Generic placeholder image

Drug Delivery Letters


ISSN (Print): 2210-3031
ISSN (Online): 2210-304X

Review Article

Research Progress of Nanostructured Lipid Carriers in Ocular Drug Delivery

Author(s): Chandrashekhar Mahadeo Chakole* and Meenakshi Kanwar Chauhan

Volume 11 , Issue 3 , 2021

Published on: 12 February, 2021

Page: [203 - 219] Pages: 17

DOI: 10.2174/2210303111666210212143011

Price: $65


The eye is the most important sensory organ, which restricts most of the active substances due to its static and dynamic barriers. The application of conventional eye drop is still popular, but it was found to be less permeable to both anterior and posterior eye portions, requiring more frequent administration. It seems to be a great challenge for the researcher to fabricate an ocular formulation that crosses the barriers and achieves an optimal therapeutic concentration at the ocular globe. Recent studies revealed that a nanostructured lipid carrier has great potential in ophthalmic use and has become more popular due to its permeability in the eye cavity.

This review describes the nanostructured lipid carriers with respect to the mechanism of ocular permeation, structural feature, manufacturing process, characterization, and its merits over other nanocarriers. In recent years, newly nanostructured-based ocular formulations have been developed, like surface-modified with various cationic compounds and their integration with different polymeric systems, to enhance ocular bioavailability in both regions of the eye. Newly developed nanostructured lipid carriers include surface modified cationic lipid, polymers, and thiolated compounds, etc., that increases mucoadhesive property. Finally, nanostructured incorporated forms, in situ gel, and hydrogel increase permeation in the posterior region of the eye.

Keywords: Lipid nanoparticles, NLC, ocular drug delivery, pre-corneal retention, mucoadhesive, zeta potential, ocular bioavailability, transcorneal permeation.

Graphical Abstract

Rights & Permissions Print Export Cite as
© 2022 Bentham Science Publishers | Privacy Policy