Generic placeholder image

Current Vascular Pharmacology

Editor-in-Chief

ISSN (Print): 1570-1611
ISSN (Online): 1875-6212

Review Article

Exosomes and Exosomal microRNAs in Age-associated Stroke

Author(s): Xiang Wang, Changmei Huang Fu, Xiudeng Zhu, Jiehong Liu, Xinqin Gong, Qunwen Pan* and Xiaotang Ma*

Volume 19 , Issue 6 , 2021

Published on: 08 February, 2021

Page: [587 - 600] Pages: 14

DOI: 10.2174/1570161119666210208202621

Price: $65

Abstract

Aging has been considered to be the most important non-modifiable risk factor for stroke and death. Changes in circulation factors in the systemic environment, cellular senescence and artery hypertension during human ageing have been investigated. Exosomes are nanosize membrane vesicles that can regulate target cell functions via delivering their carried bioactive molecules (e.g. protein, mRNA, and microRNAs). In the central nervous system, exosomes and exosomal microRNAs play a critical role in regulating neurovascular function and are implicated in stroke initiation and progression. MicroRNAs are small non-coding RNAs that have been reported to play critical roles in various biological processes. Recently, evidence has shown that microRNAs are packaged into exosomes and can be secreted into the systemic and tissue environment. Circulating microRNAs participate in cellular senescence and contribute to age-associated stroke. Here, we provide an overview of current knowledge on exosomes and their carried microRNAs in the regulation of cellular and organismal ageing processes, demonstrating the potential role of exosomes and their carried microRNAs in age-associated stroke.

Keywords: Exosomes, microRNAs, age, stroke, neurovascular unit, neural stem cells.

Graphical Abstract
[1]
Zagrean AM, Hermann DM, Opris I, Zagrean L, Popa-Wagner A. Multicellular crosstalk between exosomes and the neurovascular unit after cerebral ischemia. Therapeutic Implications. Front Neurosci 2018; 12: 811.
[http://dx.doi.org/10.3389/fnins.2018.00811] [PMID: 30459547]
[2]
Badan I, Buchhold B, Hamm A, et al. Accelerated glial reactivity to stroke in aged rats correlates with reduced functional recovery. J Cereb Blood Flow Metab 2003; 23(7): 845-54.
[http://dx.doi.org/10.1097/01.WCB.0000071883.63724.A7] [PMID: 12843788]
[3]
Zhang L, Zhang RL, Wang Y, et al. Functional recovery in aged and young rats after embolic stroke: treatment with a phosphodiesterase type 5 inhibitor. Stroke 2005; 36(4): 847-52.
[http://dx.doi.org/10.1161/01.STR.0000158923.19956.73] [PMID: 15746452]
[4]
Hayashi T, Yano K, Matsui-Hirai H, Yokoo H, Hattori Y, Iguchi A. Nitric oxide and endothelial cellular senescence. Pharmacol Ther 2008; 120(3): 333-9.
[http://dx.doi.org/10.1016/j.pharmthera.2008.09.002] [PMID: 18930078]
[5]
Tian XL, Li Y. Endothelial cell senescence and age-related vascular diseases. J Genet Genomics 2014; 41(9): 485-95.
[http://dx.doi.org/10.1016/j.jgg.2014.08.001] [PMID: 25269674]
[6]
Bam M, Yang X, Sen S, et al. Characterization of dysregulated mirna in peripheral blood mononuclear cells from ischemic stroke patients. Mol Neurobiol 2018; 55(2): 1419-29.
[http://dx.doi.org/10.1007/s12035-016-0347-8] [PMID: 28168424]
[7]
Zampa F, Hartzell AL, Zolboot N, Lippi G. Non-coding RNAs: the gatekeepers of neural network activity. Curr Opin Neurobiol 2019; 57: 54-61.
[http://dx.doi.org/10.1016/j.conb.2019.01.006] [PMID: 30743177]
[8]
Tkach M, Théry C. Communication by Extracellular Vesicles: Where We Are and Where We Need to Go. Cell 2016; 164(6): 1226-32.
[http://dx.doi.org/10.1016/j.cell.2016.01.043] [PMID: 26967288]
[9]
György B, Hung ME, Breakefield XO, Leonard JN. Therapeutic applications of extracellular vesicles: clinical promise and open questions. Annu Rev Pharmacol Toxicol 2015; 55: 439-64.
[http://dx.doi.org/10.1146/annurev-pharmtox-010814-124630] [PMID: 25292428]
[10]
Skogberg G, Gudmundsdottir J, van der Post S, et al. Characterization of human thymic exosomes. PLoS One 2013; 8(7): e67554.
[http://dx.doi.org/10.1371/journal.pone.0067554] [PMID: 23844026]
[11]
Ghoreishy A, Khosravi A, Ghaemmaghami A. Exosomal microRNA and stroke: A review. J Cell Biochem 2019; 120(10): 16352-61.
[http://dx.doi.org/10.1002/jcb.29130] [PMID: 31219202]
[12]
Valadi H, Ekström K, Bossios A, Sjöstrand M, Lee JJ, Lötvall JO. Exosome-mediated transfer of mRNAs and microRNAs is a novel mechanism of genetic exchange between cells. Nat Cell Biol 2007; 9(6): 654-9.
[http://dx.doi.org/10.1038/ncb1596] [PMID: 17486113]
[13]
Machida T, Tomofuji T, Ekuni D, et al. MicroRNAs in Salivary Exosome as Potential Biomarkers of Aging. Int J Mol Sci 2015; 16(9): 21294-309.
[http://dx.doi.org/10.3390/ijms160921294] [PMID: 26370963]
[14]
Kumar S, Vijayan M, Bhatti JS, Reddy PH. MicroRNAs as peripheral biomarkers in aging and age-related diseases. Prog Mol Biol Transl Sci 2017; 146: 47-94.
[http://dx.doi.org/10.1016/bs.pmbts.2016.12.013] [PMID: 28253991]
[15]
Benjamin EJ, Muntner P, Alonso A, et al. Heart disease and stroke statistics-2019 update: a report from the American heart association. Circulation 2019; 139(10): e56-e528.
[http://dx.doi.org/10.1161/CIR.0000000000000659] [PMID: 30700139]
[16]
Feigin VL, Lawes CM, Bennett DA, Anderson CS. Stroke epidemiology: a review of population-based studies of incidence, prevalence, and case-fatality in the late 20th century. Lancet Neurol 2003; 2(1): 43-53.
[http://dx.doi.org/10.1016/S1474-4422(03)00266-7] [PMID: 12849300]
[17]
Orlandi G, Gelli A, Fanucchi S, Tognoni G, Acerbi G, Murri L. Prevalence of stroke and transient ischaemic attack in the elderly population of an Italian rural community. Eur J Epidemiol 2003; 18(9): 879-82.
[http://dx.doi.org/10.1023/A:1025639203283] [PMID: 14561047]
[18]
Arnan MK, Burke GL, Bushnell C. Secondary prevention of stroke in the elderly: focus on drug therapy. Drugs Aging 2014; 31(10): 721-30.
[http://dx.doi.org/10.1007/s40266-014-0212-2] [PMID: 25212952]
[19]
Killiany RJ, Meier DS, Guttmann CR. Image processing: global and regional changes with age. Top Magn Reson Imaging 2004; 15(6): 349-53.
[http://dx.doi.org/10.1097/01.rmr.0000175131.63152.53] [PMID: 16041286]
[20]
Double KL, Halliday GM, Kril JJ, et al. Topography of brain atrophy during normal aging and Alzheimer’s disease. Neurobiol Aging 1996; 17(4): 513-21.
[http://dx.doi.org/10.1016/0197-4580(96)00005-X] [PMID: 8832624]
[21]
Resnick SM, Goldszal AF, Davatzikos C, et al. One-year age changes in MRI brain volumes in older adults. Cereb Cortex 2000; 10(5): 464-72.
[http://dx.doi.org/10.1093/cercor/10.5.464] [PMID: 10847596]
[22]
Lucin KM, Wyss-Coray T. Immune activation in brain aging and neurodegeneration: too much or too little? Neuron 2009; 64(1): 110-22.
[http://dx.doi.org/10.1016/j.neuron.2009.08.039] [PMID: 19840553]
[23]
Popa-Wagner A, Petcu EB, Capitanescu B, Hermann DM, Radu E, Gresita A. Ageing as a risk factor for cerebral ischemia: Underlying mechanisms and therapy in animal models and in the clinic. Mech Ageing Dev 2020; 190: 111312.
[http://dx.doi.org/10.1016/j.mad.2020.111312] [PMID: 32663480]
[24]
Liu F, Akella P, Benashski SE, Xu Y, McCullough LD. Expression of Na-K-Cl cotransporter and edema formation are age dependent after ischemic stroke. Exp Neurol 2010; 224(2): 356-61.
[http://dx.doi.org/10.1016/j.expneurol.2010.04.010] [PMID: 20406636]
[25]
Arumugam TV, Phillips TM, Cheng A, Morrell CH, Mattson MP, Wan R. Age and energy intake interact to modify cell stress pathways and stroke outcome. Ann Neurol 2010; 67(1): 41-52.
[http://dx.doi.org/10.1002/ana.21798] [PMID: 20186857]
[26]
Schroeder E, Vogelgesang S, Popa-Wagner A, Kessler C. Neurofilament expression in the rat brain after cerebral infarction: effect of age. Neurobiol Aging 2003; 24(1): 135-45.
[http://dx.doi.org/10.1016/S0197-4580(02)00063-5] [PMID: 12493559]
[27]
Ohta K, Iwai M, Sato K, et al. Dissociative increase of oligodendrocyte progenitor cells between young and aged rats after transient cerebral ischemia. Neurosci Lett 2003; 335(3): 159-62.
[http://dx.doi.org/10.1016/S0304-3940(02)01177-1] [PMID: 12531457]
[28]
Rouhl RP, van Oostenbrugge RJ, Damoiseaux J, Tervaert JW, Lodder J. Endothelial progenitor cell research in stroke: a potential shift in pathophysiological and therapeutical concepts. Stroke 2008; 39(7): 2158-65.
[http://dx.doi.org/10.1161/STROKEAHA.107.507251] [PMID: 18451350]
[29]
Heiss C, Keymel S, Niesler U, Ziemann J, Kelm M, Kalka C. Impaired progenitor cell activity in age-related endothelial dysfunction. J Am Coll Cardiol 2005; 45(9): 1441-8.
[http://dx.doi.org/10.1016/j.jacc.2004.12.074] [PMID: 15862416]
[30]
Keymel S, Kalka C, Rassaf T, Yeghiazarians Y, Kelm M, Heiss C. Impaired endothelial progenitor cell function predicts age-dependent carotid intimal thickening. Basic Res Cardiol 2008; 103(6): 582-6.
[http://dx.doi.org/10.1007/s00395-008-0742-z] [PMID: 18704258]
[31]
Peremans K, Audenaert K, Blanckaert P, et al. Effects of aging on brain perfusion and serotonin-2A receptor binding in the normal canine brain measured with single photon emission tomography. Prog Neuropsychopharmacol Biol Psychiatry 2002; 26(7-8): 1393-404.
[http://dx.doi.org/10.1016/S0278-5846(02)00306-8] [PMID: 12502029]
[32]
Mozos I, Malainer C, Horbańczuk J, et al. Inflammatory Markers for Arterial Stiffness in Cardiovascular Diseases Front Immunol 2017; 8: 1058.
[http://dx.doi.org/10.3389/fimmu.2017.01058] [PMID: 28912780]
[33]
Peng C, Wang LP, Tao X, et al. Preventive cold acclimation augments the reparative function of endothelial progenitor cells in mice. Cell Physiol Biochem 2018; 45(1): 175-91.
[http://dx.doi.org/10.1159/000486356] [PMID: 29339666]
[34]
Kukumberg M, Zaw AM, Wong DHC, et al. Characterization and functional assessment of endothelial progenitor cells in ischemic stroke patients. Stem Cell Rev Rep 2021; 17(3): 952-67.
[http://dx.doi.org/10.1007/s12015-020-10064-z] [PMID: 33170433]
[35]
Bálint AR, Puskás T, Menyhárt Á, et al. Aging impairs cerebrovascular reactivity at preserved resting cerebral arteriolar tone and vascular density in the laboratory rat. Front Aging Neurosci 2019; 11: 301.
[http://dx.doi.org/10.3389/fnagi.2019.00301] [PMID: 31780917]
[36]
Donato AJ, Eskurza I, Silver AE, et al. Direct evidence of endothelial oxidative stress with aging in humans: relation to impaired endothelium-dependent dilation and upregulation of nuclear factor-kappaB. Circ Res 2007; 100(11): 1659-66.
[http://dx.doi.org/10.1161/01.RES.0000269183.13937.e8] [PMID: 17478731]
[37]
Jablonski KL, Seals DR, Eskurza I, Monahan KD, Donato AJ. High-dose ascorbic acid infusion abolishes chronic vasoconstriction and restores resting leg blood flow in healthy older men. J Appl Physiol 2007; 103(5): 1715-21.
[38]
Blasco MP, Chauhan A, Honarpisheh P, et al. Age-dependent involvement of gut mast cells and histamine in post-stroke inflammation. J Neuroinflammation 2020; 17(1): 160.
[http://dx.doi.org/10.1186/s12974-020-01833-1] [PMID: 32429999]
[39]
Bruno RM, Nilsson PM, Engström G, et al. Early and supernormal vascular aging: clinical characteristics and association with incident cardiovascular events. Hypertension 2020; 76(5): 1616-24.
[http://dx.doi.org/10.1161/HYPERTENSIONAHA.120.14971] [PMID: 32895017]
[40]
Nilsson PM, Boutouyrie P. Vascular aging: A tale of EVA and ADAM in cardiovascular risk assessment and prevention. 2009; 54(1): 3-10.
[41]
Olsen MH, Angell SY, Asma S, et al. A call to action and a life course strategy to address the global burden of raised blood pressure on current and future generations: the Lancet Commission on hypertension. 2016; 388(10060): 2665-712.
[http://dx.doi.org/10.1016/S0140-6736(16)31134-5]
[42]
Franceschi C, Bonafè M, Valensin S, et al. Inflamm-aging. An evolutionary perspective on immunosenescence. Ann N Y Acad Sci 2000; 908: 244-54.
[http://dx.doi.org/10.1111/j.1749-6632.2000.tb06651.x] [PMID: 10911963]
[43]
Csiszar A, Wang M, Lakatta EG, Ungvari Z. Inflammation and endothelial dysfunction during aging: Role of NF-kappaB. J Appl Physiol 2008; 105(4): 1333-41.
[44]
Lacolley P, Regnault V, Avolio AP. Smooth muscle cell and arterial aging: basic and clinical aspects. Cardiovasc Res 2018; 114(4): 513-28.
[http://dx.doi.org/10.1093/cvr/cvy009] [PMID: 29514201]
[45]
Laurent S, Boutouyrie P, Cunha PG, Lacolley P, Nilsson PM. Concept of extremes in vascular aging. Hypertension 2019; 74(2): 218-28.
[http://dx.doi.org/10.1161/HYPERTENSIONAHA.119.12655] [PMID: 31203728]
[46]
Csiszar A, Ungvari Z, Edwards JG, et al. Aging-induced phenotypic changes and oxidative stress impair coronary arteriolar function. Circ Res 2002; 90(11): 1159-66.
[http://dx.doi.org/10.1161/01.RES.0000020401.61826.EA] [PMID: 12065318]
[47]
Csiszar A, Ungvari Z, Koller A, Edwards JG, Kaley G. Aging-induced proinflammatory shift in cytokine expression profile in coronary arteries. FASEB J 2003; 17(9): 1183-5.
[http://dx.doi.org/10.1096/fj.02-1049fje] [PMID: 12709402]
[48]
Ungvari Z, Orosz Z, Labinskyy N, et al. Increased mitochondrial H2O2 production promotes endothelial NF-kappaB activation in aged rat arteries. 2007; 293(1): 37-47.
[49]
Wang M, Zhang J, Jiang LQ, et al. Proinflammatory profile within the grossly normal aged human aortic wall. Hypertension (Dallas, Tex : 1979) 2007; 50(1): 219-17.
[http://dx.doi.org/10.1161/HYPERTENSIONAHA.107.089409]
[50]
Bruunsgaard H, Skinhøj P, Pedersen AN, Schroll M, Pedersen BK. Ageing, tumour necrosis factor-alpha (TNF-alpha) and atherosclerosis. Clin Exp Immunol 2000; 121(2): 255-60.
[http://dx.doi.org/10.1046/j.1365-2249.2000.01281.x] [PMID: 10931139]
[51]
Miles EA, Rees D, Banerjee T, et al. Age-related increases in circulating inflammatory markers in men are independent of BMI, blood pressure and blood lipid concentrations. Atherosclerosis 2008; 196(1): 298-305.
[http://dx.doi.org/10.1016/j.atherosclerosis.2006.11.002] [PMID: 17118371]
[52]
Chung HY, Kim DH, Lee EK, et al. Redefining chronic inflammation in aging and age-related diseases: proposal of the senoinflammation concept. Aging Dis 2019; 10(2): 367-82.
[http://dx.doi.org/10.14336/AD.2018.0324] [PMID: 31011483]
[53]
Csiszar A, Sosnowska D, Wang M, Lakatta EG, Sonntag WE, Ungvari Z. Age-associated proinflammatory secretory phenotype in vascular smooth muscle cells from the non-human primate Macaca mulatta: reversal by resveratrol treatment. J Gerontol A Biol Sci Med Sci 2012; 67(8): 811-20.
[http://dx.doi.org/10.1093/gerona/glr228] [PMID: 22219513]
[54]
Csiszar A, Ungvari Z, Koller A, Edwards JG, Kaley G. Proinflammatory phenotype of coronary arteries promotes endothelial apoptosis in aging. Physiol Genomics 2004; 17(1): 21-30.
[http://dx.doi.org/10.1152/physiolgenomics.00136.2003] [PMID: 15020720]
[55]
Arenas IA, Xu Y, Davidge ST. Age-associated impairment in vasorelaxation to fluid shear stress in the female vasculature is improved by TNF-alpha antagonism. 2006; 290(3): 1259-63.
[56]
Csiszar A, Labinskyy N, Smith K, Rivera A, Orosz Z, Ungvari Z. Vasculoprotective effects of anti-tumor necrosis factor-alpha treatment in aging. Am J Pathol 2007; 170(1): 388-98.
[http://dx.doi.org/10.2353/ajpath.2007.060708] [PMID: 17200210]
[57]
Harris NR, Rumbaut RE. Age-related responses of the microcirculation to ischemia-reperfusion and inflammation. Pathophysiology 2001; 8(1): 1-10.
[http://dx.doi.org/10.1016/S0928-4680(01)00064-5] [PMID: 11476967]
[58]
Ritzel RM, Lai YJ, Crapser JD, et al. Aging alters the immunological response to ischemic stroke. Acta Neuropathol 2018; 136(1): 89-110.
[http://dx.doi.org/10.1007/s00401-018-1859-2] [PMID: 29752550]
[59]
Francia P, delli Gatti C, Bachschmid M, et al. Deletion of p66shc gene protects against age-related endothelial dysfunction. Circulation 2004; 110(18): 2889-95.
[http://dx.doi.org/10.1161/01.CIR.0000147731.24444.4D] [PMID: 15505103]
[60]
Sun D, Huang A, Yan EH, et al. Reduced release of nitric oxide to shear stress in mesenteric arteries of aged rats. 2004; 286(6): 2249-56.
[http://dx.doi.org/10.1152/ajpheart.00854.2003]
[61]
Ungvari Z, Buffenstein R, Austad SN, Podlutsky A, Kaley G, Csiszar A. Oxidative stress in vascular senescence: lessons from successfully aging species. Front Biosci 2008; 13: 5056-70.
[http://dx.doi.org/10.2741/3064] [PMID: 18508570]
[62]
Novella S, Dantas AP, Segarra G, et al. Aging-related endothelial dysfunction in the aorta from female senescence-accelerated mice is associated with decreased nitric oxide synthase expression. Exp Gerontol 2013; 48(11): 1329-37.
[http://dx.doi.org/10.1016/j.exger.2013.08.003] [PMID: 23948180]
[63]
Gong X, Ma Y, Ruan Y, Fu G, Wu S. Long-term atorvastatin improves age-related endothelial dysfunction by ameliorating oxidative stress and normalizing eNOS/iNOS imbalance in rat aorta. Exp Gerontol 2014; 52: 9-17.
[http://dx.doi.org/10.1016/j.exger.2014.01.015] [PMID: 24463049]
[64]
Hoffmann J, Haendeler J, Aicher A, et al. Aging enhances the sensitivity of endothelial cells toward apoptotic stimuli: important role of nitric oxide. Circ Res 2001; 89(8): 709-15.
[http://dx.doi.org/10.1161/hh2001.097796] [PMID: 11597994]
[65]
Cai H, Harrison DG. Endothelial dysfunction in cardiovascular diseases: the role of oxidant stress. Circ Res 2000; 87(10): 840-4.
[http://dx.doi.org/10.1161/01.RES.87.10.840] [PMID: 11073878]
[66]
Liguori I, Russo G, Curcio F, et al. Oxidative stress, aging, and diseases. Clin Interv Aging 2018; 13: 757-72.
[http://dx.doi.org/10.2147/CIA.S158513] [PMID: 29731617]
[67]
Higashi Y, Noma K, Yoshizumi M, Kihara Y. Endothelial function and oxidative stress in cardiovascular diseases. Circulation 2009; 73(3): 411-8.
[http://dx.doi.org/10.1253/circj.CJ-08-1102]
[68]
Wu CM, Zheng L, Wang Q, Hu YW. The emerging role of cell senescence in atherosclerosis. Clin Chem Lab Med 2020; 59(1): 27-38.
[http://dx.doi.org/10.1515/cclm-2020-0601] [PMID: 32692694]
[69]
van der Loo B, Labugger R, Skepper JN, et al. Enhanced peroxynitrite formation is associated with vascular aging. J Exp Med 2000; 192(12): 1731-44.
[http://dx.doi.org/10.1084/jem.192.12.1731] [PMID: 11120770]
[70]
Burgoyne JR, Din HM, Eaton P, Shah AM. Response to “Detailed aspects of redox signaling in cardiac physiology and pathology”. Circ Res 2013; 112(1): e2.
[http://dx.doi.org/10.1161/CIRCRESAHA.111.300431] [PMID: 23409289]
[71]
Ungvari Z, Labinskyy N, Gupte S, Chander PN, Edwards JG, Csiszar A. Dysregulation of mitochondrial biogenesis in vascular endothelial and smooth muscle cells of aged rats. 2008; 294(5): 2121-8.
[http://dx.doi.org/10.1152/ajpheart.00012.2008]
[72]
Ungvari Z, Tarantini S, Donato AJ, Galvan V, Csiszar A. Mechanisms of Vascular Aging. Circ Res 2018; 123(7): 849-67.
[http://dx.doi.org/10.1161/CIRCRESAHA.118.311378] [PMID: 30355080]
[73]
Hu HJ, Jiang ZS, Qiu J, Zhou SH, Liu QM. Protective effects of hydrogen sulfide against angiotensin II-induced endoplasmic reticulum stress in HUVECs. Mol Med Rep 2017; 15(4): 2213-22.
[http://dx.doi.org/10.3892/mmr.2017.6238] [PMID: 28259956]
[74]
Hamilton CA, Brosnan MJ, McIntyre M, Graham D, Dominiczak AF. Superoxide excess in hypertension and aging: a common cause of endothelial dysfunction. Hypertension (Dallas, Tex : 1979) 2001; 37(2): 529-34.
[http://dx.doi.org/10.1161/01.HYP.37.2.529]
[75]
Tang Y, Xu J, Qu W, et al. Resveratrol reduces vascular cell senescence through attenuation of oxidative stress by SIRT1/NADPH oxidase-dependent mechanisms. J Nutr Biochem 2012; 23(11): 1410-6.
[http://dx.doi.org/10.1016/j.jnutbio.2011.08.008] [PMID: 22284404]
[76]
Rice KM, Meduru S, Kakarla SK, et al. Chronic paracetamol treatment influences indices of reactive oxygen species accumulation in the aging Fischer 344 X Brown Norway rat aorta. Ann Clin Lab Sci 2012; 42(2): 152-61.
[PMID: 22585611]
[77]
Zarzuelo MJ, López-Sepúlveda R, Sánchez M, et al. SIRT1 inhibits NADPH oxidase activation and protects endothelial function in the rat aorta: implications for vascular aging. Biochem Pharmacol 2013; 85(9): 1288-96.
[http://dx.doi.org/10.1016/j.bcp.2013.02.015] [PMID: 23422569]
[78]
Chang EI, Loh SA, Ceradini DJ, et al. Age decreases endothelial progenitor cell recruitment through decreases in hypoxia-inducible factor 1alpha stabilization during ischemia. Circulation 2007; 116(24): 2818-29.
[http://dx.doi.org/10.1161/CIRCULATIONAHA.107.715847] [PMID: 18040029]
[79]
Yubero-Serrano EM, Fernandez-Gandara C, Garcia-Rios A, et al. Mediterranean diet and endothelial function in patients with coronary heart disease: An analysis of the CORDIOPREV randomized controlled trial. PLoS Med 2020; 17(9): e1003282.
[http://dx.doi.org/10.1371/journal.pmed.1003282] [PMID: 32903262]
[80]
Wang X. Dysregulation of protein trafficking in neurodegeneration. 2014; 9: 31.
[81]
Zhang L, Sun Y, Fei M, et al. Disruption of chaperone-mediated autophagy-dependent degradation of MEF2A by oxidative stress-induced lysosome destabilization. 2014; 10(6): 1015-35.
[http://dx.doi.org/10.4161/auto.28477]
[82]
Christensen K, Doblhammer G, Rau R, Vaupel JW. Ageing populations: the challenges ahead. Lancet 2009; 374(9696): 1196-208.
[http://dx.doi.org/10.1016/S0140-6736(09)61460-4] [PMID: 19801098]
[83]
Schumacher B, Garinis GA, Hoeijmakers JH. Age to survive: DNA damage and aging. Trends Genet 2008; 24(2): 77-85.
[http://dx.doi.org/10.1016/j.tig.2007.11.004] [PMID: 18192065]
[84]
Gems D, de la Guardia Y. Alternative perspectives on aging in caenorhabditis elegans: reactive oxygen species or hyperfunction? Antioxid Redox Signal 2013; 19(3): 321-9.
[http://dx.doi.org/10.1089/ars.2012.4840] [PMID: 22870907]
[85]
Soares JP, Cortinhas A, Bento T, et al. Aging and DNA damage in humans: a meta‐analysis study. Aging (Albany NY) 2014; 6(6): 432-9.
[http://dx.doi.org/10.18632/aging.100667] [PMID: 25140379]
[86]
Kirkwood TB. Understanding the odd science of aging. Cell 2005; 120(4): 437-47.
[http://dx.doi.org/10.1016/j.cell.2005.01.027] [PMID: 15734677]
[87]
Abbas M, Jesel L, Auger C, et al. Endothelial microparticles from acute coronary syndrome patients induce premature coronary artery endothelial cell aging and thrombogenicity: role of the Ang II/AT1 Receptor/NADPH oxidase-mediated activation of MAPKs and PI3-Kinase Pathways. Circulation 2017; 135(3): 280-96.
[http://dx.doi.org/10.1161/CIRCULATIONAHA.116.017513] [PMID: 27821539]
[88]
Wang X, Huang T, Bu G, Xu H. Dysregulation of protein trafficking in neurodegeneration. Mol Neurodegener 2014; 9: 31.
[http://dx.doi.org/10.1186/1750-1326-9-31] [PMID: 25152012]
[89]
Zhang L, Sun Y, Fei M, et al. Disruption of chaperone-mediated autophagy-dependent degradation of MEF2A by oxidative stress-induced lysosome destabilization. Autophagy 2014; 10(6): 1015-35.
[http://dx.doi.org/10.4161/auto.28477] [PMID: 24879151]
[90]
Green DR, Galluzzi L, Kroemer G. Mitochondria and the autophagy-inflammation-cell death axis in organismal aging. Science 2011; 333(6046): 1109-12.
[http://dx.doi.org/10.1126/science.1201940] [PMID: 21868666]
[91]
Ding D, Xi P, Zhou J, Wang M, Cong YS. Human telomerase reverse transcriptase regulates MMP expression independently of telomerase activity via NF-κB-dependent transcription. FASEB J 2013; 27(11): 4375-83.
[http://dx.doi.org/10.1096/fj.13-230904] [PMID: 23884427]
[92]
Zhou J, Mao B, Zhou Q, et al. Endoplasmic reticulum stress activates telomerase. Aging Cell 2014; 13(1): 197-200.
[http://dx.doi.org/10.1111/acel.12161] [PMID: 24119029]
[93]
Klapper W, Parwaresch R, Krupp G. Telomere biology in human aging and aging syndromes. Mech Ageing Dev 2001; 122(7): 695-712.
[http://dx.doi.org/10.1016/S0047-6374(01)00223-8] [PMID: 11322993]
[94]
Borodkina AV, Deryabin PI, Giukova AA, Nikolsky NN. “Social life” of senescent cells: what is SASP and why study it? Acta Naturae 2018; 10(1): 4-14.
[http://dx.doi.org/10.32607/20758251-2018-10-1-4-14] [PMID: 29713514]
[95]
Jakhar RA-O, Crasta KA-O. Exosomes as emerging pro-tumorigenic mediators of the senescence-associated secretory phenotype. Int J Mol Sci 2019; 20(10): 2547.
[http://dx.doi.org/10.3390/ijms20102547] [PMID: 31137607]
[96]
Wajapeyee N, Serra RW, Zhu X, Mahalingam M, Green MR. Oncogenic BRAF induces senescence and apoptosis through pathways mediated by the secreted protein IGFBP7. Cell 2008; 132(3): 363-74.
[http://dx.doi.org/10.1016/j.cell.2007.12.032] [PMID: 18267069]
[97]
Acosta JC, O’Loghlen A, Banito A, et al. Chemokine signaling via the CXCR2 receptor reinforces senescence. Cell 2008; 133(6): 1006-18.
[http://dx.doi.org/10.1016/j.cell.2008.03.038] [PMID: 18555777]
[98]
Kuilman T, Peeper DS. Senescence-messaging secretome: SMS-ing cellular stress. Nat Rev Cancer 2009; 9(2): 81-94.
[http://dx.doi.org/10.1038/nrc2560] [PMID: 19132009]
[99]
Finch CE, Crimmins EM. Inflammatory exposure and historical changes in human life-spans. Science 2004; 305(5691): 1736-9.
[http://dx.doi.org/10.1126/science.1092556] [PMID: 15375259]
[100]
Théry C, Zitvogel L, Amigorena S. Exosomes: composition, biogenesis and function. Nat Rev Immunol 2002; 2(8): 569-79.
[http://dx.doi.org/10.1038/nri855] [PMID: 12154376]
[101]
Ratajczak J, Wysoczynski M, Hayek F, Janowska-Wieczorek A, Ratajczak MZ. Membrane-derived microvesicles: important and underappreciated mediators of cell-to-cell communication. Leukemia 2006; 20(9): 1487-95.
[http://dx.doi.org/10.1038/sj.leu.2404296] [PMID: 16791265]
[102]
Pan Q, Kuang X, Cai S, et al. miR-132-3p priming enhances the effects of mesenchymal stromal cell-derived exosomes on ameliorating brain ischemic injury. Stem Cell Res Ther 2020; 11(1): 260.
[http://dx.doi.org/10.1186/s13287-020-01761-0] [PMID: 32600449]
[103]
Venkat P, Cui C, Chopp M, et al. MiR-126 Mediates Brain Endothelial Cell Exosome Treatment-Induced Neurorestorative Effects After Stroke in Type 2 Diabetes Mellitus Mice. Stroke 2019; 50(10): 2865-74.
[http://dx.doi.org/10.1161/STROKEAHA.119.025371] [PMID: 31394992]
[104]
Ullah M, Ng NN, Concepcion W, Thakor AS. Emerging role of stem cell-derived extracellular microRNAs in age-associated human diseases and in different therapies of longevity. 2020; 57: 100979.
[http://dx.doi.org/10.1016/j.arr.2019.100979]
[105]
Ueno YA-O, Hira K, Miyamoto NA-OX, Kijima C, Inaba T, Hattori NA-O. Pleiotropic effects of exosomes as a therapy for stroke recovery. Int J Mol Sci 2020; 21(18): 6894.
[http://dx.doi.org/10.3390/ijms21186894] [PMID: 32962207]
[106]
de Jong OG, Verhaar MC, Chen Y, et al. Cellular stress conditions are reflected in the protein and RNA content of endothelial cell-derived exosomes. J Extracell Vesicles 2012; 1: 1.
[http://dx.doi.org/10.3402/jev.v1i0.18396] [PMID: 24009886]
[107]
Pan BT, Johnstone RM. Fate of the transferrin receptor during maturation of sheep reticulocytes in vitro: selective externalization of the receptor. Cell 1983; 33(3): 967-78.
[http://dx.doi.org/10.1016/0092-8674(83)90040-5] [PMID: 6307529]
[108]
van Niel G, Porto-Carreiro I, Simoes S, Raposo G. Exosomes: a common pathway for a specialized function. J Biochem 2006; 140(1): 13-21.
[http://dx.doi.org/10.1093/jb/mvj128] [PMID: 16877764]
[109]
Simpson RJ, Lim JW, Moritz RL, Mathivanan S. Exosomes: proteomic insights and diagnostic potential. Expert Rev Proteomics 2009; 6(3): 267-83.
[http://dx.doi.org/10.1586/epr.09.17] [PMID: 19489699]
[110]
Ostrowski M. Rab27a and Rab27b control different steps of the exosome secretion pathway. Nat Cell Biol 2010; 12(1): 19-30.
[http://dx.doi.org/10.1038/ncb2000]
[111]
Hsu C, Morohashi Y, Yoshimura S, et al. Regulation of exosome secretion by Rab35 and its GTPase-activating proteins TBC1D10A-C. J Cell Biol 2010; 189(2): 223-32.
[http://dx.doi.org/10.1083/jcb.200911018] [PMID: 20404108]
[112]
Razi M, Futter CE. Distinct roles for Tsg101 and Hrs in multivesicular body formation and inward vesiculation. Mol Biol Cell 2006; 17(8): 3469-83.
[http://dx.doi.org/10.1091/mbc.e05-11-1054] [PMID: 16707569]
[113]
Sagini K, Costanzi E, Emiliani C, Buratta S, Urbanelli L. Extracellular Vesicles as Conveyors of Membrane-Derived Bioactive Lipids in Immune System. Int J Mol Sci 2018; 19(4): E1227.
[http://dx.doi.org/10.3390/ijms19041227] [PMID: 29670015]
[114]
Colombo M, Raposo G, Théry C. Biogenesis, secretion, and intercellular interactions of exosomes and other extracellular vesicles. Annu Rev Cell Dev Biol 2014; 30: 255-89.
[http://dx.doi.org/10.1146/annurev-cellbio-101512-122326] [PMID: 25288114]
[115]
van Niel G, D’Angelo G, Raposo G. Shedding light on the cell biology of extracellular vesicles. Nat Rev Mol Cell Biol 2018; 19(4): 213-28.
[http://dx.doi.org/10.1038/nrm.2017.125] [PMID: 29339798]
[116]
Milane L, Singh A, Mattheolabakis G, Suresh M, Amiji MM. Exosome mediated communication within the tumor microenvironment. J Control Release 2015; 219: 278-94.
[http://dx.doi.org/10.1016/j.jconrel.2015.06.029] [PMID: 26143224]
[117]
Record M, Subra C, Silvente-Poirot S, Poirot M. Exosomes as intercellular signalosomes and pharmacological effectors. Biochem Pharmacol 2011; 81(10): 1171-82.
[http://dx.doi.org/10.1016/j.bcp.2011.02.011] [PMID: 21371441]
[118]
Saheera S, Potnuri AG, Krishnamurthy P. Nano-Vesicle (Mis)Communication in Senescence-Related Pathologies. Cells 2020; 9(9): E1974.
[http://dx.doi.org/10.3390/cells9091974] [PMID: 32859053]
[119]
Zhang H, Chen G, Qiu W, et al. Plasma endothelial microvesicles and their carrying miRNA-155 serve as biomarkers for ischemic stroke. J Neurosci Res 2020; 98(11): 2290-301.
[http://dx.doi.org/10.1002/jnr.24696] [PMID: 32725652]
[120]
Chen YL, Sheu JJ, Sun CK, Huang TH, Lin YP, Yip HK. MicroRNA-214 modulates the senescence of vascular smooth muscle cells in carotid artery stenosis. Mol Med 2020; 26(1): 46.
[http://dx.doi.org/10.1186/s10020-020-00167-1] [PMID: 32410577]
[121]
Zhang H, Jin K. Peripheral circulating exosomal miRNAs potentially contribute to the regulation of molecular signaling networks in aging. Int J Mol Sci 2020; 21(6): E1908.
[http://dx.doi.org/10.3390/ijms21061908] [PMID: 32168775]
[122]
Gorospe M, Abdelmohsen K. MicroRegulators come of age in senescence. Trends Genet 2011; 27(6): 233-41.
[http://dx.doi.org/10.1016/j.tig.2011.03.005] [PMID: 21592610]
[123]
Zhang Y, Kim MS, Jia B, et al. Hypothalamic stem cells control ageing speed partly through exosomal miRNAs. Nature 2017; 548(7665): 52-7.
[http://dx.doi.org/10.1038/nature23282] [PMID: 28746310]
[124]
Zhang H, Yang H, Zhang C, et al. Investigation of microRNA expression in human serum during the aging process. J Gerontol A Biol Sci Med Sci 2015; 70(1): 102-9.
[http://dx.doi.org/10.1093/gerona/glu145] [PMID: 25165030]
[125]
Noren Hooten N, Fitzpatrick M, Wood WH III, et al. Age-related changes in microRNA levels in serum. Aging (Albany NY) 2013; 5(10): 725-40.
[http://dx.doi.org/10.18632/aging.100603] [PMID: 24088671]
[126]
Hackl M, Brunner S, Fortschegger K, et al. miR-17, miR-19b, miR-20a, and miR-106a are down-regulated in human aging. Aging Cell 2010; 9(2): 291-6.
[http://dx.doi.org/10.1111/j.1474-9726.2010.00549.x] [PMID: 20089119]
[127]
Li X, Khanna A, Li N, Wang E. Circulatory miR34a as an RNAbased, noninvasive biomarker for brain aging. Aging (Albany NY) 2011; 3(10): 985-1002.
[http://dx.doi.org/10.18632/aging.100371] [PMID: 22064828]
[128]
van Balkom BW, de Jong OG, Smits M, et al. Endothelial cells require miR-214 to secrete exosomes that suppress senescence and induce angiogenesis in human and mouse endothelial cells. Blood 2013; 121(19): 3997-4006.
[http://dx.doi.org/10.1182/blood-2013-02-478925]
[129]
Yamakuchi M, Ferlito M, Lowenstein CJ. miR-34a repression of SIRT1 regulates apoptosis. Proc Natl Acad Sci USA 2008; 105(36): 13421-6.
[http://dx.doi.org/10.1073/pnas.0801613105] [PMID: 18755897]
[130]
Cannell IG, Bushell M. Regulation of Myc by miR-34c: A mechanism to prevent genomic instability? Cell Cycle 2010; 9(14): 2726-30.
[http://dx.doi.org/10.4161/cc.9.14.12182] [PMID: 20603603]
[131]
Hermeking H. The miR-34 family in cancer and apoptosis. Cell Death Differ 2010; 17(2): 193-9.
[http://dx.doi.org/10.1038/cdd.2009.56] [PMID: 19461653]
[132]
Zhao T, Li J, Chen AF. MicroRNA-34a induces endothelial progenitor cell senescence and impedes its angiogenesis via suppressing silent information regulator 1. Am J Physiol Endocrinol Metab 2010; 299(1): E110-6.
[http://dx.doi.org/10.1152/ajpendo.00192.2010] [PMID: 20424141]
[133]
Menghini R, Casagrande V, Cardellini M, et al. MicroRNA 217 modulates endothelial cell senescence via silent information regulator 1. Circulation 2009; 120(15): 1524-32.
[http://dx.doi.org/10.1161/CIRCULATIONAHA.109.864629] [PMID: 19786632]
[134]
Borgdorff V, Lleonart ME, Bishop CL, et al. Multiple microRNAs rescue from Ras-induced senescence by inhibiting p21(Waf1/Cip1). Oncogene 2010; 29(15): 2262-71.
[http://dx.doi.org/10.1038/onc.2009.497] [PMID: 20101223]
[135]
Zanoli L, Boutouyrie P, Fatuzzo P, et al. Inflammation and Aortic Stiffness: An Individual Participant Data Meta-Analysis in Patients With Inflammatory Bowel Disease. J Am Heart Assoc 2017; 6(10): e007003.
[http://dx.doi.org/10.1161/JAHA.117.007003] [PMID: 29018026]
[136]
Bartel DP. MicroRNAs: genomics, biogenesis, mechanism, and function. Cell 2004; 116(2): 281-97.
[http://dx.doi.org/10.1016/S0092-8674(04)00045-5] [PMID: 14744438]
[137]
Harris TA, Yamakuchi M, Ferlito M, Mendell JT, Lowenstein CJ. MicroRNA-126 regulates endothelial expression of vascular cell adhesion molecule 1. Proc Natl Acad Sci USA 2008; 105(5): 1516-21.
[http://dx.doi.org/10.1073/pnas.0707493105] [PMID: 18227515]
[138]
Zhou J, Wang KC, Wu W, et al. MicroRNA-21 targets peroxisome proliferators-activated receptor-alpha in an autoregulatory loop to modulate flow-induced endothelial inflammation. Proc Natl Acad Sci USA 2011; 108(25): 10355-60.
[http://dx.doi.org/10.1073/pnas.1107052108] [PMID: 21636785]
[139]
Lin X, Zhan JK, Wang YJ, et al. Function, role, and clinical application of microRNAs in vascular aging. BioMed Res Int 2016; 2016: 6021394.
[http://dx.doi.org/10.1155/2016/6021394] [PMID: 28097140]
[140]
Qin B, Yang H, Xiao B. Role of microRNAs in endothelial inflammation and senescence. Mol Biol Rep 2012; 39(4): 4509-18.
[http://dx.doi.org/10.1007/s11033-011-1241-0] [PMID: 21952822]
[141]
Parthenakis F, Marketou M, Kontaraki J, et al. Low levels of microRNA-21 are a marker of reduced arterial stiffness in well-controlled hypertension. J Clin Hypertens (Greenwich) 2017; 19(3): 235-40.
[http://dx.doi.org/10.1111/jch.12900] [PMID: 27550546]
[142]
Menghini R, Stöhr R, Federici M. MicroRNAs in vascular aging and atherosclerosis. Ageing Res Rev 2014; 17: 68-78.
[http://dx.doi.org/10.1016/j.arr.2014.03.005] [PMID: 24681293]
[143]
Dimmeler S, Nicotera P. MicroRNAs in age-related diseases. EMBO Mol Med 2013; 5(2): 180-90.
[http://dx.doi.org/10.1002/emmm.201201986] [PMID: 23339066]
[144]
Rippe C, Blimline M, Magerko KA, et al. MicroRNA changes in human arterial endothelial cells with senescence: relation to apoptosis, eNOS and inflammation. Exp Gerontol 2012; 47(1): 45-51.
[http://dx.doi.org/10.1016/j.exger.2011.10.004] [PMID: 22037549]
[145]
Takeda E, Suzuki Y, Sato Y. Age-associated downregulation of vasohibin-1 in vascular endothelial cells. Aging Cell 2016; 15(5): 885-92.
[http://dx.doi.org/10.1111/acel.12497] [PMID: 27325558]
[146]
Dallaire A, Garand C, Paquel ER, et al. Down regulation of miR-124 in both Werner syndrome DNA helicase mutant mice and mutant Caenorhabditis elegans wrn-1 reveals the importance of this microRNA in accelerated aging. Aging (Albany NY) 2012; 4(9): 636-47.
[http://dx.doi.org/10.18632/aging.100489] [PMID: 23075628]
[147]
Bhaumik D, Scott GK, Schokrpur S, et al. MicroRNAs miR-146a/b negatively modulate the senescence-associated inflammatory mediators IL-6 and IL-8. Aging (Albany NY) 2009; 1(4): 402-11.
[http://dx.doi.org/10.18632/aging.100042] [PMID: 20148189]
[148]
Zhang J, Braun MY. PD-1 deletion restores susceptibility to experimental autoimmune encephalomyelitis in miR-155-deficient mice. Int Immunol 2014; 26(7): 407-15.
[http://dx.doi.org/10.1093/intimm/dxu043] [PMID: 24648472]
[149]
Olivieri F, Spazzafumo L, Santini G, et al. Age-related differences in the expression of circulating microRNAs: miR-21 as a new circulating marker of inflammaging. Mech Ageing Dev 2012; 133(11-12): 675-85.
[http://dx.doi.org/10.1016/j.mad.2012.09.004] [PMID: 23041385]
[150]
Olivieri F, Albertini MC, Orciani M, et al. DNA damage response (DDR) and senescence: shuttled inflamma-miRNAs on the stage of inflamm-aging. Oncotarget 2015; 6(34): 35509-21.
[http://dx.doi.org/10.18632/oncotarget.5899] [PMID: 26431329]
[151]
Lee YB, Park JH, Kim E, Kang CK, Park HM. Arterial stiffness and functional outcome in acute ischemic stroke. J Cerebrovasc Endovasc Neurosurg 2014; 16(1): 11-9.
[http://dx.doi.org/10.7461/jcen.2014.16.1.11] [PMID: 24765608]
[152]
Steven S, Dib M, Hausding M, et al. CD40L controls obesity-associated vascular inflammation, oxidative stress, and endothelial dysfunction in high fat diet-treated and db/db mice. Cardiovasc Res 2018; 114(2): 312-23.
[http://dx.doi.org/10.1093/cvr/cvx197] [PMID: 29036612]
[153]
Kusters PJH, Lutgens E, Seijkens TTP. Exploring immune checkpoints as potential therapeutic targets in atherosclerosis. Cardiovasc Res 2018; 114(3): 368-77.
[http://dx.doi.org/10.1093/cvr/cvx248] [PMID: 29309533]
[154]
Nanoudis S, Pikilidou M, Yavropoulou M, Zebekakis P. The Role of MicroRNAs in Arterial Stiffness and Arterial Calcification. An Update and Review of the Literature. Front Genet 2017; 8: 209.
[http://dx.doi.org/10.3389/fgene.2017.00209] [PMID: 29312437]
[155]
Hori D, Dunkerly-Eyring B, Nomura Y, et al. miR-181b regulates vascular stiffness age dependently in part by regulating TGF-β signaling. PLoS One 2017; 12(3): e0174108.
[http://dx.doi.org/10.1371/journal.pone.0174108] [PMID: 28323879]
[156]
Cunha PG, Boutouyrie P, Nilsson PM, Laurent S. Early Vascular Ageing (EVA): Definitions and Clinical Applicability. Curr Hypertens Rev 2017; 13(1): 8-15.
[http://dx.doi.org/10.2174/1573402113666170413094319] [PMID: 28412914]
[157]
Xie B, Zhang C, Kang K, Jiang S. miR-599 Inhibits Vascular Smooth Muscle Cells Proliferation and Migration by Targeting TGFB2. PLoS One 2015; 10(11): e0141512.
[http://dx.doi.org/10.1371/journal.pone.0141512] [PMID: 26551255]
[158]
Zhao N, Koenig SN, Trask AJ, et al. MicroRNA miR145 regulates TGFBR2 expression and matrix synthesis in vascular smooth muscle cells. Circ Res 2015; 116(1): 23-34.
[http://dx.doi.org/10.1161/CIRCRESAHA.115.303970] [PMID: 25323858]
[159]
Kriegel AJ, Liu Y, Fang Y, Ding X, Liang M. The miR-29 family: genomics, cell biology, and relevance to renal and cardiovascular injury. Physiol Genomics 2012; 44(4): 237-44.
[http://dx.doi.org/10.1152/physiolgenomics.00141.2011] [PMID: 22214600]
[160]
Henry-Feugeas MC, Koskas P. Cerebral vascular aging: extending the concept of pulse wave encephalopathy through capillaries to the cerebral veins. Curr Aging Sci 2012; 5(2): 157-67.
[http://dx.doi.org/10.2174/1874609811205020157] [PMID: 22894741]
[161]
Blum A, Vaispapir V, Keinan-Boker L, Soboh S, Yehuda H, Tamir S. Endothelial dysfunction and procoagulant activity in acute ischemic stroke. J Vasc Interv Neurol 2012; 5(1): 33-9.
[PMID: 22737264]
[162]
Maiese K. Harnessing the Power of SIRT1 and Non-coding RNAs in Vascular Disease. Curr Neurovasc Res 2017; 14(1): 82-8.
[http://dx.doi.org/10.2174/1567202613666161129112822] [PMID: 27897112]
[163]
Jia L, Zhou X, Huang X, et al. Maternal and umbilical cord serum-derived exosomes enhance endothelial cell proliferation and migration. FASEB J 2018; 32(8): 4534-43.
[http://dx.doi.org/10.1096/fj.201701337RR] [PMID: 29570394]
[164]
Pan Q, Ma C, Wang Y, et al. Microvesicles-mediated communication between endothelial cells modulates, endothelial survival, and angiogenic function via transferring of miR-125a-5p. J Cell Biochem 2019; 120(3): 3160-72.
[http://dx.doi.org/10.1002/jcb.27581] [PMID: 30272818]
[165]
Deregibus MC, Cantaluppi V, Calogero R, et al. Endothelial progenitor cell derived microvesicles activate an angiogenic program in endothelial cells by a horizontal transfer of mRNA. Blood 2007; 110(7): 2440-8.
[http://dx.doi.org/10.1182/blood-2007-03-078709] [PMID: 17536014]
[166]
Cantaluppi V, Biancone L, Figliolini F, et al. Microvesicles derived from endothelial progenitor cells enhance neoangiogenesis of human pancreatic islets. Cell Transplant 2012; 21(6): 1305-20.
[http://dx.doi.org/10.3727/096368911X627534] [PMID: 22455973]
[167]
Hsueh YY, Chang YJ, Huang CW, et al. Synergy of endothelial and neural progenitor cells from adipose-derived stem cells to preserve neurovascular structures in rat hypoxic-ischemic brain injury. Sci Rep 2015; 5: 14985.
[http://dx.doi.org/10.1038/srep14985] [PMID: 26447335]
[168]
Xu B, Zhang Y, Du XF, et al. Neurons secrete miR-132-containing exosomes to regulate brain vascular integrity. Cell Res 2017; 27(7): 882-97.
[http://dx.doi.org/10.1038/cr.2017.62] [PMID: 28429770]
[169]
Xie L, Zhao H, Wang Y, Chen Z. Exosomal shuttled miR-424-5p from ischemic preconditioned microglia mediates cerebral endothelial cell injury through negatively regulation of FGF2/STAT3 pathway. Exp Neurol 2020; 333: 113411.
[http://dx.doi.org/10.1016/j.expneurol.2020.113411] [PMID: 32707150]
[170]
Ji Q, Ji Y, Peng J, et al. Increased Brain-Specific MiR-9 and MiR-124 in the Serum Exosomes of Acute Ischemic Stroke Patients. PLoS One 2016; 11(9): e0163645.
[http://dx.doi.org/10.1371/journal.pone.0163645] [PMID: 27661079]
[171]
Ji R, Cheng Y, Yue J, et al. MicroRNA expression signature and antisense-mediated depletion reveal an essential role of MicroRNA in vascular neointimal lesion formation. Circ Res 2007; 100(11): 1579-88.
[http://dx.doi.org/10.1161/CIRCRESAHA.106.141986] [PMID: 17478730]
[172]
Ni YQ, Lin X, Zhan JK, Liu YS. Roles and Functions of Exosomal Non-coding RNAs in Vascular Aging. Aging Dis 2020; 11(1): 164-78.
[http://dx.doi.org/10.14336/AD.2019.0402] [PMID: 32010490]
[173]
Bonifacio LN, Jarstfer MB. MiRNA profile associated with replicative senescence, extended cell culture, and ectopic telomerase expression in human foreskin fibroblasts. PLoS One 2010; 5(9): e12519.
[http://dx.doi.org/10.1371/journal.pone.0012519] [PMID: 20824140]
[174]
Maegdefessel L, Rayner KJ, Leeper NJ. MicroRNA regulation of vascular smooth muscle function and phenotype: early career committee contribution. Arterioscler Thromb Vasc Biol 2015; 35(1): 2-6.
[http://dx.doi.org/10.1161/ATVBAHA.114.304877] [PMID: 25520518]
[175]
Xu F, Zhong JY, Lin X, et al. Melatonin alleviates vascular calcification and ageing through exosomal miR-204/miR-211 cluster in a paracrine manner. J Pineal Res 2020; 68(3): e12631.
[http://dx.doi.org/10.1111/jpi.12631] [PMID: 31943334]
[176]
Tan M, Yan HB, Li JN, et al. Thrombin stimulated platelet-derived exosomes inhibit platelet-derived growth factor receptor-beta expression in vascular smooth muscle cells. Cell Physiol Biochem 2016; 38(6): 2348-65.
[http://dx.doi.org/10.1159/000445588]
[177]
Wang Z, Zhu H, Shi H, et al. Exosomes derived from M1 macrophages aggravate neointimal hyperplasia following carotid artery injuries in mice through miR-222/CDKN1B/CDKN1C pathway. Cell Death Dis 2019; 10(6): 422.
[http://dx.doi.org/10.1038/s41419-019-1667-1] [PMID: 31142732]
[178]
Wang D, Gao B, Yue J, et al. Exosomes from mesenchymal stem cells expressing miR-125b inhibit neointimal hyperplasia via myosin IE. J Cell Mol Med 2019; 23(2): 1528-40.
[http://dx.doi.org/10.1111/jcmm.14060] [PMID: 30484954]
[179]
Zhu J, Liu B, Wang Z, et al. Exosomes from nicotine-stimulated macrophages accelerate atherosclerosis through miR-21-3p/PTEN-mediated VSMC migration and proliferation. Theranostics 2019; 9(23): 6901-19.
[http://dx.doi.org/10.7150/thno.37357] [PMID: 31660076]
[180]
Pan Q, Liu H, Zheng C, et al. Microvesicles derived from inflammation-challenged endothelial cells modulate vascular smooth muscle cell functions. Front Physiol 2017; 7: 692.
[http://dx.doi.org/10.3389/fphys.2016.00692] [PMID: 28127288]

Rights & Permissions Print Export Cite as
© 2022 Bentham Science Publishers | Privacy Policy