Generic placeholder image

Current Organic Chemistry

Editor-in-Chief

ISSN (Print): 1385-2728
ISSN (Online): 1875-5348

Research Article

Alcoholysis Versus Fission of the Ester Group During the Reaction of Dialkyl Phenylphosphonates in the Presence of Ionic Liquids

Author(s): Nikoletta Harsági, Csilla Bertha, Nóra Zsuzsa Kiss, Réka Henyecz, Petra Regina Varga, Péter Ábrányi-Balogh, László Drahos and György Keglevich*

Volume 25, Issue 7, 2021

Published on: 11 February, 2021

Page: [842 - 848] Pages: 7

DOI: 10.2174/1385272825666210212115649

Abstract

In the microwave-assisted alcoholysis of dialkyl phenylphosphonates performed in the presence of suitable ionic liquids, such as [bmim][BF4] or [bmim][PF6], affording the phosphonate with mixed alkoxy groups and the fully transesterified product, the fission of the phosphonate function to the ester-acid or diacid moiety was inevitable. Moreover, in the presence of [emim][HSO4], the reaction could be performed to afford the phosphonic esteracid with a selectivity of 66% and the diacid with a selectivity of 97%. The ester-acids provided by the new protocol may be valuable intermediates.

Keywords: Dialkyl phosphonates, microwave, alcoholysis, ionic liquid, phosphonic ester-acid, phosphonic acid

Graphical Abstract
[1]
Quin, L.D. In: A Guide to Organophosphorus Chemistry; Wiley: NewYork, 2000.
[2]
Kiss, N.Z.; Keglevich, G. Methods for the preparation of phosphinates and phosphonates with a focus on recent advances. In: Organophosphorus Chemistry - Novel Developments; Keglevich, G., Ed.; De Gruyter: Berlin, 2018; pp. 35-52.
[http://dx.doi.org/10.1515/9783110535839-002]
[3]
Kiss, N.Z.; Keglevich, G. An overview of the synthesis of phosphinates and phosphinic amides. Curr. Org. Chem., 2014, 18, 2673-2690.
[http://dx.doi.org/10.2174/1385272819666140829011741]
[4]
Kiss, N.Z.; Keglevich, G. Microwave-assisted direct esterification of cyclic phosphinic acids in the presence of ionic liquids. Tetrahedron Lett., 2016, 57, 971-974.
[http://dx.doi.org/10.1016/j.tetlet.2016.01.044]
[5]
Kiss, N.Z.; Keglevich, G. Direct esterification of phosphinic and phosphonic acids enhanced by ionic liquid additives. Pure Appl. Chem., 2019, 91, 59-65.
[http://dx.doi.org/10.1515/pac-2018-1008]
[6]
Geshner, I.; Horton, D.P. Gelled hydrocarbons for oilfield processes, phosphate ester compounds useful in gellation of hydrocarbons and methods for production and use thereof. U.S. Patent 20110100633, September 12, 2011.
[7]
Froneman, M.; Modro, T.A. The titanium-mediated transesterification of phosphorous esters. Tetrahedron Lett., 1988, 27, 3327-3330.
[http://dx.doi.org/10.1016/0040-4039(88)85153-0]
[8]
Oswald, A.A. Synthesis of cyclic phosphorus acid esters by transesterification. Can. J. Chem., 1959, 37, 1498-1504.
[http://dx.doi.org/10.1139/v59-220]
[9]
Fangrui, M.; Milford, A.H. Biodiesel production: a review. Bioresour. Technol., 1999, 70, 1-15.
[10]
Harsági, N.; Szőllősi, B.; Kiss, N.Z.; Keglevich, G. MW irradiation and ionic liquids as green tools in hydrolyses and alcoholyses. Green Proc. Synth., 2020, 10(1), 1-10.
[http://dx.doi.org/10.1515/gps-2021-0001]
[11]
Kosolapoff, G.M. Preparation of some mixed dialkyl phosphites. J. Am. Chem. Soc., 1951, 73, 4989.
[http://dx.doi.org/10.1021/ja01154a528]
[12]
Aitken, R.A.; Collett, C.J.; Mesher, S.T.E. Convenient preparation of long-chain dialkyl phosphates: synthesis of dialkyl phosphates. Synthesis, 2012, 44, 2515-2518.
[http://dx.doi.org/10.1055/s-0031-1290823]
[13]
Kuskov, V.K.; Gradis, G.K. Reaction of diethyl phosphite with sodium alcoholates. Dokl. Akad. Nauk SSSR, 1953, 92, 323-324.
[14]
Lewkowski, J.; Moya, M.R. The formation of dimethyl amino(pyrene-1-yl)methylphosphonates in the Kabachnik-Fields reaction with dibenzyl phosphite, pyrene-1-carboxaldehyde and a non-aromatic amine in methanol. Phosphorus Sulfur Silicon Relat. Elem., 2017, 192, 713-718.
[http://dx.doi.org/10.1080/10426507.2017.1308932]
[15]
Bálint, E.; Tajti, Á.; Drahos, L.; Ilia, G.; Keglevich, G. Alcoholysis of dialkyl phosphites under microwave conditions. Curr. Org. Chem., 2013, 17, 555-562.
[http://dx.doi.org/10.2174/1385272811317050010]
[16]
Tajti, Á.; Bálint, E.; Keglevich, G. Synthesis of ethyl octyl α-aminophosphonate derivatives. Curr. Org. Synth., 2015, 13, 638-645.
[http://dx.doi.org/10.2174/1570179413666151218202757]
[17]
Bálint, E.; Tajti, Á.; Tóth, N.; Keglevich, G. Continuous flow alcoholysis of dialkyl H-phosphonates with aliphatic alcohols. Molecules, 2018, 23(7), 1618.
[http://dx.doi.org/10.3390/molecules23071618] [PMID: 29970851]
[18]
Kiss, N.Z.; Henyecz, R.; Keglevich, G. Continuous flow esterification of a H-phosphinic acid, and transesterification of H-phosphinates and H-phosphonates under microwave conditions. Molecules, 2020, 25(3), 719.
[http://dx.doi.org/10.3390/molecules25030719] [PMID: 32046016]
[19]
Keglevich, G.; Bálint, E.; Tajti, Á.; Mátravölgyi, B.; Balogh, G.T.; Bálint, M.; Ilia, G. Microwave-assisted alcoholysis of dialkyl phosphites by ethylene glycol and ethanolamine. Pure Appl. Chem., 2014, 86, 1723-1728.
[http://dx.doi.org/10.1515/pac-2014-0601]
[20]
Troev, K.D. Chemistry and Application of H-Phosphonates; Elsevier: Amsterdam, 2006, p. 33.
[21]
Bezdushna, E.; Ritter, H.; Troev, K.D. Microwave-assisted single-step synthesis of poly(alkylene hydrogen phosphonate)s by transesterification of dimethyl hydrogen phosphonate with poly(ethylene glycol). Macromol. Rapid Commun., 2005, 26, 471-476.
[http://dx.doi.org/10.1002/marc.200400494]
[22]
Pretula, J.; Kaluzynski, K.; Szymanski, R.; Penczek, S. Transesterification of oligomeric dialkyl phosphonates, leading to the high-molecular-weight poly-H-phosphonates. J. Polym. Sci., 1999, 37, 1365-1381.
[http://dx.doi.org/10.1002/(SICI)1099-0518(19990501)37:9<1365:AID-POLA17>3.0.CO;2-#]
[23]
Sosnik, A.; Gotelli, G. Abraham. G.A. Microwave-assisted polymer synthesis (MAPS) as a tool in biomaterials science: how new and how powerful. Prog. Polym. Sci., 2011, 36, 1050-1078.
[http://dx.doi.org/10.1016/j.progpolymsci.2010.12.001]
[24]
Keglevich, G.; Rádai, Z.; Harsági, N.; Szigetvári, Á.; Kiss, N.Z. A study on the acidic hydrolysis of cyclic phosphinates: 1-Alkoxy-3-phospholene 1-oxides, 1-ethoxy-3-methylphospholane 1-oxide, and 1-ethoxy-3-methyl-1,2,3, 4,5,6-hexahydrophosphinine 1-oxide. Heteroatom Chem., 2017, 28, e21394.
[http://dx.doi.org/10.1002/hc.21394]
[25]
Harsági, N.; Rádai, Z.; Kiss, N.Z.; Szigetvári, Á.; Keglevich, G. Two step acidic hydrolysis of dialkyl arylphosphonates. Mendeleev Commun., 2020, 30(1), 38-39.
[http://dx.doi.org/10.1016/j.mencom.2020.01.012]
[26]
Harsági, N.; Rádai, Z.; Szigetvári, Á.; Kóti, J.; Keglevich, G. Optimization and a kinetic study on the acidic hydrolysis of dialkyl α-hydroxybenzyl-phosphonates. Molecules, 2020, 25(17), 3793.
[http://dx.doi.org/10.3390/molecules25173793] [PMID: 32825450]
[27]
Rádai, Z.; Kiss, N.Z.; Keglevich, G. An overview of the applications of ionic liquids as catalysts and additives in organic chemical reactions. Curr. Org. Chem., 2018, 22, 533-556.
[http://dx.doi.org/10.2174/1385272822666171227152013]
[28]
Li, C.; Saga, Y.; Onozawa, S.Y.; Kobayashi, S.; Sato, K.; Fukaya, N.; Han, L.B. Wet and dry processes for the selective transformation of phosphonates to phosphonic acids catalyzed by Brønsted acids. J. Org. Chem., 2020, 85(22), 14411-14419.
[http://dx.doi.org/10.1021/acs.joc.0c00550] [PMID: 32434328]
[29]
Henyecz, R.; Kiss, A.; Mórocz, V.; Kiss, N.Z.; Keglevich, G. Synthesis of phosphonates from phenylphosphonic acid and its monoesters. Synth. Commun., 2019, 49(20), 2642-2650.
[http://dx.doi.org/10.1080/00397911.2019.1637894]
[30]
Kiss, N.Z.; Mucsi, Z.; Böttger, É.; Drahos, L.; Keglevich, G. A three-step conversion of phenyl-1H-phosphinic acid to dialkyl phenylphosphonates including two microwave-assisted direct esterification steps. Curr. Org. Synth., 2014, 11(5), 767-772.
[http://dx.doi.org/10.2174/1570179410666131212231130]

© 2022 Bentham Science Publishers | Privacy Policy