Generic placeholder image

Endocrine, Metabolic & Immune Disorders - Drug Targets

Editor-in-Chief

ISSN (Print): 1871-5303
ISSN (Online): 2212-3873

Review Article

The Role of Angiotensin-Converting Enzyme in Immunity: Shedding Light on Experimental Findings

Author(s): Ziba Aghsaeifard and Reza Alizadeh*

Volume 22, Issue 1, 2022

Published on: 12 February, 2021

Page: [6 - 14] Pages: 9

DOI: 10.2174/1871530321666210212144511

Price: $65

Abstract

Abstract: Angiotensin-converting enzyme (ACE) is a zinc-dependent dicarboxypeptidase with two catalytic components, which has an important role in regulating blood pressure by converting angiotensin I to angiotensin II. ACE breaks down other peptides besides angiotensin I and has a variety of physiological effects together with renal growth and reproduction in men. ACE also acts on innate and acquired immune systems by affecting macrophage and neutrophil function, and these outcomes are exacerbated due to the overexpression of ACE. Overexpression of ACE in macrophages imposes antitumor and antimicrobial response, and it enhances the ability of neutrophils to produced super peroxide that has a bactericidal effect. ACE is also known to contribute to the expression of Major Histocompatibility Complex (MHC) class I and MHC class II peptides through enzymatic alterations of these peptides. Apprehending the expression of ACE and its effects on myeloid cell (myelogenous cells) activity can be promising in therapeutic interventions, including treatment of infection and malignancy.

Keywords: ACE, immunity, MHC, infection, malignancy, angiotensin.

Graphical Abstract
[1]
Alizadeh, R.; Aghsaie Fard, Z. Renal impairment and analgesia: From effectiveness to adverse effects. J. Cell. Physiol., 2019, 234(10), 17205-17211.
[http://dx.doi.org/10.1002/jcp.28506] [PMID: 30916404]
[2]
Alizadeh, R.; Fard, Z.A. Renal effects of general anesthesia from old to recent studies. J. Cell. Physiol., 2019, 234(10), 16944-16952.
[http://dx.doi.org/10.1002/jcp.28407] [PMID: 30843210]
[3]
Bernstein, K.E.; Ong, F.S.; Blackwell, W-L.B.; Shah, K.H.; Giani, J.F.; Gonzalez-Villalobos, R.A.; Shen, X.Z.; Fuchs, S.; Touyz, R.M. A modern understanding of the traditional and nontraditional biological functions of angiotensin-converting enzyme. Pharmacol. Rev., 2012, 65(1), 1-46.
[http://dx.doi.org/10.1124/pr.112.006809] [PMID: 23257181]
[4]
Roca-Ho, H.; Riera, M.; Palau, V.; Pascual, J.; Soler, M.J. Characterization of ACE and ACE2 expression within different organs of the NOD mouse. Int. J. Mol. Sci., 2017, 18(3), 563.
[http://dx.doi.org/10.3390/ijms18030563] [PMID: 28273875]
[5]
Aghsaeifard, Z.; Alizadeh, R.; Bagheri, N. Association between neutrophil gelatinase-associated lipocalin (NGAL) and iron profile in chronic renal disease. Arch. Physiol. Biochem., 2020, 1-5.
[http://dx.doi.org/10.1080/13813455.2020.1720742] [PMID: 31994917]
[6]
Maleki-Sadeghi, N.; Rahmani, P.; Aghsaeifard, Z.; Heidari, G. Effects of aminophylline on the levels of neutrophil gelatinase-associated lipocalin (NGAL) in asphyxiated term neonates. Arch. Physiol. Biochem., 2020, 1-6.
[http://dx.doi.org/10.1080/13813455.2020.1752259] [PMID: 32299251]
[7]
Mentz, R.J.; Bakris, G.L.; Waeber, B.; McMurray, J.J.; Gheorghiade, M.; Ruilope, L.M.; Maggioni, A.P.; Swedberg, K.; Piña, I.L.; Fiuzat, M.; O’Connor, C.M.; Zannad, F.; Pitt, B. The past, present and future of renin-angiotensin aldosterone system inhibition. Int. J. Cardiol., 2013, 167(5), 1677-1687.
[http://dx.doi.org/10.1016/j.ijcard.2012.10.007] [PMID: 23121914]
[8]
Turner, J.M.; Kodali, R. Should angiotensin-converting enzyme inhibitors ever be used for the management of hypertension? Curr. Cardiol. Rep., 2020, 22(9), 95.
[http://dx.doi.org/10.1007/s11886-020-01352-8] [PMID: 32648000]
[9]
Ouwerkerk, W.; Voors, A.A.; Anker, S.D.; Cleland, J.G.; Dickstein, K.; Filippatos, G.; van der Harst, P.; Hillege, H.L.; Lang, C.C.; Ter Maaten, J.M.; Ng, L.L.; Ponikowski, P.; Samani, N.J.; van Veldhuisen, D.J.; Zannad, F.; Metra, M.; Zwinderman, A.H. Determinants and clinical outcome of uptitration of ACE-inhibitors and beta-blockers in patients with heart failure: a prospective European study. Eur. Heart J., 2017, 38(24), 1883-1890.
[http://dx.doi.org/10.1093/eurheartj/ehx026] [PMID: 28329163]
[10]
Okechuku, G.O.; Shoemaker, L.R.; Dambska, M.; Brown, L.M.; Mathew, J.; Weinstein, D.A. Tight metabolic control plus ACE inhibitor therapy improves GSD I nephropathy. J. Inherit. Metab. Dis., 2017, 40(5), 703-708.
[http://dx.doi.org/10.1007/s10545-017-0054-2] [PMID: 28612263]
[11]
Zhou, G.; Johansson, U.; Peng, X-R.; Bamberg, K.; Huang, Y. An additive effect of eplerenone to ACE inhibitor on slowing the progression of diabetic nephropathy in the db/db mice. Am. J. Transl. Res., 2016, 8(3), 1339-1354.
[PMID: 27186263]
[12]
Boehm, M.; Nabel, E.G. Angiotensin-converting enzyme 2--a new cardiac regulator. N. Engl. J. Med., 2002, 347(22), 1795-1797.
[http://dx.doi.org/10.1056/NEJMcibr022472] [PMID: 12456857]
[13]
Bernstein, K.E.; Khan, Z.; Giani, J.F.; Cao, D-Y.; Bernstein, E.A.; Shen, X.Z. Angiotensin-converting enzyme in innate and adaptive immunity. Nat. Rev. Nephrol., 2018, 14(5), 325-336.
[http://dx.doi.org/10.1038/nrneph.2018.15] [PMID: 29578208]
[14]
Bénéteau-Burnat, B.; Baudin, B.; Morgant, G.; Baumann, F.C.; Giboudeau, J. Serum angiotensin-converting enzyme in healthy and sarcoidotic children: comparison with the reference interval for adults. Clin. Chem., 1990, 36(2), 344-346.
[http://dx.doi.org/10.1093/clinchem/36.2.344] [PMID: 2154343]
[15]
Alizadeh, R.; Aghsaeifard, Z. Does COVID19 activates previous chronic pain? A case series. Ann. Med. Surg. (Lond.), 2021, 61, 169-171.
[PMID: 33398236]
[16]
Saha, A.; Anirvan, P. Cancer progression in COVID-19: integrating the roles of renin angiotensin aldosterone system, angiopoietin-2, heat shock protein-27 and epithelial mesenchymal transition. Ecancermedicalscience, 2020, 14, 1099.
[http://dx.doi.org/10.3332/ecancer.2020.1099] [PMID: 33082849]
[17]
Silverstein, E.; Pertschuk, L.P.; Friedland, J. Immunofluorescent localization of angiotensin converting enzyme in epithelioid and giant cells of sarcoidosis granulomas. Proc. Natl. Acad. Sci. USA, 1979, 76(12), 6646-6648.
[http://dx.doi.org/10.1073/pnas.76.12.6646] [PMID: 230518]
[18]
Sonsalla, P.K.; Coleman, C.; Wong, L-Y.; Harris, S.L.; Richardson, J.R.; Gadad, B.S.; Li, W.; German, D.C. The angiotensin converting enzyme inhibitor captopril protects nigrostriatal dopamine neurons in animal models of parkinsonism. Exp. Neurol., 2013, 250, 376-383.
[http://dx.doi.org/10.1016/j.expneurol.2013.10.014] [PMID: 24184050]
[19]
Bernstein, K.E.; Koronyo, Y.; Salumbides, B.C.; Sheyn, J.; Pelissier, L.; Lopes, D.H.; Shah, K.H.; Bernstein, E.A.; Fuchs, D.T.; Yu, J.J.; Pham, M.; Black, K.L.; Shen, X.Z.; Fuchs, S.; Koronyo-Hamaoui, M. Angiotensin-converting enzyme overexpression in myelomonocytes prevents Alzheimer’s-like cognitive decline. J. Clin. Invest., 2014, 124(3), 1000-1012.
[http://dx.doi.org/10.1172/JCI66541] [PMID: 24487585]
[20]
Meng, Y.; Chen, C.; Liu, Y.; Tian, C.; Li, H-H. Angiotensin II regulates dendritic cells through activation of NF-κB/p65, ERK1/2 and STAT1 pathways. Cell. Physiol. Biochem., 2017, 42(4), 1550-1558.
[http://dx.doi.org/10.1159/000479272] [PMID: 28723692]
[21]
Crowley, S.D.; Rudemiller, N.P. Immunologic effects of the renin-angiotensin system. J. Am. Soc. Nephrol., 2017, 28(5), 1350-1361.
[http://dx.doi.org/10.1681/ASN.2016101066] [PMID: 28151411]
[22]
Girolamo, F.; Coppola, C.; Ribatti, D.; Trojano, M. Angiogenesis in multiple sclerosis and experimental autoimmune encephalomyelitis. Acta Neuropathol. Commun., 2014, 2(1), 84.
[http://dx.doi.org/10.1186/s40478-014-0084-z] [PMID: 25047180]
[23]
Zhang, J.D.; Patel, M.B.; Song, Y.S.; Griffiths, R.; Burchette, J.; Ruiz, P.; Sparks, M.A.; Yan, M.; Howell, D.N.; Gomez, J.A.; Spurney, R.F.; Coffman, T.M.; Crowley, S.D. A novel role for type 1 angiotensin receptors on T lymphocytes to limit target organ damage in hypertension. Circ. Res., 2012, 110(12), 1604-1617.
[http://dx.doi.org/10.1161/CIRCRESAHA.111.261768] [PMID: 22534490]
[24]
Zhang, J.D.; Patel, M.B.; Griffiths, R.; Dolber, P.C.; Ruiz, P.; Sparks, M.A.; Stegbauer, J.; Jin, H.; Gomez, J.A.; Buckley, A.F.; Lefler, W.S.; Chen, D.; Crowley, S.D. Type 1 angiotensin receptors on macrophages ameliorate IL-1 receptor-mediated kidney fibrosis. J. Clin. Invest., 2014, 124(5), 2198-2203.
[http://dx.doi.org/10.1172/JCI61368] [PMID: 24743144]
[25]
Ando, H.; Zhou, J.; Macova, M.; Imboden, H.; Saavedra, J.M. Angiotensin II AT1 receptor blockade reverses pathological hypertrophy and inflammation in brain microvessels of spontaneously hypertensive rats. Stroke, 2004, 35(7), 1726-1731.
[http://dx.doi.org/10.1161/01.STR.0000129788.26346.18] [PMID: 15143297]
[26]
Arosio, D.; Manzoni, L.; Araldi, E.M.; Scolastico, C. Cyclic RGD functionalized gold nanoparticles for tumor targeting. Bioconjug. Chem., 2011, 22(4), 664-672.
[http://dx.doi.org/10.1021/bc100448r] [PMID: 21434651]
[27]
Biancardi, V.C.; Bomfim, G.F.; Reis, W.L.; Al-Gassimi, S.; Nunes, K.P. The interplay between Angiotensin II, TLR4 and hypertension. Pharmacol. Res., 2017, 120, 88-96.
[http://dx.doi.org/10.1016/j.phrs.2017.03.017] [PMID: 28330785]
[28]
Souza, L.L.; Costa-Neto, C.M. Angiotensin-(1-7) decreases LPS-induced inflammatory response in macrophages. J. Cell. Physiol., 2012, 227(5), 2117-2122.
[http://dx.doi.org/10.1002/jcp.22940] [PMID: 21769868]
[29]
Okwan-Duodu, D.; Weiss, D.; Peng, Z.; Veiras, L.C.; Cao, D-Y.; Saito, S.; Khan, Z.; Bernstein, E.A.; Giani, J.F.; Taylor, W.R.; Bernstein, K.E. Overexpression of myeloid angiotensin-converting enzyme (ACE) reduces atherosclerosis. Biochem. Biophys. Res. Commun., 2019, 520(3), 573-579.
[http://dx.doi.org/10.1016/j.bbrc.2019.10.078] [PMID: 31615657]
[30]
Veiras, L.C.; Cao, D.; Saito, S.; Peng, Z.; Bernstein, E.A.; Shen, J.Z.Y.; Koronyo-Hamaoui, M.; Okwan-Duodu, D.; Giani, J.F.; Khan, Z.; Bernstein, K.E. Overexpression of ACE in myeloid cells increases immune effectiveness and leads to a new way of considering inflammation in acute and chronic diseases. Curr. Hypertens. Rep., 2020, 22(1), 4.
[http://dx.doi.org/10.1007/s11906-019-1008-x] [PMID: 31916032]
[31]
Khan, Z.; Cao, D-Y.; Giani, J.F.; Bernstein, E.A.; Veiras, L.C.; Fuchs, S.; Wang, Y.; Peng, Z.; Kalkum, M.; Liu, G.Y.; Bernstein, K.E. Overexpression of the C-domain of angiotensin-converting enzyme reduces melanoma growth by stimulating M1 macrophage polarization. J. Biol. Chem., 2019, 294(12), 4368-4380.
[http://dx.doi.org/10.1074/jbc.RA118.006275] [PMID: 30670595]
[32]
Bernstein, K.E; Khan, Z.; Giani, J.F; Zhao, T.; Eriguchi, M.; Bernstein, E.A Overexpression of angiotensin-converting enzyme in myelomonocytic cells enhances the immune response. F1000Res., 2016.
[33]
Cronan, M.R.; Beerman, R.W.; Rosenberg, A.F.; Saelens, J.W.; Johnson, M.G.; Oehlers, S.H.; Sisk, D.M.; Jurcic Smith, K.L.; Medvitz, N.A.; Miller, S.E.; Trinh, L.A.; Fraser, S.E.; Madden, J.F.; Turner, J.; Stout, J.E.; Lee, S.; Tobin, D.M. Macrophage epithelial reprogramming underlies mycobacterial granuloma formation and promotes infection. Immunity, 2016, 45(4), 861-876.
[http://dx.doi.org/10.1016/j.immuni.2016.09.014] [PMID: 27760340]
[34]
Shen, X.Z.; Okwan-Duodu, D.; Blackwell, W-L.; Ong, F.S.; Janjulia, T.; Bernstein, E.A.; Fuchs, S.; Alkan, S.; Bernstein, K.E. Myeloid expression of angiotensin-converting enzyme facilitates myeloid maturation and inhibits the development of myeloid-derived suppressor cells. Lab. Invest., 2014, 94(5), 536-544.
[http://dx.doi.org/10.1038/labinvest.2014.41] [PMID: 24614194]
[35]
Trikha, R.; Greig, D.; Kelley, B.V.; Mamouei, Z.; Sekimura, T.; Cevallos, N. Inhibition of Angiotensin Converting Enzyme Impairs Anti-staphylococcal Immune Function in a Preclinical Model of Implant Infection. Front. Immunol., 1919, 2020, 11.
[PMID: 33042111]
[36]
Koronyo-Hamaoui, M.; Sheyn, J.; Hayden, E.Y.; Li, S.; Fuchs, D-T.; Regis, G.C.; Lopes, D.H.J.; Black, K.L.; Bernstein, K.E.; Teplow, D.B.; Fuchs, S.; Koronyo, Y.; Rentsendorj, A. Peripherally derived angiotensin converting enzyme-enhanced macrophages alleviate Alzheimer-related disease. Brain, 2020, 143(1), 336-358.
[http://dx.doi.org/10.1093/brain/awz364] [PMID: 31794021]
[37]
Pamer, E.; Cresswell, P. Mechanisms of MHC class I--restricted antigen processing. Annu. Rev. Immunol., 1998, 16, 323-358.
[http://dx.doi.org/10.1146/annurev.immunol.16.1.323] [PMID: 9597133]
[38]
Shen, X.Z.; Billet, S.; Lin, C.; Okwan-Duodu, D.; Chen, X.; Lukacher, A.E.; Bernstein, K.E. The carboxypeptidase ACE shapes the MHC class I peptide repertoire. Nat. Immunol., 2011, 12(11), 1078-1085.
[http://dx.doi.org/10.1038/ni.2107] [PMID: 21964607]
[39]
Shen, X.Z.; Lukacher, A.E.; Billet, S.; Williams, I.R.; Bernstein, K.E. Expression of angiotensin-converting enzyme changes major histocompatibility complex class I peptide presentation by modifying C termini of peptide precursors. J. Biol. Chem., 2008, 283(15), 9957-9965.
[http://dx.doi.org/10.1074/jbc.M709574200] [PMID: 18252713]
[40]
Zhao, T.; Bernstein, K.E.; Fang, J.; Shen, X.Z. Angiotensin-converting enzyme affects the presentation of MHC class II antigens. Lab. Invest., 2017, 97(7), 764-771.
[http://dx.doi.org/10.1038/labinvest.2017.32] [PMID: 28394320]
[41]
Cao, D-Y.; Saito, S.; Veiras, L.C.; Okwan-Duodu, D.; Bernstein, E.A.; Giani, J.F.; Bernstein, K.E.; Khan, Z. Role of angiotensin-converting enzyme in myeloid cell immune responses. Cell. Mol. Biol. Lett., 2020, 25, 31.
[http://dx.doi.org/10.1186/s11658-020-00225-w] [PMID: 32508938]
[42]
Khan, Z.; Shen, X.Z.; Bernstein, E.A.; Giani, J.F.; Eriguchi, M.; Zhao, T.V.; Gonzalez-Villalobos, R.A.; Fuchs, S.; Liu, G.Y.; Bernstein, K.E. Angiotensin-converting enzyme enhances the oxidative response and bactericidal activity of neutrophils. Blood, 2017, 130(3), 328-339.
[http://dx.doi.org/10.1182/blood-2016-11-752006] [PMID: 28515091]
[43]
de Oliveira, S.; Rosowski, E.E.; Huttenlocher, A. Neutrophil migration in infection and wound repair: going forward in reverse. Nat. Rev. Immunol., 2016, 16(6), 378-391.
[http://dx.doi.org/10.1038/nri.2016.49] [PMID: 27231052]
[44]
Molecular mechanisms regulating NETosis in infection and disease. In: In: Seminars in immunopathology; Branzk, N.; Papayannopoulos, V., Eds.;; , 2013.
[45]
Protumor and antitumor functions of neutrophil granulocytes. In: In: Seminars in immunopathology; Brandau, S.; Dumitru, C.A.; Lang, S., Eds.;; , 2013.
[46]
Piccard, H.; Muschel, R.J.; Opdenakker, G. On the dual roles and polarized phenotypes of neutrophils in tumor development and progression. Crit. Rev. Oncol. Hematol., 2012, 82(3), 296-309.
[http://dx.doi.org/10.1016/j.critrevonc.2011.06.004] [PMID: 21798756]
[47]
Shrestha, S.; Noh, J.M.; Kim, S-Y.; Ham, H-Y.; Kim, Y-J.; Yun, Y-J.; Kim, M.J.; Kwon, M.S.; Song, D.K.; Hong, C.W. Angiotensin converting enzyme inhibitors and angiotensin II receptor antagonist attenuate tumor growth via polarization of neutrophils toward an antitumor phenotype. OncoImmunology, 2015, 5(1), e1067744.
[http://dx.doi.org/10.1080/2162402X.2015.1067744] [PMID: 26942086]
[48]
Chang, Y.; Wei, W. Angiotensin II in inflammation, immunity and rheumatoid arthritis. Clin. Exp. Immunol., 2015, 179(2), 137-145.
[http://dx.doi.org/10.1111/cei.12467] [PMID: 25302847]
[49]
Pinter, M.; Jain, R.K. Targeting the renin-angiotensin system to improve cancer treatment: Implications for immunotherapy. Sci. Transl. Med., 2017, 9(410), eaan5616.
[http://dx.doi.org/10.1126/scitranslmed.aan5616] [PMID: 28978752]
[50]
Bodiga, S.; Zhong, J.C.; Wang, W.; Basu, R.; Lo, J.; Liu, G.C.; Guo, D.; Holland, S.M.; Scholey, J.W.; Penninger, J.M.; Kassiri, Z.; Oudit, G.Y. Enhanced susceptibility to biomechanical stress in ACE2 null mice is prevented by loss of the p47(phox) NADPH oxidase subunit. Cardiovasc. Res., 2011, 91(1), 151-161.
[http://dx.doi.org/10.1093/cvr/cvr036] [PMID: 21285291]
[51]
Zhu, L.; Yang, X-P.; Janic, B.; Rhaleb, N-E.; Harding, P.; Nakagawa, P.; Peterson, E.L.; Carretero, O.A. Ac-SDKP suppresses TNF-α-induced ICAM-1 expression in endothelial cells via inhibition of IκB kinase and NF-κB activation. Am. J. Physiol. Heart Circ. Physiol., 2016, 310(9), H1176-H1183.
[http://dx.doi.org/10.1152/ajpheart.00252.2015] [PMID: 26945075]
[52]
Viinikainen, A.; Nyman, T.; Fyhrquist, F.; Saijonmaa, O. Downregulation of angiotensin converting enzyme by TNF-α in differentiating human macrophages. Cytokine, 2002, 18(6), 304-310.
[http://dx.doi.org/10.1006/cyto.2002.1047] [PMID: 12160518]
[53]
De Albuquerque, D.A.; Saxena, V.; Adams, D.E.; Boivin, G.P.; Brunner, H.I.; Witte, D.P.; Singh, R.R. An ACE inhibitor reduces Th2 cytokines and TGF-beta1 and TGF-beta2 isoforms in murine lupus nephritis. Kidney Int., 2004, 65(3), 846-859.
[http://dx.doi.org/10.1111/j.1523-1755.2004.00462.x] [PMID: 14871404]
[54]
Gullestad, L.; Aukrust, P.; Ueland, T.; Espevik, T.; Yee, G.; Vagelos, R.; Frøland, S.S.; Fowler, M. Effect of high- versus low-dose angiotensin converting enzyme inhibition on cytokine levels in chronic heart failure. J. Am. Coll. Cardiol., 1999, 34(7), 2061-2067.
[http://dx.doi.org/10.1016/S0735-1097(99)00495-7] [PMID: 10588224]
[55]
Gage, J.R.; Fonarow, G.; Hamilton, M.; Widawski, M.; Martínez-Maza, O.; Vredevoe, D.L. Beta blocker and angiotensin-converting enzyme inhibitor therapy is associated with decreased Th1/Th2 cytokine ratios and inflammatory cytokine production in patients with chronic heart failure. Neuroimmunomodulation, 2004, 11(3), 173-180.
[http://dx.doi.org/10.1159/000076766] [PMID: 15067208]
[56]
Constantinescu, C.S.; Ventura, E.; Hilliard, B.; Rostami, A. Effects of the angiotensin converting enzyme inhibitor captopril on experimental autoimmune encephalomyelitis. Immunopharmacol. Immunotoxicol., 1995, 17(3), 471-491.
[http://dx.doi.org/10.3109/08923979509016382] [PMID: 8576541]
[57]
Hagiwara, S.; Iwasaka, H.; Matumoto, S.; Hidaka, S.; Noguchi, T. Effects of an angiotensin-converting enzyme inhibitor on the inflammatory response in in vivo and in vitro models. Crit. Care Med., 2009, 37(2), 626-633.
[http://dx.doi.org/10.1097/CCM.0b013e3181958d91] [PMID: 19114890]
[58]
Platten, M.; Youssef, S.; Hur, E.M.; Ho, P.P.; Han, M.H.; Lanz, T.V.; Phillips, L.K.; Goldstein, M.J.; Bhat, R.; Raine, C.S.; Sobel, R.A.; Steinman, L. Blocking angiotensin-converting enzyme induces potent regulatory T cells and modulates TH1- and TH17-mediated autoimmunity. Proc. Natl. Acad. Sci. USA, 2009, 106(35), 14948-14953.
[http://dx.doi.org/10.1073/pnas.0903958106] [PMID: 19706421]
[59]
Lopez-Real, A.; Rey, P.; Soto-Otero, R.; Mendez-Alvarez, E.; Labandeira-Garcia, J.L. Angiotensin-converting enzyme inhibition reduces oxidative stress and protects dopaminergic neurons in a 6-hydroxydopamine rat model of Parkinsonism. J. Neurosci. Res., 2005, 81(6), 865-873.
[http://dx.doi.org/10.1002/jnr.20598] [PMID: 16015598]
[60]
Dalbeth, N.; Edwards, J.; Fairchild, S.; Callan, M.; Hall, F.C. The non-thiol angiotensin-converting enzyme inhibitor quinapril suppresses inflammatory arthritis. Rheumatology (Oxford), 2005, 44(1), 24-31.
[http://dx.doi.org/10.1093/rheumatology/keh398] [PMID: 15353612]
[61]
Bahk, T.J.; Daniels, M.D.; Leon, J.S.; Wang, K.; Engman, D.M. Comparison of angiotensin converting enzyme inhibition and angiotensin II receptor blockade for the prevention of experimental autoimmune myocarditis. Int. J. Cardiol., 2008, 125(1), 85-93.
[http://dx.doi.org/10.1016/j.ijcard.2007.04.062] [PMID: 17588693]
[62]
Scholzen, T.E.; Ständer, S.; Riemann, H.; Brzoska, T.; Luger, T.A. Modulation of cutaneous inflammation by angiotensin-converting enzyme. J. Immunol., 2003, 170(7), 3866-3873.
[http://dx.doi.org/10.4049/jimmunol.170.7.3866] [PMID: 12646655]
[63]
Leuschner, F.; Panizzi, P.; Chico-Calero, I.; Lee, W.W.; Ueno, T.; Cortez-Retamozo, V.; Waterman, P.; Gorbatov, R.; Marinelli, B.; Iwamoto, Y.; Chudnovskiy, A.; Figueiredo, J.L.; Sosnovik, D.E.; Pittet, M.J.; Swirski, F.K.; Weissleder, R.; Nahrendorf, M. Angiotensin-converting enzyme inhibition prevents the release of monocytes from their splenic reservoir in mice with myocardial infarction. Circ. Res., 2010, 107(11), 1364-1373.
[http://dx.doi.org/10.1161/CIRCRESAHA.110.227454] [PMID: 20930148]
[64]
Fang, Q-Q.; Wang, X-F.; Zhao, W-Y.; Ding, S-L.; Shi, B-H.; Xia, Y.; Yang, H.; Wu, L.H.; Li, C.Y.; Tan, W.Q. Angiotensin-converting enzyme inhibitor reduces scar formation by inhibiting both canonical and noncanonical TGF-β1 pathways. Sci. Rep., 2018, 8(1), 3332.
[http://dx.doi.org/10.1038/s41598-018-21600-w] [PMID: 29463869]
[65]
Reza, H.M.; Tabassum, N.; Sagor, M.A.T.; Chowdhury, M.R.H.; Rahman, M.; Jain, P.; Alam, M.A. Angiotensin-converting enzyme inhibitor prevents oxidative stress, inflammation, and fibrosis in carbon tetrachloride-treated rat liver. Toxicol. Mech. Methods, 2016, 26(1), 46-53.
[http://dx.doi.org/10.3109/15376516.2015.1124956] [PMID: 26862777]
[66]
Yang, S.; Li, R.; Tang, L.; Qu, X.; Ge, G.; Ma, J.; Liu, H.; Qiao, Z.; Fang, W. TLR4-mediated anti-atherosclerosis mechanisms of angiotensin-converting enzyme inhibitor--fosinopril. Cell. Immunol., 2013, 285(1-2), 38-41.
[http://dx.doi.org/10.1016/j.cellimm.2013.08.003] [PMID: 24044965]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy