I.B.; Umoren, S.A.; Johnson, A.S. Sunlight-mediated synthesis of silver nanoparticles using honey and its promising anticorrosion potentials for mild steel in acidic environments. J. Mater. Environ. Sci., 2013, 4(6), 1013-1018.
Kumar, A.; Thakur, A. Encapsulated Nanoparticles in Organic Polymers for Corrosion Inhibition; Elsevier Inc., 2020.
Zhou, C.; Lu, X.; Xin, Z.; Liu, J.; Zhang, Y. Polybenzoxazine/SiO2 nanocomposite coatings for corrosion protection of mild steel. Corros. Sci., 2014, 80, 269-275.
Kaya, S.; Kaya, C. A new method for calculation of molecular hardness: a theoretical study. Comput. Theor. Chem., 2015, 1060, 66-70.
Kaya, S.; Kaya, C. A new equation for calculation of chemical hardness of groups and molecules. Mol. Phys., 2015, 113(11), 1311-1319.
Kaya, S.; Kaya, C.; Islam, N. Maximum hardness and minimum polarizability principles through lattice energies of ionic compounds. Physica B, 2016, 485, 60-66.
Parr, R.G.; Szentpály, L.V.; Liu, S. Electrophilicity index. J. Am. Chem. Soc., 1999, 121(9), 1922-1924.
Pan, S.; Solà, M.; Chattaraj, P.K. On the validity of the maximum hardness principle and the minimum electrophilicity principle during chemical reactions. J. Phys. Chem. A, 2013, 117(8), 1843-1852.
[] [PMID: 23373511]
Erdoğan, Ş.; Safi, Z.S.; Kaya, S.; Işın, D.Ö.; Guo, L.; Kaya, C. A computational study on corrosion inhibition performances of novel quinoline derivatives against the corrosion of iron. J. Mol. Struct., 2017, 1134, 751-761.
Falcón, J.M.; Batista, F.F.; Aoki, I.V. Encapsulation of dodecylamine corrosion inhibitor on silica nanoparticles. Electrochim. Acta, 2014, 124, 109-118.
Fedel, M.; Ahniyaz, A.; Ecco, L.G.; Deflorian, F. Electrochemical investigation of the inhibition effect of CeO2 nanoparticles on the corrosion of mild steel. Electrochim. Acta, 2014, 131, 71-78.
Atta, A.M.; El-Mahdy, G.A.; Al-Lohedan, H.A.; Al Hussain, S.A. Corrosion inhibition of nanocomposite based on acrylamide copolymers/magnetite for steel. Dig. J. Nanomater. Biostruct., 2014, 9(2), 627-639.
Bhanvase, B.A.; Patel, M.A.; Sonawane, S.H. Kinetic properties of layer-by-layer assembled cerium zinc molybdate nanocontainers during corrosion inhibition. Corros. Sci., 2014, 88, 170-177.
Rostami, M.; Rasouli, S.; Ramezanzadeh, B.; Askari, A. electrochemical investigation of the properties of Co doped ZnO nanoparticle as a corrosion inhibitive pigment for modifying corrosion resistance of the epoxy coating. Corros. Sci., 2014, 88, 387-399.
Johnson, A.S.; Obot, I.B.; Ukpong, U.S. Green synthesis of silver nanoparticles using Artemisia Annua and sida acuta leaves extract and their antimicrobial, antioxidant and corrosion inhibition potentials. J. Mater. Environ. Sci., 2014, 5(3), 899-906.
Balan, P.; Shelton, M.J.; Ching, D.O.L.; Han, G.C.; Palniandy, L.K. Modified silane films for corrosion protection of mild steel. Procedia Mater. Sci., 2014, 6, 244-248.
Atta, A.M.; El-Mahdy, G.A.; Al-Lohedan, H.A.; Al-Hussain, S.A. Corrosion inhibition of mild steel in acidic medium by magnetite myrrh nanocomposite. Int. J. Electrochem. Sci., 2014, 9(12), 8446-8457.
Bashir, S.; Singh, G.; Kumar, A. Shatavari (Asparagus Racemosus) as green corrosion inhibitor of aluminium in acidic medium. J. Mater. Environ. Sci., 2017, 8(12), 4284-4291.
John, S.; Joseph, A.; Jose, A.J.; Narayana, B. Enhancement of corrosion protection of mild steel by chitosan/ZnO nanoparticle composite membranes. Prog. Org. Coat., 2015, 84, 28-34.
Palanisamy, K.L.; Devabharathi, V.; Meenakshi Sundaram, N. Corrosion inhibition studies of mild steel with carrier oil stabilized of iron oxide nanoparticles incorporated into a paint. Int. J. Chemtech Res., 2015, 7(4), 1661-1664.
Ates, M.; Özyilmaz, A.T. The application of polycarbazole, polycarbazole/nanoclay and polycarbazole/Zn-nanoparticles as a corrosion inhibition for SS304 in saltwater. Prog. Org. Coat., 2015, 84, 50-58.
Solomon, M.M.; Umoren, S.A. Performance assessment of poly (Methacrylic Acid)/silver nanoparticles composite as corrosion inhibitor for aluminium in acidic environment. J. Adhes. Sci. Technol., 2015, 29(21), 2311-2333.
Palimi, M.J.; Rostami, M.; Mahdavian, M.; Ramezanzadeh, B. A study on the corrosion inhibition properties of silane-modified Fe2O3 nanoparticle on mild steel and its effect on the anticorrosion properties of the polyurethane coating. J. Coat. Technol. Res., 2015, 12(2), 277-292.
Sasikumar, Y.; Kumar, A.M.; Gasem, Z.M.; Ebenso, E.E. Hybrid nanocomposite from aniline and CeO2 nanoparticles: surface protective performance on mild steel in acidic environment. Appl. Surf. Sci., 2015, 330, 207-215.
Umoren, S.A.; Madhankumar, A. Effect of addition of CeO2 nanoparticles to pectin as inhibitor of X60 steel corrosion in HCl medium. J. Mol. Liq., 2016, 224, 72-82.
Kumar, A.; Bashir, S. Ethambutol: a new and effective corrosion inhibitor of mildsteel in acidic medium. Russ. J. Appl. Chem., 2016, 89(7), 1158-1163.
Singh, A.; Kumar, A.; Pramanik, T. A theoretical approach to the study of some plant extracts as green corrosion inhibitor for mild steel in HCl solution. Orient. J. Chem., 2013, 29(1), 1-7.
Singh, A.; Pramanik, T.; Kumar, A.; Gupta, M. phenobarbital: a new and effective corrosion inhibitor for mild steel in 1 M HCl solution. Asian J. Chem., 2013, 25(17), 9808-9812.
Solomon, M.M.; Umoren, S.A. In-situ preparation, characterization and anticorrosion property of polypropylene glycol/silver nanoparticles composite for mild steel corrosion in acid solution. J. Colloid Interface Sci., 2016, 462, 29-41.
[] [PMID: 26433475]
Javidparvar, A.A.; Ramezanzadeh, B.; Ghasemi, E. The effect of surface morphology and treatment of Fe3O4 nanoparticles on the corrosion resistance of epoxy coating. J. Taiwan Inst. Chem. Eng., 2016, 61, 356-366.
Rix, M.V.; Baker, M.; Whiting, M.J.; Durman, R.P.; Shatwell, R.A. An Improved Silicon Carbide Monofilament for the Reinforcement of Metal Matrix Composites, In: Meyers M. et al, (eds). Proceedings of the 3rd Pan American Materials Congress. The Minerals, Metals & Materials Series. Springer, Cham. pp.317-324.
Ma, X.; Xu, L.; Wang, W.; Lin, Z.; Li, X. Synthesis and characterisation of composite nanoparticles of mesoporous silica loaded with inhibitor for corrosion protection of Cu-Zn alloy. Corros. Sci., 2017, 120, 139-147.
Solomon, M.M.; Gerengi, H.; Kaya, T.; Umoren, S.A. Enhanced corrosion inhibition effect of chitosan for St37 in 15% H2SO4 environment by silver nanoparticles. Int. J. Biol. Macromol., 2017. 104(Pt A), 638-649.
[] [PMID: 28625837]
Yang, F.; Li, X.; Dai, Z.; Liu, T.; Zheng, W.; Zhao, H.; Wang, L. Corrosion inhibition of polydopamine nanoparticles on mild steel in hydrochloric acid solution. Int. J. Electrochem. Sci., 2017, 12(8), 7469-7480.
Asaad, M.A.; Ismail, M.; Tahir, M.M.; Huseien, G.F.; Raja, P.B.; Asmara, Y.P. Enhanced corrosion resistance of reinforced concrete: role of emerging eco-friendly Elaeis guineensis/silver nanoparticles inhibitor. Constr. Build. Mater., 2018, 188, 555-568.
Abd-Elaal, A.A.; Elbasiony, N.M.; Shaban, S.M.; Zaki, E.G. Studying the corrosion inhibition of some prepared nonionic surfactants based on 3-(4-hydroxyphenyl) propanoic acid and estimating the influence of silver nanoparticles on the surface parameters. J. Mol. Liq., 2018, 249, 304-317.

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy