Generic placeholder image

Current Bioactive Compounds


ISSN (Print): 1573-4072
ISSN (Online): 1875-6646

Research Article

Extracts of Anogeissus leiocarpus and Dillenia indica Inhibit the Growth of MCF-7 Breast Cancer and COV434 Granulosa Tumor Cells by Inducing Apoptosis and Autophagy

Author(s): Temitope O. Lawal*, Nishikant A. Raut, Shitalben R. Patel and Gail B. Mahady

Volume 17, Issue 10, 2021

Published on: 14 February, 2021

Article ID: e190721191390 Pages: 14

DOI: 10.2174/1573407217666210215092955

Price: $65


Background: Dillenia indica L. (Dilleniaceae) and Anogeissus leiocarpus (DC.) Guill. & Perr. (Combretaceae) are used in traditional Nigerian medicine to treat various forms of cancer. This study investigated the cytotoxic effects of these plant extracts using COV434 granulosa tumor and MCF-7 breast cancer cells.

Methods: Samples of D. indica and A. leiocarpus were collected in Ibadan, Nigeria, air-dried, and extracted with methanol. Cell viability and cytotoxicity were determined using CellTiter-Glo® 2.0 assay at concentrations from 1 to 100 μg/mL. Caspase activity and apoptosis were determined using Caspase-Glo® 3/7, Caspase-Glo® 8, and ApoTox-Glo™ triplex assays, and qPCR. Autophagy was measured using a Cyto-ID Autophagy Detection Kit.

Results: In COV434, aqueous partitions of A. leiocarpus root (ALR-Aq) and stem bark (ALS-Aq) had IC50s of 23.5 and 26.7 μg/mL, respectively. In MCF-7 cells, the ALR MeOH extract had IC50 of 12.75 μg/mL, while the DIS-Aq had IC50 of 65.28 μg/mL. None of the extracts inhibited the growth of human osteoblasts or rat myoblasts at similar concentrations. Treatment with ALR-Aq and DIS-Aq induced mitochondrial apoptosis in MCF-7 and COV434. Both ALR-Aq and DIS-Aq induced autophagy in COV434 cells, while ALR-Aq induced autophagy in MCF-7 cells. Ellagic acid (IC50 of 3.27μg/mL in COV434 cells) was isolated from ALR-Aq using bioassay-guided fractionation.

Conclusion: DIS-Aq and ALR-Aq induced apoptosis in MCF-7 and COV434 cancer cells. Ellagic acid was isolated as the active constituent. Taken together, these data suggest that both plant extracts have strong anti-proliferative effects, and further investigation for their anticancer effects is warranted.

Keywords: Apoptosis, autophagy, ellagic acid, COV434 granulosa tumor cell, MCF-7 breast cancer cell, Bax, Bcl-2.

Graphical Abstract
Comşa, Ş.; Cîmpean, A.M.; Raica, M. The story of MCF-7 breast cancer cell line: 40 years of experience in research. Anticancer Res., 2015, 35(6), 3147-3154.
[PMID: 26026074]
Outwater, E.K.; Wagner, B.J.; Mannion, C.; McLarney, J.K.; Kim, B. Sex cord-stromal and steroid cell tumors of the ovary. Radiographics, 1998, 18(6), 1523-1546.
[] [PMID: 9821198]
Inada, Y.; Nakai, G.; Yamamoto, K.; Yamada, T.; Hirose, Y.; Terai, Y.; Ohmichi, M.; Narumi, Y. Rapidly growing juvenile granulosa cell tumor of the ovary arising in adult: a case report and review of the literature. J. Ovarian Res., 2018, 11(1), 100.
[] [PMID: 30547828]
Seagle, B.L.; Ann, P.; Butler, S.; Shahabi, S. Ovarian granulosa cell tumor: A National Cancer Database study. Gynecol. Oncol., 2017, 146(2), 285-291.
[] [PMID: 28532858]
Young, R.H. Sex cord-stromal tumors of the ovary and testis: their similarities and differences with consideration of selected problems. Mod. Pathol., 2005, 18(Suppl. 2), S81-S98.
[] [PMID: 15502809]
Gurumurthy, M.; Bryant, A.; Shanbhag, S. Effectiveness of different treatment modalities for the management of adult-onset granulosa cell tumours of the ovary (primary and recurrent). Cochrane Database Syst. Rev., 2014, 21(4), CD006912.
[] [PMID: 24753008]
Colombo, N.; Parma, G.; Zanagnolo, V.; Insinga, A. Management of ovarian stromal cell tumors. J. Clin. Oncol., 2007, 25(20), 2944-2951.
[] [PMID: 17617526]
Lawal, T.O.; Patel, S.; Mahady, G.B. Validation of the ethnomedical use of nigerian plants for the treatment of cancer. International Conference on the Science of Botanicals, Oxford MI2017. Abstract-434.
Lawal, T.O.; Bamiduro, T.B.; Ofonmbuk, J.O.; Elufioye, T.O.; Adeniyi, B.A.; Mahady, G.B. Antibacterial effects of Anogeissus leiocarpus (DC.) Guill. & Perr. and Terminalia glaucescens Planch. ex Benth. on rapidly growing Mycobacteria species. Afr. J. Microbiol. Res., 2017, 11, 495-503. b
Doyle, B.J.; Lawal, T.O.; Locklear, T.D.; Hernandez, L.; Perez, A.L.; Patel, U.; Patel, S.; Mahady, G.B. Isolation and identification of three new chromones from the leaves of Pimenta dioica with cytotoxic, oestrogenic and anti-oestrogenic effects. Pharm. Biol., 2018, 56(1), 235-244.
[] [PMID: 29564971]
Zhang, H.; Vollmer, M.; De Geyter, M.; Litzistorf, Y.; Ladewig, A.; Dürrenberger, M.; Guggenheim, R.; Miny, P.; Holzgreve, W.; De Geyter, C. Characterization of an immortalized human granulosa cell line (COV434). Mol. Hum. Reprod., 2000, 6(2), 146-153.
[] [PMID: 10655456]
Patel, S.; Lawal, T.O.; Salamon, I.; Raut, N.; Wicks, S.M.; Mahady, G.B. Ribes nigrum L. (Grossulariaceae) and Sambus nigra L. (Adoxaceae) extracts enhance growth and inhibit apoptosis in rat L6 muscle cells. J. Food Nutr. Disord., 2017, 6, 3.
Raut, N.; Wicks, S.M.; Lawal, T.O.; Mahady, G.B. Epigenetic regulation of bone remodeling by natural compounds. Pharmacol. Res., 2019, 147, 104350.
[] [PMID: 31315065]
Liu, L.L.; Zhao, H.; Ma, T.F.; Ge, F.; Chen, C.S.; Zhang, Y.P. Identification of valid reference genes for the normalization of RT-qPCR expression studies in human breast cancer cell lines treated with and without transient transfection. PLoS One, 2015, 10(1), e0117058.
[] [PMID: 25617865]
Chen, X.; Sun, K.; Jiao, S.; Cai, N.; Zhao, X.; Zou, H.; Xie, Y.; Wang, Z.; Zhong, M.; Wei, L. High levels of SIRT1 expression enhance tumorigenesis and associate with a poor prognosis of colorectal carcinoma patients. Sci. Rep., 2014, 4, 7481.
[] [PMID: 25500546]
Hoshyar, R.; Bathaie, S.Z.; Sadeghizadeh, M. Crocin triggers the apoptosis through increasing the Bax/Bcl-2 ratio and caspase activation in human gastric adenocarcinoma, AGS, cells. DNA Cell Biol., 2013, 32(2), 50-57.
[] [PMID: 23347444]
Assunta, P.I.D.; da Conceição, E.D.; Borges, L.L.; Marciano de Paula, J.A. Development and validation of a HPLC-UV method for the evaluation of ellagic acid in liquid extracts of Eugenia uniflora L. (Myrtaceae) leaves and its ultrasound-assisted extraction optimization. Evidence-Based Complement Alternat Med., 2017, 2017, Article ID 1501038.
Cui, Q.; Du, R.; Anantpadma, M.; Schafer, A.; Hou, L.; Tian, J.; Davey, R.A.; Cheng, H.; Rong, L. Identification of ellagic acid from plant Rhodiola rosea L. as an anti-ebola virus entry inhibitor. Viruses, 2018, 10(4), E152.
[] [PMID: 29584652]
Neves, N.A.; Stringheta, P.C.; Gómez-Alonso, S.; Hermosín-Gutiérrez, I. Flavonols and ellagic acid derivatives in peels of different species of jabuticaba (Plinia sp.) identified by HPLC-DAD-ESI/MSn. Food Chem., 2018, 252, 61-71.
[] [PMID: 29478564]
Asuzu, C.C.; Akin-Odanye, E.O.; Asuzu, M.C.; Holland, J. A socio-cultural study of traditional healers role in African health care. Infect. Agent. Cancer, 2019, 14, 15.
[] [PMID: 31249608]
Batta, H.E. Press coverage of traditional medical practice in Nigeria. J. Commun., 2012, 3(2), 75-89.
Ezeome, E.R. Delays in presentation and treatment of breast cancer in Enugu, Nigeria. Niger. J. Clin. Pract., 2010, 13(3), 311-316.
[] [PMID: 20857792]
Ukwenya, A.Y.; Yusufu, L.M.D.; Nmadu, P.T.; Garba, E.S.; Ahmed, A. Delayed treatment of symptomatic breast cancer: The experience from Kaduna, Nigeria. S. Afr. J. Surg., 2008, 46(4), 106-110.
[PMID: 19051953]
Bate-Smith, E.C.; Harborne, J.B. Differences in flavonoids content between fresh and herbarium leaf tissue in Dillenia. Phytochemistry, 1975, 10(5), 1055-1058.
Barua, C.C.; Yasmin, N.; Buragohain, L. A review update on Dillenia indica, its morphology, phytochemistry and pharmacological activity with reference to its anticancer activity. MOJ Bioequiv Availab, 2018, 5(5), 244-254.
Gandhi, D.; Mehta, P. Dillenia indica Linn. and Dillenia pentagyna Roxb.: Pharmacognostic, phytochemical and therapeutic aspects. J. Appl. Pharm. Sci., 2013, 3, 134-142.
Saowakhon, S.; Manosroi, J.; Manosroi, A. Anti-proliferation activities of Thai Lanna medicinal plant recipes in cancer cell lines by SRB assay. J. Thai Tradit. Alternat. Med., 2008, 6(Suppl 2)
Dalziel, J.M. The useful plants of west tropical Africa; Crown Agents: London, 1937.
Salau, A.K.; Yakubu, M.T.; Oladiji, A.T. Cytotoxic activity of aqueous extracts of Anogeissus leiocarpus and Terminalia avicennioides root barks against Ehrlich ascites carcinoma cells. Indian J. Pharmacol., 2013, 45(4), 381-385.
[] [PMID: 24014915]
Olugbami, J.O.; Damoiseaux, R.; France, B.; Onibiyo, E.M.; Gbadegesin, M.A.; Sharma, S.; Gimzewski, J.K.; Odunola, O.A. A comparative assessment of antiproliferative properties of resveratrol and ethanol leaf extract of Anogeissus leiocarpus (DC) Guill. & Perr. against HepG2 hepatocarcinoma cells. BMC Complement. Altern. Med., 2017, 17(1), 381.
[] [PMID: 28768515]
Hassan, L.E.A.; Al-Suede, F.S.; Fadul, S.M.; Abdul Majid, A.M.S. Evaluation of antioxidant, antiangiogenic and antitumor properties of Anogeissus leiocarpus against colon cancer. Angiotherapy, 2018, 1(2), 56-66.
Tilly, J.L.; Tilly, K.I.; Kenton, M.L.; Johnson, A.L. Expression of members of the bcl-2 gene family in the immature rat ovary: equine chorionic gonadotropin-mediated inhibition of granulosa cell apoptosis is associated with decreased bax and constitutive bcl-2 and bcl-xlong messenger ribonucleic acid levels. Endocrinology, 1995, 136(1), 232-241.
[] [PMID: 7828536]
Campbell, K.J.; Tait, S.W.G. Targeting BCL-2 regulated apoptosis in cancer. Open Biol., 2018, 8(5), 180002.
[] [PMID: 29769323]
Zhai, P.; Zeng, J.; Tan, N.; Wang, J.; Huang, L.; She, W. Effects of vitamin C on A549 cell proliferation, apoptosis and expressions of caspase, survivin. Zhongguo Fei Ai Za Zhi, 2010, 13(2), 89-93.
[PMID: 20673497]
Fenwick, M.A.; Hurst, P.R. Immunohistochemical localization of active caspase-3 in the mouse ovary: Growth and atresia of small follicles. Reproduction, 2002, 124(5), 659-665.
[] [PMID: 12417004]
Choi, A.M.; Ryter, S.W.; Levine, B. Autophagy in human health and disease. N. Engl. J. Med., 2013, 368(7), 651-662.
[] [PMID: 23406030]
Santana-Codina, N.; Mancias, J.D.; Kimmelman, A.C. The role of autophagy in cancer. Annu. Rev. Cancer Biol., 2017, 1, 19-39.
[] [PMID: 31119201]
White, E. The role for autophagy in cancer. J. Clin. Invest., 2015, 125(1), 42-46.
[] [PMID: 25654549]
Jung, C.H.; Ro, S.H.; Cao, J.; Otto, N.M.; Kim, D.H. mTOR regulation of autophagy. FEBS Lett., 2010, 584(7), 1287-1295.
[] [PMID: 20083114]
Kimmelman, A.C. The dynamic nature of autophagy in cancer. Genes Dev., 2011, 25(19), 1999-2010.
[] [PMID: 21979913]
Ceci, C.; Lacal, P.M.; Tentori, L.; De Martino, M.G.; Miano, R.; Graziani, G. Experimental evidence of the antitumor, antimetastatic and antiangiogenic activity of ellagic acid. Nutrients, 2018, 10(11), E1756.
[] [PMID: 30441769]
Chung, Y.C.; Lu, L.C.; Tsai, M.H.; Chen, Y.J.; Chen, Y.Y.; Yao, S.P.; Hsu, C.P. The inhibitory effects of ellagic acid on cell growth of ovarian cancer cells. Evid. Based Complement. Alt. Med., 2013. Article ID 306705
Eskra, J.N.; Schlicht, M.J.; Bosland, M.C. Effects of Black Raspberries and their ellagic acid and anthocyanin constituents on taxane chemotherapy of castration-resistant prostate cancer cells. Sci. Rep., 2019, 9(1), 4367.
[] [PMID: 30867440]
Jaman, M.S.; Sayeed, M.A. Ellagic acid, sulforaphane, and ursolic acid in the prevention and therapy of breast cancer: Current evidence and future perspectives. Breast Cancer, 2018, 25(5), 517-528.
[] [PMID: 29725861]
Liu, H.; Zeng, Z.; Wang, S.; Li, T.; Mastriani, E.; Li, Q.H.; Bao, H.X.; Zhou, Y.J.; Wang, X.; Liu, Y.; Liu, W.; Hu, S.; Gao, S.; Yu, M.; Qi, Y.; Shen, Z.; Wang, H.; Gao, T.; Dong, L.; Johnston, R.N.; Liu, S.L. Main components of pomegranate, ellagic acid and luteolin, inhibit metastasis of ovarian cancer by down-regulating MMP2 and MMP9. Cancer Biol. Ther., 2017, 18(12), 990-999.
[] [PMID: 29173024]
Silva, J.S.; Moura, M.D.; Oliveira, R.A.G.; Diniz, M.F.F.; Barbosa-Filho, J.M. Natural product inhibitors of ovarian neoplasia. Phytomedicine, 2003, 10(2-3), 221-232.
[] [PMID: 12725581]

Rights & Permissions Print Export Cite as
© 2022 Bentham Science Publishers | Privacy Policy