Generic placeholder image

当代肿瘤药物靶点

Editor-in-Chief

ISSN (Print): 1568-0096
ISSN (Online): 1873-5576

Review Article

胆管癌治疗:最新进展

卷 21, 期 6, 2021

发表于: 04 February, 2021

页: [457 - 475] 页: 19

弟呕挨: 10.2174/1568009621666210204152028

价格: $65

摘要

背景:胆管癌(CCA)是第二常见的肝胆癌,预后不良。只有三分之一的阿胶病例是在手术阶段诊断出来的。然而,术后复发率很高。除了筛查可手术的个体外,迫切需要有效的治疗复发和晚期阿根瘤。现有治疗方法的治疗结果对明确临床指征和促进治疗策略的发展非常重要。 目的:本综述旨在从总生存期和无进展生存期两方面比较不同治疗方法的治疗效果。 方法:一百多篇同行评议的文章被查阅。我们比较了不同治疗方法之间的治疗效果,包括肿瘤切除术伴或不伴术后系统治疗,化疗包括folox,靶向治疗,如IDH1, K-RAS和FGFR抑制剂。值得注意的是,将现有治疗方法的科学依据和结果与标准的一线治疗方法进行了比较。 结果:早期CCAs应先行肿瘤切除手术,术后再行卡培他滨治疗。化疗可以作为术前不可切除的CCAs的选择。具有FGFR改变、IDH1和KRAS突变等遗传异常的不能手术的CCAs应考虑采用靶向治疗。氟嘧啶前药(S-1)/吉西他滨/顺铂和白蛋白紫杉醇/吉西他滨/顺铂显示良好的结果,提示三联方案在阿胶治疗中优于吉西他滨/顺铂。在没有基因改变的CCAs中,三联化疗应进一步与吉西他滨/顺铂进行比较。最近,吉西他滨加S-1被建议作为晚期/复发胆道癌便捷和等效的一线标准。 结论:这篇综述提供了新的靶向治疗和目前可用的治疗之间的比较结果。

关键词: 胆管癌,治疗, BILCAP

Next »
图形摘要
[1]
Shaib, Y.; El-Serag, H.B. The epidemiology of cholangiocarcinoma. Semin. Liver Dis., 2004, 24(2), 115-125.
[http://dx.doi.org/10.1055/s-2004-828889] [PMID: 15192785]
[2]
Rizvi, S.; Gores, G.J. Pathogenesis, diagnosis, and management of cholangiocarcinoma. Gastroenterology, 2013, 145(6), 1215-1229.
[http://dx.doi.org/10.1053/j.gastro.2013.10.013] [PMID: 24140396]
[3]
Razumilava, N.; Gores, G.J. Cholangiocarcinoma. Lancet, 2014, 383(9935), 2168-2179.
[http://dx.doi.org/10.1016/S0140-6736(13)61903-0] [PMID: 24581682]
[4]
DeOliveira, M.L.; Cunningham, S.C.; Cameron, J.L.; Kamangar, F.; Winter, J.M.; Lillemoe, K.D.; Choti, M.A.; Yeo, C.J.; Schulick, R.D. Cholangiocarcinoma: thirty-one-year experience with 564 patients at a single institution. Ann. Surg., 2007, 245(5), 755-762.
[http://dx.doi.org/10.1097/01.sla.0000251366.62632.d3] [PMID: 17457168]
[5]
Najran, P.; Lamarca, A.; Mullan, D.; McNamara, M.G.; Westwood, T.; Hubner, R.A.; Lawrence, J.; Manoharan, P.; Bell, J.; Valle, J.W. Update on treatment options for advanced bile duct tumours: Radioembolisation for advanced cholangiocarcinoma. Curr. Oncol. Rep., 2017, 19(7), 50.
[http://dx.doi.org/10.1007/s11912-017-0603-8] [PMID: 28656502]
[6]
Bridgewater, J.; Galle, P.R.; Khan, S.A.; Llovet, J.M.; Park, J.W.; Patel, T.; Pawlik, T.M.; Gores, G.J. Guidelines for the diagnosis and management of intrahepatic cholangiocarcinoma. J. Hepatol., 2014, 60(6), 1268-1289.
[http://dx.doi.org/10.1016/j.jhep.2014.01.021] [PMID: 24681130]
[7]
Blechacz, B. Cholangiocarcinoma: Current knowledge and new developments. Gut Liver, 2017, 11(1), 13-26.
[http://dx.doi.org/10.5009/gnl15568] [PMID: 27928095]
[8]
Rahnemai-Azar, A.A.; Pandey, P.; Kamel, I.; Pawlik, T.M. Monitoring outcomes in intrahepatic cholangiocarcinoma patients following hepatic resection. Hepat. Oncol., 2016, 3(4), 223-239.
[http://dx.doi.org/10.2217/hep-2016-0009] [PMID: 30191045]
[9]
Petrowsky, H.; Wildbrett, P.; Husarik, D.B.; Hany, T.F.; Tam, S.; Jochum, W.; Clavien, P.A. Impact of integrated positron emission tomography and computed tomography on staging and management of gallbladder cancer and cholangiocarcinoma. J. Hepatol., 2006, 45(1), 43-50.
[http://dx.doi.org/10.1016/j.jhep.2006.03.009] [PMID: 16690156]
[10]
Corvera, C.U.; Blumgart, L.H.; Akhurst, T.; DeMatteo, R.P.; D’Angelica, M.; Fong, Y.; Jarnagin, W.R. 18F-fluorodeoxyglucose positron emission tomography influences management decisions in patients with biliary cancer. J. Am. Coll. Surg., 2008, 206(1), 57-65.
[http://dx.doi.org/10.1016/j.jamcollsurg.2007.07.002] [PMID: 18155569]
[11]
Corvera, C.U.; Blumgart, L.H.; Darvishian, F.; Klimstra, D.S.; DeMatteo, R.; Fong, Y.; D’Angelica, M.; Jarnagin, W.R. Clinical and pathologic features of proximal biliary strictures masquerading as hilar cholangiocarcinoma. J. Am. Coll. Surg., 2005, 201(6), 862-869.
[http://dx.doi.org/10.1016/j.jamcollsurg.2005.07.011] [PMID: 16310689]
[12]
Cillo, U.; Fondevila, C.; Donadon, M.; Gringeri, E.; Mocchegiani, F.; Schlitt, H.J.; Ijzermans, J.N.M.; Vivarelli, M.; Zieniewicz, K.; Olde Damink, S.W.M.; Groot Koerkamp, B. Surgery for cholangiocarcinoma. Liver Int., 2019, 39(Suppl. 1), 143-155.
[http://dx.doi.org/10.1111/liv.14089] [PMID: 30843343]
[13]
Murakami, Y.; Uemura, K.; Sudo, T.; Hashimoto, Y.; Nakashima, A.; Kondo, N.; Sakabe, R.; Ohge, H.; Sueda, T. Prognostic factors after surgical resection for intrahepatic, hilar, and distal cholangiocarcinoma. Ann. Surg. Oncol., 2011, 18(3), 651-658.
[http://dx.doi.org/10.1245/s10434-010-1325-4] [PMID: 20945107]
[14]
Yubin, L.; Chihua, F.; Zhixiang, J.; Jinrui, O.; Zixian, L.; Jianghua, Z.; Ye, L.; Haosheng, J.; Chaomin, L. Surgical management and prognostic factors of hilar cholangiocarcinoma: experience with 115 cases in China. Ann. Surg. Oncol., 2008, 15(8), 2113-2119.
[http://dx.doi.org/10.1245/s10434-008-9932-z] [PMID: 18546046]
[15]
Khan, A.S.; Dageforde, L.A. Cholangiocarcinoma. Surg. Clin. North Am., 2019, 99(2), 315-335.
[http://dx.doi.org/10.1016/j.suc.2018.12.004] [PMID: 30846037]
[16]
Ellis, M.C.; Cassera, M.A.; Vetto, J.T.; Orloff, S.L.; Hansen, P.D.; Billingsley, K.G. Surgical treatment of intrahepatic cholangiocarcinoma: outcomes and predictive factors. HPB (Oxford), 2011, 13(1), 59-63.
[http://dx.doi.org/10.1111/j.1477-2574.2010.00242.x] [PMID: 21159105]
[17]
Rizvi, S.; Khan, S.A.; Hallemeier, C.L.; Kelley, R.K.; Gores, G.J. Cholangiocarcinoma - evolving concepts and therapeutic strategies. Nat. Rev. Clin. Oncol., 2018, 15(2), 95-111.
[http://dx.doi.org/10.1038/nrclinonc.2017.157] [PMID: 28994423]
[18]
Ma, K.W.; Cheung, T.T.; She, W.H.; Chok, K.S.; Chan, A.C.; Ng, I.O.; Chan, S.C.; Lo, C.M. The effect of wide resection margin in patients with intrahepatic cholangiocarcinoma: A single-center experience. Medicine (Baltimore), 2016, 95(28), e4133.
[http://dx.doi.org/10.1097/MD.0000000000004133] [PMID: 27428200]
[19]
Rizvi, S.; Gores, G.J. Emerging molecular therapeutic targets for cholangiocarcinoma. J. Hepatol., 2017, 67(3), 632-644.
[http://dx.doi.org/10.1016/j.jhep.2017.03.026] [PMID: 28389139]
[20]
Valle, J.W.; Borbath, I.; Khan, S.A.; Huguet, F.; Gruenberger, T.; Arnold, D. ESMO Guidelines Committee. Biliary cancer: ESMO Clinical Practice Guidelines for diagnosis, treatment and follow-up. Ann. Oncol., 2016, 27(Suppl. 5), v28-v37.
[http://dx.doi.org/10.1093/annonc/mdw324] [PMID: 27664259]
[21]
Lendoire, J.C.; Gil, L.; Imventarza, O. Intrahepatic cholangiocarcinoma surgery: the impact of lymphadenectomy. Linchuang Zhongliuxue Zazhi, 2018, 7(5), 53.
[http://dx.doi.org/10.21037/cco.2018.07.02] [PMID: 30180752]
[22]
Addeo, P.; Jedidi, I.; Locicero, A.; Faitot, F.; Oncioiu, C.; Onea, A.; Bachellier, P. Prognostic impact of tumor multinodularity in intrahepatic cholangiocarcinoma. J. Gastrointest. Surg., 2019, 23(9), 1801-1809.
[http://dx.doi.org/10.1007/s11605-018-4052-y] [PMID: 30478531]
[23]
Conci, S.; Ruzzenente, A.; Viganò, L.; Ercolani, G.; Fontana, A.; Bagante, F.; Bertuzzo, F.; Dore, A.; Pinna, A.D.; Torzilli, G.; Iacono, C.; Guglielmi, A. Patterns of distribution of hepatic nodules (single, satellites or multifocal) in intrahepatic cholangiocarcinoma: prognostic impact after surgery. Ann. Surg. Oncol., 2018, 25(12), 3719-3727.
[http://dx.doi.org/10.1245/s10434-018-6669-1] [PMID: 30088126]
[24]
Mavros, M.N.; Economopoulos, K.P.; Alexiou, V.G.; Pawlik, T.M. Treatment and prognosis for patients with intrahepatic cholangiocarcinoma: systematic review and meta-analysis. JAMA Surg., 2014, 149(6), 565-574.
[http://dx.doi.org/10.1001/jamasurg.2013.5137] [PMID: 24718873]
[25]
Fu, Y.; Yang, W.; Wu, W.; Yan, K.; Xing, B.C.; Chen, M.H. Radiofrequency ablation in the management of unresectable intrahepatic cholangiocarcinoma. J. Vasc. Interv. Radiol., 2012, 23(5), 642-649.
[http://dx.doi.org/10.1016/j.jvir.2012.01.081] [PMID: 22525022]
[26]
Yousaf, A.; Kim, J.U.; Eliahoo, J.; Taylor-Robinson, S.D.; Khan, S.A. Ablative therapy for unresectable intrahepatic cholangiocarcinoma: A systematic review and meta-analysis. J. Clin. Exp. Hepatol., 2019, 9(6), 740-748.
[http://dx.doi.org/10.1016/j.jceh.2019.08.001] [PMID: 31889756]
[27]
Valle, J.; Wasan, H.; Palmer, D.H.; Cunningham, D.; Anthoney, A.; Maraveyas, A.; Madhusudan, S.; Iveson, T.; Hughes, S.; Pereira, S.P.; Roughton, M.; Bridgewater, J. ABC-02 Trial Investigators. Cisplatin plus gemcitabine versus gemcitabine for biliary tract cancer. N. Engl. J. Med., 2010, 362(14), 1273-1281.
[http://dx.doi.org/10.1056/NEJMoa0908721] [PMID: 20375404]
[28]
Buettner, S.; Koerkamp, B.G.; Ejaz, A.; Buisman, F.E.; Kim, Y.; Margonis, G.A.; Alexandrescu, S.; Marques, H.P.; Lamelas, J.; Aldrighetti, L.; Gamblin, T.C.; Maithel, S.K.; Pulitano, C.; Bauer, T.W.; Shen, F.; Poultsides, G.A.; Marsh, J.W.; IJzermans, J.N.; Pawlik, T.M. The effect of preoperative chemotherapy treatment in surgically treated intrahepatic cholangiocarcinoma patients-A multi-institutional analysis. J. Surg. Oncol., 2017, 115(3), 312-318.
[http://dx.doi.org/10.1002/jso.24524] [PMID: 28105651]
[29]
Le Roy, B.; Gelli, M.; Pittau, G.; Allard, M.A.; Pereira, B.; Serji, B.; Vibert, E.; Castaing, D.; Adam, R.; Cherqui, D.; Sa Cunha, A. Neoadjuvant chemotherapy for initially unresectable intrahepatic cholangiocarcinoma. Br. J. Surg., 2018, 105(7), 839-847.
[http://dx.doi.org/10.1002/bjs.10641] [PMID: 28858392]
[30]
Yadav, S.; Xie, H.; Bin-Riaz, I.; Sharma, P.; Durani, U.; Goyal, G.; Borah, B.; Borad, M.J.; Smoot, R.L.; Roberts, L.R.; Go, R.S.; McWilliams, R.R.; Mahipal, A. Neoadjuvant vs. adjuvant chemotherapy for cholangiocarcinoma: A propensity score matched analysis. Eur. J. Surg. Oncol., 2019, 45(8), 1432-1438.
[http://dx.doi.org/10.1016/j.ejso.2019.03.023] [PMID: 30914290]
[31]
Kopelson, G.; Harisiadis, L.; Tretter, P.; Chang, C.H. The role of radiation therapy in cancer of the extra-hepatic biliary system: an analysis of thirteen patients and a review of the literature of the effectiveness of surgery, chemotherapy and radiotherapy. Int. J. Radiat. Oncol. Biol. Phys., 1977, 2(9-10), 883-894.
[http://dx.doi.org/10.1016/0360-3016(77)90186-9] [PMID: 73534]
[32]
Czito, B.G.; Anscher, M.S.; Willett, C.G. Radiation therapy in the treatment of cholangiocarcinoma. Oncology (Williston Park), 2006, 20(8), 873-84.
[33]
Hughes, M.A.; Frassica, D.A.; Yeo, C.J.; Riall, T.S.; Lillemoe, K.D.; Cameron, J.L.; Donehower, R.C.; Laheru, D.A.; Hruban, R.H.; Abrams, R.A. Adjuvant concurrent chemoradiation for adenocarcinoma of the distal common bile duct. Int. J. Radiat. Oncol. Biol. Phys., 2007, 68(1), 178-182.
[http://dx.doi.org/10.1016/j.ijrobp.2006.11.048] [PMID: 17276614]
[34]
Pitt, H.A.; Nakeeb, A.; Abrams, R.A.; Coleman, J.; Piantadosi, S.; Yeo, C.J.; Lillemore, K.D.; Cameron, J.L. Perihilar cholangiocarcinoma. Postoperative radiotherapy does not improve survival. Ann. Surg., 1995, 221(6), 788-797.
[http://dx.doi.org/10.1097/00000658-199506000-00017] [PMID: 7794082]
[35]
Jiang, W.; Zeng, Z.C.; Tang, Z.Y.; Fan, J.; Zhou, J.; Zeng, M.S.; Zhang, J.Y.; Chen, Y.X.; Tan, Y.S. Benefit of radiotherapy for 90 patients with resected intrahepatic cholangiocarcinoma and concurrent lymph node metastases. J. Cancer Res. Clin. Oncol., 2010, 136(9), 1323-1331.
[http://dx.doi.org/10.1007/s00432-010-0783-1] [PMID: 20130909]
[36]
Li, T.; Qin, L.X.; Zhou, J.; Sun, H.C.; Qiu, S.J.; Ye, Q.H.; Wang, L.; Tang, Z.Y.; Fan, J. Staging, prognostic factors and adjuvant therapy of intrahepatic cholangiocarcinoma after curative resection. Liver Int., 2014, 34(6), 953-960.
[http://dx.doi.org/10.1111/liv.12364] [PMID: 24134199]
[37]
Chun, YS; Javle, M Systemic and adjuvant therapies for intrahepatic cholangiocarcinoma. Cancer Control, 2017, 24(3), 1073274817729241.
[http://dx.doi.org/10.1177/1073274817729241]
[38]
Li, J.; Wang, Q.; Lei, Z.; Wu, D.; Si, A.; Wang, K.; Wan, X.; Wang, Y.; Yan, Z.; Xia, Y.; Lau, W.Y.; Wu, M.; Shen, F. Adjuvant transarterial chemoembolization following liver resection for intrahepatic cholangiocarcinoma based on survival risk stratification. Oncologist, 2015, 20(6), 640-647.
[http://dx.doi.org/10.1634/theoncologist.2014-0470] [PMID: 25956404]
[39]
Shinohara, E.T.; Mitra, N.; Guo, M.; Metz, J.M. Radiation therapy is associated with improved survival in the adjuvant and definitive treatment of intrahepatic cholangiocarcinoma. Int. J. Radiat. Oncol. Biol. Phys., 2008, 72(5), 1495-1501.
[http://dx.doi.org/10.1016/j.ijrobp.2008.03.018] [PMID: 18472359]
[40]
Bhudhisawasdi, V.; Talabnin, C.; Pugkhem, A.; Khuntikeo, N.; Seow, O.T.; Chur-in, S.; Pairojkul, C.; Wongkham, S. Evaluation of postoperative adjuvant chemotherapy for intrahepatic cholangiocarcinoma patients undergoing R1 and R2 resections. Asian Pac. J. Cancer Prev., 2012, 13(Suppl.), 169-174.
[PMID: 23480760]
[41]
Wang, M.L.; Ke, Z.Y.; Yin, S.; Liu, C.H.; Huang, Q. The effect of adjuvant chemotherapy in resectable cholangiocarcinoma: A meta-analysis and systematic review. Hepatobiliary Pancreat. Dis. Int., 2019, 18(2), 110-116.
[http://dx.doi.org/10.1016/j.hbpd.2018.11.001] [PMID: 30470543]
[42]
Anderson, C.; Kim, R. Adjuvant therapy for resected extrahepatic cholangiocarcinoma: a review of the literature and future directions. Cancer Treat. Rev., 2009, 35(4), 322-327.
[http://dx.doi.org/10.1016/j.ctrv.2008.11.009] [PMID: 19147294]
[43]
Kang, M.J.; Jang, J.Y.; Chang, J.; Shin, Y.C.; Lee, D.; Kim, H.B.; Kim, S.W. Actual long-term survival outcome of 403 consecutive patients with hilar cholangiocarcinoma. World J. Surg., 2016, 40(10), 2451-2459.
[http://dx.doi.org/10.1007/s00268-016-3551-9] [PMID: 27206402]
[44]
Krasnick, B.A.; Jin, L.X.; Davidson, J.T., IV; Sanford, D.E.; Ethun, C.G.; Pawlik, T.M.; Poultsides, G.A.; Tran, T.; Idrees, K.; Hawkins, W.G.; Chapman, W.C.; Doyle, M.B.M.; Weber, S.M.; Strasberg, S.M.; Salem, A.; Martin, R.C.G.; Isom, C.A.; Scoggins, C.; Schmidt, C.R.; Shen, P.; Beal, E.; Hatzaras, I.; Shenoy, R.; Maithel, S.K.; Fields, R.C. Adjuvant therapy is associated with improved survival after curative resection for hilar cholangiocarcinoma: A multi-institution analysis from the U.S. extrahepatic biliary malignancy consortium. J. Surg. Oncol., 2018, 117(3), 363-371.
[http://dx.doi.org/10.1002/jso.24836] [PMID: 29284072]
[45]
Ma, K.W.; Cheung, T.T.; Leung, B.; She, B.W.H.; Chok, K.S.H.; Chan, A.C.Y.; Dai, W.C.; Lo, C.M. Adjuvant chemotherapy improves oncological outcomes of resectable intrahepatic cholangiocarcinoma: A meta-analysis. Medicine (Baltimore), 2019, 98(5), e14013.
[http://dx.doi.org/10.1097/MD.0000000000014013] [PMID: 30702559]
[46]
Ebata, T.; Hirano, S.; Konishi, M.; Uesaka, K.; Tsuchiya, Y.; Ohtsuka, M.; Kaneoka, Y.; Yamamoto, M.; Ambo, Y.; Shimizu, Y.; Ozawa, F.; Fukutomi, A.; Ando, M.; Nimura, Y.; Nagino, M. Bile Duct Cancer Adjuvant Trial (BCAT) Study Group. Randomized clinical trial of adjuvant gemcitabine chemotherapy versus observation in resected bile duct cancer. Br. J. Surg., 2018, 105(3), 192-202.
[http://dx.doi.org/10.1002/bjs.10776] [PMID: 29405274]
[47]
Edeline, J.; Benabdelghani, M.; Bertaut, A.; Watelet, J.; Hammel, P.; Joly, J.P.; Boudjema, K.; Fartoux, L.; Bouhier-Leporrier, K.; Jouve, J.L.; Faroux, R.; Guerin-Meyer, V.; Kurtz, J.E.; Assénat, E.; Seitz, J.F.; Baumgaertner, I.; Tougeron, D.; de la Fouchardière, C.; Lombard-Bohas, C.; Boucher, E.; Stanbury, T.; Louvet, C.; Malka, D.; Phelip, J.M. Gemcitabine and oxaliplatin chemotherapy or surveillance in resected biliary tract Cancer (PRODIGE 12-ACCORD 18-UNICANCER GI): A Randomized Phase III Study. J. Clin. Oncol., 2019, 37(8), 658-667.
[http://dx.doi.org/10.1200/JCO.18.00050] [PMID: 30707660]
[48]
Doherty, M.K.; Knox, J.J. Adjuvant therapy for resected biliary tract cancer: A review. Linchuang Zhongliuxue Zazhi, 2016, 5(5), 64.
[http://dx.doi.org/10.21037/cco.2016.08.05] [PMID: 27701873]
[49]
Primrose, J.N.; Fox, R.P.; Palmer, D.H.; Malik, H.Z.; Prasad, R.; Mirza, D.; Anthony, A.; Corrie, P.; Falk, S.; Finch-Jones, M.; Wasan, H.; Ross, P.; Wall, L.; Wadsley, J.; Evans, J.T.R.; Stocken, D.; Praseedom, R.; Ma, Y.T.; Davidson, B.; Neoptolemos, J.P.; Iveson, T.; Raftery, J.; Zhu, S.; Cunningham, D.; Garden, O.J.; Stubbs, C.; Valle, J.W.; Bridgewater, J. BILCAP study group. Capecitabine compared with observation in resected biliary tract cancer (BILCAP): a randomised, controlled, multicentre, phase 3 study. Lancet Oncol., 2019, 20(5), 663-673.
[http://dx.doi.org/10.1016/S1470-2045(18)30915-X] [PMID: 30922733]
[50]
Primrose, J.N. Adjuvant capecitabine for biliary tract cancer: The BILCAP randomized study. J. Clin. Oncol., 2017, 4006-4006.
[51]
Merz, V. BILCAP trial: is capecitabine the winner in the adjuvant therapy of biliary tract cancer? ESMO website: European society for medical oncology, 2019.https://www.esmo.org/Career-Development/Young-Oncologists-Corner/Journal-Club/BILCAP- trial-is-capecitabine-the-winner-in-the-adjuvant-therapy-of- biliary-tract-cancer
[52]
Shroff, R.T.; Kennedy, E.B.; Bachini, M.; Bekaii-Saab, T.; Crane, C.; Edeline, J.; El-Khoueiry, A.; Feng, M.; Katz, M.H.G.; Primrose, J.; Soares, H.P.; Valle, J.; Maithel, S.K. Adjuvant therapy for resected biliary tract cancer: ASCO clinical practice guideline. J. Clin. Oncol., 2019, 37(12), 1015-1027.
[http://dx.doi.org/10.1200/JCO.18.02178] [PMID: 30856044]
[53]
National Comprehensive Cancer Network (NCCN). NCCN clinical practice guidelines in oncology, Hepatobiliary cancers, versie 3, 2019.
[54]
Belkouz, A.; Wilmink, J.W.; Haj Mohammad, N.; Hagendoorn, J.; de Vos-Geelen, J.; Dejong, C.H.C.; Homs, M.Y.V.; Groot Koerkamp, B.; van Gulik, T.M.; van Oijen, M.G.H.; Punt, C.J.A.; Klümpen, H. Advances in adjuvant therapy of biliary tract cancer: an overview of current clinical evidence based on phase II and III trials. Crit. Rev. Oncol. Hematol., 2020, 151, 102975.
[http://dx.doi.org/10.1016/j.critrevonc.2020.102975] [PMID: 32464483]
[55]
Malka, D.; Edeline, J. Adjuvant capecitabine in biliary tract cancer: a standard option? Lancet Oncol., 2019, 20(5), 606-608.
[http://dx.doi.org/10.1016/S1470-2045(19)30022-1] [PMID: 30922732]
[56]
Furuse, J.; Okusaka, T.; Bridgewater, J.; Taketsuna, M.; Wasan, H.; Koshiji, M.; Valle, J. Lessons from the comparison of two randomized clinical trials using gemcitabine and cisplatin for advanced biliary tract cancer. Crit. Rev. Oncol. Hematol., 2011, 80(1), 31-39.
[http://dx.doi.org/10.1016/j.critrevonc.2010.10.009] [PMID: 21094052]
[57]
Valle, J.W.; Wasan, H.; Lopes, A.; Backen, A.C.; Palmer, D.H.; Morris, K.; Duggan, M.; Cunningham, D.; Anthoney, D.A.; Corrie, P.; Madhusudan, S.; Maraveyas, A.; Ross, P.J.; Waters, J.S.; Steward, W.P.; Rees, C.; Beare, S.; Dive, C.; Bridgewater, J.A. Cediranib or placebo in combination with cisplatin and gemcitabine chemotherapy for patients with advanced biliary tract cancer (ABC-03): A randomised phase 2 trial. Lancet Oncol., 2015, 16(8), 967-978.
[http://dx.doi.org/10.1016/S1470-2045(15)00139-4] [PMID: 26179201]
[58]
Morizane, C.; Okusaka, T.; Mizusawa, J.; Katayama, H.; Ueno, M.; Ikeda, M.; Ozaka, M.; Okano, N.; Sugimori, K.; Fukutomi, A.; Hara, H.; Mizuno, N.; Yanagimoto, H.; Wada, K.; Tobimatsu, K.; Yane, K.; Nakamori, S.; Yamaguchi, H.; Asagi, A.; Yukisawa, S.; Kojima, Y.; Kawabe, K.; Kawamoto, Y.; Sugimoto, R.; Iwai, T.; Nakamura, K.; Miyakawa, H.; Yamashita, T.; Hosokawa, A.; Ioka, T.; Kato, N.; Shioji, K.; Shimizu, K.; Nakagohri, T.; Kamata, K.; Ishii, H.; Furuse, J. members of the Hepatobiliary and Pancreatic Oncology Group of the Japan Clinical Oncology Group (JCOG-HBPOG). Combination gemcitabine plus S-1 versus gemcitabine plus cisplatin for advanced/recurrent biliary tract cancer: the FUGA-BT (JCOG1113) randomized phase III clinical trial. Ann. Oncol., 2019, 30(12), 1950-1958.
[http://dx.doi.org/10.1093/annonc/mdz402] [PMID: 31566666]
[59]
Kuznar, W. Pemigatinib active as second-line treatment for FGFR2+ Cholangiocarcinoma 2019 ESMO Congress OncLive. 2019.https://www.onclive.com/conference-coverage/esmo-2019/pemigatinib-active-as-second-line-treatment-for-fgfr2- positive-cholangiocarcinoma?p=1
[60]
Jia, Z.; Paz-Fumagalli, R.; Frey, G.; Sella, D.M.; McKinney, J.M.; Wang, W. Resin-based Yttrium-90 microspheres for unresectable and failed first-line chemotherapy intrahepatic cholangiocarcinoma: preliminary results. J. Cancer Res. Clin. Oncol., 2017, 143(3), 481-489.
[http://dx.doi.org/10.1007/s00432-016-2291-4] [PMID: 27826686]
[61]
Zheng, W.H.; Yu, T.; Luo, Y.H.; Wang, Y.; Liu, Y.F.; Hua, X.D.; Lin, J.; Ma, Z.H.; Ai, F.L.; Wang, T.L. Clinical efficacy of gemcitabine and cisplatin-based transcatheter arterial chemoembolization combined with radiotherapy in hilar cholangiocarcinoma. World J. Gastrointest. Oncol., 2019, 11(6), 489-498.
[http://dx.doi.org/10.4251/wjgo.v11.i6.489] [PMID: 31236199]
[62]
Gabriel, E.; Gandhi, S.; Attwood, K.; Kuvshinoff, B.; Hochwald, S.; Iyer, R. Gemcitabine and capecitabine for advanced biliary cancer. J. Gastrointest. Oncol., 2017, 8(4), 728-736.
[http://dx.doi.org/10.21037/jgo.2017.01.24] [PMID: 28890824]
[63]
Kanai, M.; Hatano, E.; Kobayashi, S.; Fujiwara, Y.; Marubashi, S.; Miyamoto, A.; Shiomi, H.; Kubo, S.; Ikuta, S.; Yanagimoto, H.; Terajima, H.; Ikoma, H.; Sakai, D.; Kodama, Y.; Seo, S.; Morita, S.; Ajiki, T.; Nagano, H.; Ioka, T. A multi-institution phase II study of gemcitabine/cisplatin/S-1 (GCS) combination chemotherapy for patients with advanced biliary tract cancer (KHBO 1002). Cancer Chemother. Pharmacol., 2015, 75(2), 293-300.
[http://dx.doi.org/10.1007/s00280-014-2648-9] [PMID: 25477010]
[64]
Masashi Kanai, E.H. Clinical trials of gemcitabine/cisplatin/S-1 (GCS) combination therapy for patients with advance biliary tract cancer. Ann. Oncol., 2016.
[65]
Shroff, R.T.; Javle, M.M.; Xiao, L.; Kaseb, A.O.; Varadhachary, G.R.; Wolff, R.A.; Raghav, K.P.S.; Iwasaki, M.; Masci, P.; Ramanathan, R.K.; Ahn, D.H.; Bekaii-Saab, T.S.; Borad, M.J. Gemcitabine, cisplatin, and nab-paclitaxel for the treatment of advanced biliary tract cancers: A phase 2 clinical trial. JAMA Oncol., 2019, 5(6), 824-830.
[http://dx.doi.org/10.1001/jamaoncol.2019.0270] [PMID: 30998813]
[66]
Schinzari, G.; Rossi, E.; Mambella, G.; Strippoli, A.; Cangiano, R.; Mutignani, M.; Basso, M.; Cassano, A.; Barone, C. First-line treatment of advanced biliary ducts carcinoma: A randomized phase ii study evaluating 5-FU/LV plus oxaliplatin (Folfox 4) versus 5-FU/LV (de Gramont Regimen). Anticancer Res., 2017, 37(9), 5193-5197.
[PMID: 28870954]
[67]
Novarino, A.M.; Satolli, M.A.; Chiappino, I.; Giacobino, A.; Napoletano, R.; Ceccarelli, M.; Ciccone, G.; Schena, M.; Bertetto, O.; Ciuffreda, L. FOLFOX-4 regimen or single-agent gemcitabine as first-line chemotherapy in advanced biliary tract cancer. Am. J. Clin. Oncol., 2013, 36(5), 466-471.
[http://dx.doi.org/10.1097/COC.0b013e31825691c3] [PMID: 22781390]
[68]
David, H. ASCO 2019 report-gastrointestinal cancer NEMJ journal watch. 2019. https://www.jwatch.org/na49348/2019/06/18/asco-2019-report-gastrointestinal-cancer
[69]
Jose Luis Leal. Second-line FOLFOX chemotherapy in patients with metastatic gallbladder cancer and cholangiocarcinoma. Cancers of the pancreas, small bowel, and hepatobiliary tract J. Clin. Oncol., 2017, 322.
[70]
He, S.; Shen, J.; Sun, X.; Liu, L.; Dong, J. A phase II FOLFOX-4 regimen as second-line treatment in advanced biliary tract cancer refractory to gemcitabine/cisplatin. J. Chemother., 2014, 26(4), 243-247.
[http://dx.doi.org/10.1179/1973947813Y.0000000133] [PMID: 24070164]
[71]
Keith, E. Systemic therapy for advanced cholangiocarcinoma. 2019.https://www.uptodate.com/contents/systemic-therapy-for-advanced-cholangiocarcinoma#H3948953722
[72]
Valle, J.W.; Wasan, H.; Johnson, P.; Jones, E.; Dixon, L.; Swindell, R.; Baka, S.; Maraveyas, A.; Corrie, P.; Falk, S.; Gollins, S.; Lofts, F.; Evans, L.; Meyer, T.; Anthoney, A.; Iveson, T.; Highley, M.; Osborne, R.; Bridgewater, J. Gemcitabine alone or in combination with cisplatin in patients with advanced or metastatic cholangiocarcinomas or other biliary tract tumours: a multicentre randomised phase II study - The UK ABC-01 Study. Br. J. Cancer, 2009, 101(4), 621-627.
[http://dx.doi.org/10.1038/sj.bjc.6605211] [PMID: 19672264]
[73]
Sundram, F.X.; Buscombe, J.R. Selective internal radiation therapy for liver tumours. Clin. Med. (Lond.), 2017, 17(5), 449-453.
[http://dx.doi.org/10.7861/clinmedicine.17-5-449] [PMID: 28974597]
[74]
Yang, L.; Shan, J.; Shan, L.; Saxena, A.; Bester, L.; Morris, D.L. Trans-arterial embolisation therapies for unresectable intrahepatic cholangiocarcinoma: a systematic review. J. Gastrointest. Oncol., 2015, 6(5), 570-588.
[PMID: 26487951]
[75]
Kiefer, M.V.; Albert, M.; McNally, M.; Robertson, M.; Sun, W.; Fraker, D.; Olthoff, K.; Christians, K.; Pappas, S.; Rilling, W.; Soulen, M.C. Chemoembolization of intrahepatic cholangiocarcinoma with cisplatinum, doxorubicin, mitomycin C, ethiodol, and polyvinyl alcohol: a 2-center study. Cancer, 2011, 117(7), 1498-1505.
[http://dx.doi.org/10.1002/cncr.25625] [PMID: 21425151]
[76]
Stubbs, R.S.; Wickremesekera, S.K. Selective internal radiation therapy (SIRT): a new modality for treating patients with colorectal liver metastases. HPB (Oxford), 2004, 6(3), 133-139.
[http://dx.doi.org/10.1080/13651820410025084] [PMID: 18333066]
[77]
Gangi, A.; Shah, J.; Hatfield, N.; Smith, J.; Sweeney, J.; Choi, J.; El-Haddad, G.; Biebel, B.; Parikh, N.; Arslan, B.; Hoffe, S.E.; Frakes, J.M.; Springett, G.M.; Anaya, D.A.; Malafa, M.; Chen, D.T.; Chen, Y.; Kim, R.D.; Shridhar, R.; Kis, B. Intrahepatic cholangiocarcinoma treated with transarterial yttrium-90 glass microsphere radioembolization: results of a single institution retrospective study. J. Vasc. Interv. Radiol., 2018, 29(8), 1101-1108.
[http://dx.doi.org/10.1016/j.jvir.2018.04.001] [PMID: 30042074]
[78]
Hoffmann, R.T.; Paprottka, P.M.; Schön, A.; Bamberg, F.; Haug, A.; Dürr, E.M.; Rauch, B.; Trumm, C.T.; Jakobs, T.F.; Helmberger, T.K.; Reiser, M.F.; Kolligs, F.T. Transarterial hepatic yttrium-90 radioembolization in patients with unresectable intrahepatic cholangiocarcinoma: factors associated with prolonged survival. Cardiovasc. Intervent. Radiol., 2012, 35(1), 105-116.
[http://dx.doi.org/10.1007/s00270-011-0142-x] [PMID: 21431970]
[79]
Al-Adra, D.P.; Gill, R.S.; Axford, S.J.; Shi, X.; Kneteman, N.; Liau, S.S. Treatment of unresectable intrahepatic cholangiocarcinoma with yttrium-90 radioembolization: a systematic review and pooled analysis. Eur. J. Surg. Oncol., 2015, 41(1), 120-127.
[http://dx.doi.org/10.1016/j.ejso.2014.09.007] [PMID: 25449754]
[80]
NICE. Selective internal radiation therapy for unresectable primary intrahepatic cholangiocarcinoma National institute for health and care excellence. 2018.https://www.nice.org.uk/guidance/ipg630/chapter/3-Committee-considerations
[81]
Sebastian, N.T.; Tan, Y.; Miller, E.D.; Williams, T.M.; Alexandra Diaz, D. Stereotactic body radiation therapy is associated with improved overall survival compared to chemoradiation or radioembolization in the treatment of unresectable intrahepatic cholangiocarcinoma. Clin. Transl. Radiat. Oncol., 2019, 19, 66-71.
[http://dx.doi.org/10.1016/j.ctro.2019.07.007] [PMID: 31517072]
[82]
White, J.; Carolan-Rees, G.; Dale, M.; Patrick, H.E.; See, T.C.; Bell, J.K.; Manas, D.M.; Crellin, A.; Slevin, N.J.; Sharma, R.A. Yttrium-90 transarterial radioembolization for chemotherapy-refractory intrahepatic cholangiocarcinoma: A prospective, observational study. J. Vasc. Interv. Radiol., 2019, 30(8), 1185-1192.
[http://dx.doi.org/10.1016/j.jvir.2019.03.018] [PMID: 31255499]
[83]
Wilson, B.C. Photodynamic therapy for cancer: principles. Can. J. Gastroenterol., 2002, 16(6), 393-396.
[http://dx.doi.org/10.1155/2002/743109] [PMID: 12096303]
[84]
Vrouenraets, M.B.; Visser, G.W.; Snow, G.B.; van Dongen, G.A. Basic principles, applications in oncology and improved selectivity of photodynamic therapy. Anticancer Res., 2003, 23(1B), 505-522.
[PMID: 12680139]
[85]
Dolmans, D.E.; Fukumura, D.; Jain, R.K. Photodynamic therapy for cancer. Nat. Rev. Cancer, 2003, 3(5), 380-387.
[http://dx.doi.org/10.1038/nrc1071] [PMID: 12724736]
[86]
Dougherty, T.J.; Gomer, C.J.; Henderson, B.W.; Jori, G.; Kessel, D.; Korbelik, M.; Moan, J.; Peng, Q. Photodynamic therapy. J. Natl. Cancer Inst., 1998, 90(12), 889-905.
[http://dx.doi.org/10.1093/jnci/90.12.889] [PMID: 9637138]
[87]
Shiryaev, A.A.; Musaev, G.K.; Levkin, V.V.; Reshetov, I.V.; Loshchenov, M.V.; Alekseeva, P.M.; Volkov, V.V.; Linkov, K.G.; Makarov, V.I.; Shchekoturov, I.O.; Borodkin, A.V.; Loschenov, V.B. Combined treatment of nonresectable cholangiocarcinoma complicated by obstructive jaundice. Photodiagn. Photodyn. Ther., 2019, 26, 218-223.
[http://dx.doi.org/10.1016/j.pdpdt.2019.04.006] [PMID: 30965145]
[88]
Gonzalez-Carmona, M.A.; Bolch, M.; Jansen, C.; Vogt, A.; Sampels, M.; Mohr, R.U.; van Beekum, K.; Mahn, R.; Praktiknjo, M.; Nattermann, J.; Trebicka, J.; Branchi, V.; Matthaei, H.; Manekeller, S.; Kalff, J.C.; Strassburg, C.P.; Weismüller, T.J. Combined photodynamic therapy with systemic chemotherapy for unresectable cholangiocarcinoma. Aliment. Pharmacol. Ther., 2019, 49(4), 437-447.
[http://dx.doi.org/10.1111/apt.15050] [PMID: 30637783]
[89]
Ortner, M.E.; Caca, K.; Berr, F.; Liebetruth, J.; Mansmann, U.; Huster, D.; Voderholzer, W.; Schachschal, G.; Mössner, J.; Lochs, H. Successful photodynamic therapy for nonresectable cholangiocarcinoma: a randomized prospective study. Gastroenterology, 2003, 125(5), 1355-1363.
[http://dx.doi.org/10.1016/j.gastro.2003.07.015] [PMID: 14598251]
[90]
Khan, S.A.; Davidson, B.R.; Goldin, R.D.; Heaton, N.; Karani, J.; Pereira, S.P.; Rosenberg, W.M.; Tait, P.; Taylor-Robinson, S.D.; Thillainayagam, A.V.; Thomas, H.C.; Wasan, H. British Society of Gastroenterology. Guidelines for the diagnosis and treatment of cholangiocarcinoma: an update. Gut, 2012, 61(12), 1657-1669.
[http://dx.doi.org/10.1136/gutjnl-2011-301748] [PMID: 22895392]
[91]
Grove, M.K.; Hermann, R.E.; Vogt, D.P.; Broughan, T.A. Role of radiation after operative palliation in cancer of the proximal bile ducts. Am. J. Surg., 1991, 161(4), 454-458.
[http://dx.doi.org/10.1016/0002-9610(91)91111-U] [PMID: 1709795]
[92]
Lischalk, J.W.; Repka, M.C.; Unger, K. Radiation therapy for hepatobiliary malignancies. J. Gastrointest. Oncol., 2017, 8(2), 279-292.
[http://dx.doi.org/10.21037/jgo.2016.08.02] [PMID: 28480067]
[93]
Lowery, M.A.; Ptashkin, R.; Jordan, E.; Berger, M.F.; Zehir, A.; Capanu, M.; Kemeny, N.E.; O’Reilly, E.M.; El-Dika, I.; Jarnagin, W.R.; Harding, J.J.; D’Angelica, M.I.; Cercek, A.; Hechtman, J.F.; Solit, D.B.; Schultz, N.; Hyman, D.M.; Klimstra, D.S.; Saltz, L.B.; Abou-Alfa, G.K. Comprehensive molecular profiling of intrahepatic and extrahepatic cholangiocarcinomas: Potential targets for intervention. Clin. Cancer Res., 2018, 24(17), 4154-4161.
[http://dx.doi.org/10.1158/1078-0432.CCR-18-0078] [PMID: 29848569]
[94]
Churi, C.R.; Shroff, R.; Wang, Y.; Rashid, A.; Kang, H.C.; Weatherly, J.; Zuo, M.; Zinner, R.; Hong, D.; Meric-Bernstam, F.; Janku, F.; Crane, C.H.; Mishra, L.; Vauthey, J.N.; Wolff, R.A.; Mills, G.; Javle, M. Mutation profiling in cholangiocarcinoma: prognostic and therapeutic implications. PLoS One, 2014, 9(12), e115383.
[http://dx.doi.org/10.1371/journal.pone.0115383] [PMID: 25536104]
[95]
Dai, S.; Zhou, Z.; Chen, Z.; Xu, G.; Chen, Y. Fibroblast growth factor receptors (FGFRs): structures and small molecule inhibitors. Cells, 2019, 8(6), E614.
[http://dx.doi.org/10.3390/cells8060614] [PMID: 31216761]
[96]
Sarabipour, S.; Hristova, K. Mechanism of FGF receptor dimerization and activation. Nat. Commun., 2016, 7, 10262.
[http://dx.doi.org/10.1038/ncomms10262] [PMID: 26725515]
[97]
Lemmon, M.A.; Schlessinger, J. Cell signaling by receptor tyrosine kinases. Cell, 2010, 141(7), 1117-1134.
[http://dx.doi.org/10.1016/j.cell.2010.06.011] [PMID: 20602996]
[98]
Dorey, K.; Amaya, E. FGF signalling: diverse roles during early vertebrate embryogenesis. Development, 2010, 137(22), 3731-3742.
[http://dx.doi.org/10.1242/dev.037689] [PMID: 20978071]
[99]
Turner, N.; Grose, R. Fibroblast growth factor signalling: from development to cancer. Nat. Rev. Cancer, 2010, 10(2), 116-129.
[http://dx.doi.org/10.1038/nrc2780] [PMID: 20094046]
[100]
Helsten, T.; Schwaederle, M.; Kurzrock, R. Fibroblast growth factor receptor signaling in hereditary and neoplastic disease: biologic and clinical implications. Cancer Metastasis Rev., 2015, 34(3), 479-496.
[http://dx.doi.org/10.1007/s10555-015-9579-8] [PMID: 26224133]
[101]
Beenken, A.; Mohammadi, M. The FGF family: biology, pathophysiology and therapy. Nat. Rev. Drug Discov., 2009, 8(3), 235-253.
[http://dx.doi.org/10.1038/nrd2792] [PMID: 19247306]
[102]
St Bernard, R.; Zheng, L.; Liu, W.; Winer, D.; Asa, S.L.; Ezzat, S. Fibroblast growth factor receptors as molecular targets in thyroid carcinoma. Endocrinology, 2005, 146(3), 1145-1153.
[http://dx.doi.org/10.1210/en.2004-1134] [PMID: 15564323]
[103]
Singh, D.; Chan, J.M.; Zoppoli, P.; Niola, F.; Sullivan, R.; Castano, A.; Liu, E.M.; Reichel, J.; Porrati, P.; Pellegatta, S.; Qiu, K.; Gao, Z.; Ceccarelli, M.; Riccardi, R.; Brat, D.J.; Guha, A.; Aldape, K.; Golfinos, J.G.; Zagzag, D.; Mikkelsen, T.; Finocchiaro, G.; Lasorella, A.; Rabadan, R.; Iavarone, A. Transforming fusions of FGFR and TACC genes in human glioblastoma. Science, 2012, 337(6099), 1231-1235.
[http://dx.doi.org/10.1126/science.1220834] [PMID: 22837387]
[104]
Touat, M.; Ileana, E.; Postel-Vinay, S.; André, F.; Soria, J.C. Targeting FGFR signaling in cancer. Clin. Cancer Res., 2015, 21(12), 2684-2694.
[http://dx.doi.org/10.1158/1078-0432.CCR-14-2329] [PMID: 26078430]
[105]
Apurva Jain, M.J.B. Robin Kate Kelley, Ying Wang, Reham Abdel-Wahab, Funda Meric-Bernstam, Keith A. Baggerly, Ahmed Omar Kaseb, Humaid O. Al-shamsi, Daniel H. Ahn, Thomas DeLeon, Andrea Grace Bocobo, Tanios Bekaii-Saab, Rachna T. Shroff, and Milind Javle, Cholangiocarcinoma With FGFR Genetic Aberrations: A Unique Clinical Phenotype. January 17, 2018 ed. JCO Precision Oncology: An American Society of clinical. Oncology, 2018.
[106]
Katoh, M. Fibroblast growth factor receptors as treatment targets in clinical oncology. Nat. Rev. Clin. Oncol., 2019, 16(2), 105-122.
[http://dx.doi.org/10.1038/s41571-018-0115-y] [PMID: 30367139]
[107]
Qin, A.; Johnson, A.; Ross, J.S.; Miller, V.A.; Ali, S.M.; Schrock, A.B.; Gadgeel, S.M. Detection of known and novel FGFR fusions in non-small cell lung cancer by comprehensive genomic profiling. J. Thorac. Oncol., 2019, 14(1), 54-62.
[http://dx.doi.org/10.1016/j.jtho.2018.09.014] [PMID: 30267839]
[108]
Helsten, T.; Elkin, S.; Arthur, E.; Tomson, B.N.; Carter, J.; Kurzrock, R. The FGFR landscape in cancer: analysis of 4,853 tumors by next-generation sequencing. Clin. Cancer Res., 2016, 22(1), 259-267.
[http://dx.doi.org/10.1158/1078-0432.CCR-14-3212] [PMID: 26373574]
[109]
Wu, Y.M.; Su, F.; Kalyana-Sundaram, S.; Khazanov, N.; Ateeq, B.; Cao, X.; Lonigro, R.J.; Vats, P.; Wang, R.; Lin, S.F.; Cheng, A.J.; Kunju, L.P.; Siddiqui, J.; Tomlins, S.A.; Wyngaard, P.; Sadis, S.; Roychowdhury, S.; Hussain, M.H.; Feng, F.Y.; Zalupski, M.M.; Talpaz, M.; Pienta, K.J.; Rhodes, D.R.; Robinson, D.R.; Chinnaiyan, A.M. Identification of targetable FGFR gene fusions in diverse cancers. Cancer Discov., 2013, 3(6), 636-647.
[http://dx.doi.org/10.1158/2159-8290.CD-13-0050] [PMID: 23558953]
[110]
Borad, M.J.; Gores, G.J.; Roberts, L.R. Fibroblast growth factor receptor 2 fusions as a target for treating cholangiocarcinoma. Curr. Opin. Gastroenterol., 2015, 31(3), 264-268.
[http://dx.doi.org/10.1097/MOG.0000000000000171] [PMID: 25763789]
[111]
Sia, D.; Losic, B.; Moeini, A.; Cabellos, L.; Hao, K.; Revill, K.; Bonal, D.; Miltiadous, O.; Zhang, Z.; Hoshida, Y.; Cornella, H.; Castillo-Martin, M.; Pinyol, R.; Kasai, Y.; Roayaie, S.; Thung, S.N.; Fuster, J.; Schwartz, M.E.; Waxman, S.; Cordon-Cardo, C.; Schadt, E.; Mazzaferro, V.; Llovet, J.M. Massive parallel sequencing uncovers actionable FGFR2-PPHLN1 fusion and ARAF mutations in intrahepatic cholangiocarcinoma. Nat. Commun., 2015, 6, 6087.
[http://dx.doi.org/10.1038/ncomms7087] [PMID: 25608663]
[112]
Moeini, A.; Sia, D.; Bardeesy, N.; Mazzaferro, V.; Llovet, J.M. Molecular pathogenesis and targeted therapies for intrahepatic cholangiocarcinoma. Clin. Cancer Res., 2016, 22(2), 291-300.
[http://dx.doi.org/10.1158/1078-0432.CCR-14-3296] [PMID: 26405193]
[113]
Javle, M.; Lowery, M.; Shroff, R.T.; Weiss, K.H.; Springfeld, C.; Borad, M.J.; Ramanathan, R.K.; Goyal, L.; Sadeghi, S.; Macarulla, T.; El-Khoueiry, A.; Kelley, R.K.; Borbath, I.; Choo, S.P.; Oh, D.Y.; Philip, P.A.; Chen, L.T.; Reungwetwattana, T.; Van Cutsem, E.; Yeh, K.H.; Ciombor, K.; Finn, R.S.; Patel, A.; Sen, S.; Porter, D.; Isaacs, R.; Zhu, A.X.; Abou-Alfa, G.K.; Bekaii-Saab, T. Phase II study of BGJ398 in patients with FGFR-altered advanced cholangiocarcinoma. J. Clin. Oncol., 2018, 36(3), 276-282.
[http://dx.doi.org/10.1200/JCO.2017.75.5009] [PMID: 29182496]
[115]
Graham, R.P.; Barr Fritcher, E.G.; Pestova, E.; Schulz, J.; Sitailo, L.A.; Vasmatzis, G.; Murphy, S.J.; McWilliams, R.R.; Hart, S.N.; Halling, K.C.; Roberts, L.R.; Gores, G.J.; Couch, F.J.; Zhang, L.; Borad, M.J.; Kipp, B.R. Fibroblast growth factor receptor 2 translocations in intrahepatic cholangiocarcinoma. Hum. Pathol., 2014, 45(8), 1630-1638.
[http://dx.doi.org/10.1016/j.humpath.2014.03.014] [PMID: 24837095]
[116]
Ross, J.S.; Wang, K.; Gay, L.; Al-Rohil, R.; Rand, J.V.; Jones, D.M.; Lee, H.J.; Sheehan, C.E.; Otto, G.A.; Palmer, G.; Yelensky, R.; Lipson, D.; Morosini, D.; Hawryluk, M.; Catenacci, D.V.; Miller, V.A.; Churi, C.; Ali, S.; Stephens, P.J. New routes to targeted therapy of intrahepatic cholangiocarcinomas revealed by next-generation sequencing. Oncologist, 2014, 19(3), 235-242.
[http://dx.doi.org/10.1634/theoncologist.2013-0352] [PMID: 24563076]
[117]
Michele Droz Dit Busset. Efficacy of derazantinib (DZB) in patients (pts) with intrahepatic cholangiocarcinoma (iCCA) expressing FGFR2-fusion or FGFR2 mutations/amplifications. Ann. Oncol., 2019, 30, v276-v277.
[118]
Pellino, A.; Loupakis, F.; Cadamuro, M.; Dadduzio, V.; Fassan, M.; Guido, M.; Cillo, U.; Indraccolo, S.; Fabris, L. Precision medicine in cholangiocarcinoma. Transl. Gastroenterol. Hepatol., 2018, 3, 40.
[http://dx.doi.org/10.21037/tgh.2018.07.02] [PMID: 30148225]
[119]
Raggi, C.; Fiaccadori, K.; Pastore, M.; Correnti, M.; Piombanti, B.; Forti, E.; Navari, N.; Abbadessa, G.; Hall, T.; Destro, A.; Di Tommaso, L.; Roncalli, M.; Meng, F.; Glaser, S.; Rovida, E.; Peraldo-Neia, C.; Olaizola, P.; Banales, J.M.; Gerussi, A.; Elvevi, A.; Droz Dit Busset, M.; Bhoori, S.; Mazzaferro, V.; Alpini, G.; Marra, F.; Invernizzi, P. Antitumor activity of a novel fibroblast growth factor receptor inhibitor for intrahepatic cholangiocarcinoma. Am. J. Pathol., 2019, 189(10), 2090-2101.
[http://dx.doi.org/10.1016/j.ajpath.2019.06.007] [PMID: 31351075]
[120]
Mazzaferro, V.; El-Rayes, B.F.; Droz Dit Busset, M.; Cotsoglou, C.; Harris, W.P.; Damjanov, N.; Masi, G.; Rimassa, L.; Personeni, N.; Braiteh, F.; Zagonel, V.; Papadopoulos, K.P.; Hall, T.; Wang, Y.; Schwartz, B.; Kazakin, J.; Bhoori, S.; de Braud, F.; Shaib, W.L. Derazantinib (ARQ 087) in advanced or inoperable FGFR2 gene fusion-positive intrahepatic cholangiocarcinoma. Br. J. Cancer, 2019, 120(2), 165-171.
[http://dx.doi.org/10.1038/s41416-018-0334-0] [PMID: 30420614]
[121]
Markham, A. Erdafitinib: First global approval. Drugs, 2019, 79(9), 1017-1021.
[http://dx.doi.org/10.1007/s40265-019-01142-9] [PMID: 31161538]
[122]
Chen, Y-Y.; Park, J.O.; Su, W-C.; Oh, D-Y.; Kim, K-P.; Feng, Y-H. 624PDPreliminary results of a ph2a study to evaluate the clinical efficacy and safety of erdafitinib in Asian patients with biomarker-selected advanced cholangiocarcinoma (CCA). Ann Oncol., 2018, 29(8), viii209.
[123]
Bahleda, R.; Italiano, A.; Hierro, C.; Mita, A.; Cervantes, A.; Chan, N.; Awad, M.; Calvo, E.; Moreno, V.; Govindan, R.; Spira, A.; Gonzalez, M.; Zhong, B.; Santiago-Walker, A.; Poggesi, I.; Parekh, T.; Xie, H.; Infante, J.; Tabernero, J. Multicenter phase I study of erdafitinib (JNJ-42756493), oral pan-fibroblast growth factor receptor inhibitor, in patients with advanced or refractory solid tumors. Clin. Cancer Res., 2019, 25(16), 4888-4897.
[http://dx.doi.org/10.1158/1078-0432.CCR-18-3334] [PMID: 31088831]
[124]
Abou-Alfa, G.K.; Sahai, V.; Hollebecque, A.; Vaccaro, G.; Melisi, D.; Al-Rajabi, R.; Paulson, A.S.; Borad, M.J.; Gallinson, D.; Murphy, A.G.; Oh, D.Y.; Dotan, E.; Catenacci, D.V.; Van Cutsem, E.; Ji, T.; Lihou, C.F.; Zhen, H.; Féliz, L.; Vogel, A. Pemigatinib for previously treated, locally advanced or metastatic cholangiocarcinoma: a multicentre, open-label, phase 2 study. Lancet Oncol., 2020, 21(5), 671-684.
[http://dx.doi.org/10.1016/S1470-2045(20)30109-1] [PMID: 32203698]
[125]
Bekaii-Saab, T.S.; Valle, J.W.; Cutsem, E.V.; Rimassa, L.; Furuse, J.; Ioka, T.; Melisi, D.; Macarulla, T.; Bridgewater, J.; Wasan, H.; Borad, M.J.; Abou-Alfa, G.K.; Jiang, P.; Lihou, C.F.; Zhen, H.; Asatiani, E.; Féliz, L.; Vogel, A. FIGHT-302: first-line pemigatinib vs gemcitabine plus cisplatin for advanced cholangiocarcinoma with FGFR2 rearrangements. Future Oncol., 2020, 16(30), 2385-2399.
[http://dx.doi.org/10.2217/fon-2020-0429] [PMID: 32677452]
[126]
Al-Khallaf, H. Isocitrate dehydrogenases in physiology and cancer: biochemical and molecular insight. Cell Biosci., 2017, 7, 37.
[http://dx.doi.org/10.1186/s13578-017-0165-3] [PMID: 28785398]
[127]
Tateishi, K.Y.T. IDH-Mutant Gliomas; ONLINE FIRST, 2019.
[128]
Cohen, A.L.; Holmen, S.L.; Colman, H. IDH1 and IDH2 mutations in gliomas. Curr. Neurol. Neurosci. Rep., 2013, 13(5), 345.
[http://dx.doi.org/10.1007/s11910-013-0345-4] [PMID: 23532369]
[129]
Dang, L.; Yen, K.; Attar, E.C. IDH mutations in cancer and progress toward development of targeted therapeutics. Ann. Oncol., 2016, 27(4), 599-608.
[http://dx.doi.org/10.1093/annonc/mdw013] [PMID: 27005468]
[130]
Waitkus, M.S.; Diplas, B.H.; Yan, H. Biological role and therapeutic potential of IDH mutations in cancer. Cancer Cell, 2018, 34(2), 186-195.
[http://dx.doi.org/10.1016/j.ccell.2018.04.011] [PMID: 29805076]
[131]
Lowery, M.A.; Burris, H.A., III; Janku, F.; Shroff, R.T.; Cleary, J.M.; Azad, N.S.; Goyal, L.; Maher, E.A.; Gore, L.; Hollebecque, A.; Beeram, M.; Trent, J.C.; Jiang, L.; Fan, B.; Aguado-Fraile, E.; Choe, S.; Wu, B.; Gliser, C.; Agresta, S.V.; Pandya, S.S.; Zhu, A.X.; Abou-Alfa, G.K. Safety and activity of ivosidenib in patients with IDH1-mutant advanced cholangiocarcinoma: a phase 1 study. Lancet Gastroenterol. Hepatol., 2019, 4(9), 711-720.
[http://dx.doi.org/10.1016/S2468-1253(19)30189-X] [PMID: 31300360]
[132]
Ghassan, K. Ivosidenib provides prolonged progression-free survival in patients with cholangiocarcinoma and IDH1 mutation ESMO website. 2019. https://www.esmo.org/Oncology-News/Ivosidenib-Provides-Prolonged-Progression-Free-Survival-in-Patients-with-Cholangiocarcinoma-and-IDH1-Mutation
[133]
Kipp, B.R.; Voss, J.S.; Kerr, S.E.; Barr Fritcher, E.G.; Graham, R.P.; Zhang, L.; Highsmith, W.E.; Zhang, J.; Roberts, L.R.; Gores, G.J.; Halling, K.C. Isocitrate dehydrogenase 1 and 2 mutations in cholangiocarcinoma. Hum. Pathol., 2012, 43(10), 1552-1558.
[http://dx.doi.org/10.1016/j.humpath.2011.12.007] [PMID: 22503487]
[134]
Wang, P.; Dong, Q.; Zhang, C.; Kuan, P.F.; Liu, Y.; Jeck, W.R.; Andersen, J.B.; Jiang, W.; Savich, G.L.; Tan, T.X.; Auman, J.T.; Hoskins, J.M.; Misher, A.D.; Moser, C.D.; Yourstone, S.M.; Kim, J.W.; Cibulskis, K.; Getz, G.; Hunt, H.V.; Thorgeirsson, S.S.; Roberts, L.R.; Ye, D.; Guan, K.L.; Xiong, Y.; Qin, L.X.; Chiang, D.Y. Mutations in isocitrate dehydrogenase 1 and 2 occur frequently in intrahepatic cholangiocarcinomas and share hypermethylation targets with glioblastomas. Oncogene, 2013, 32(25), 3091-3100.
[http://dx.doi.org/10.1038/onc.2012.315] [PMID: 22824796]
[135]
Borger, D.R.; Tanabe, K.K.; Fan, K.C.; Lopez, H.U.; Fantin, V.R.; Straley, K.S.; Schenkein, D.P.; Hezel, A.F.; Ancukiewicz, M.; Liebman, H.M.; Kwak, E.L.; Clark, J.W.; Ryan, D.P.; Deshpande, V.; Dias-Santagata, D.; Ellisen, L.W.; Zhu, A.X.; Iafrate, A.J. Frequent mutation of isocitrate dehydrogenase (IDH)1 and IDH2 in cholangiocarcinoma identified through broad-based tumor genotyping. Oncologist, 2012, 17(1), 72-79.
[http://dx.doi.org/10.1634/theoncologist.2011-0386] [PMID: 22180306]
[136]
Golub, D.; Iyengar, N.; Dogra, S.; Wong, T.; Bready, D.; Tang, K.; Modrek, A.S.; Placantonakis, D.G. Mutant isocitrate dehydrogenase inhibitors as targeted cancer therapeutics. Front. Oncol., 2019, 9, 417.
[http://dx.doi.org/10.3389/fonc.2019.00417] [PMID: 31165048]
[137]
Kim, E.S. Enasidenib: first global approval. Drugs, 2017, 77(15), 1705-1711.
[http://dx.doi.org/10.1007/s40265-017-0813-2] [PMID: 28879540]
[138]
Stein, E.M.; DiNardo, C.D.; Pollyea, D.A.; Fathi, A.T.; Roboz, G.J.; Altman, J.K.; Stone, R.M.; DeAngelo, D.J.; Levine, R.L.; Flinn, I.W.; Kantarjian, H.M.; Collins, R.; Patel, M.R.; Frankel, A.E.; Stein, A.; Sekeres, M.A.; Swords, R.T.; Medeiros, B.C.; Willekens, C.; Vyas, P.; Tosolini, A.; Xu, Q.; Knight, R.D.; Yen, K.E.; Agresta, S.; de Botton, S.; Tallman, M.S. Enasidenib in mutant IDH2 relapsed or refractory acute myeloid leukemia. Blood, 2017, 130(6), 722-731.
[http://dx.doi.org/10.1182/blood-2017-04-779405] [PMID: 28588020]
[139]
Dhillon, S. Ivosidenib: First global approval. Drugs, 2018, 78(14), 1509-1516.
[http://dx.doi.org/10.1007/s40265-018-0978-3] [PMID: 30209701]
[140]
Vasan, N.; Boyer, J.L.; Herbst, R.S. A RAS renaissance: emerging targeted therapies for KRAS-mutated non-small cell lung cancer. Clin. Cancer Res., 2014, 20(15), 3921-3930.
[http://dx.doi.org/10.1158/1078-0432.CCR-13-1762] [PMID: 24893629]
[141]
Fan, H.Y.; Richards, J.S. Minireview: physiological and pathological actions of RAS in the ovary. Mol. Endocrinol., 2010, 24(2), 286-298.
[http://dx.doi.org/10.1210/me.2009-0251] [PMID: 19880654]
[142]
Fernández-Medarde, A.; Santos, E. Ras in cancer and developmental diseases. Genes Cancer, 2011, 2(3), 344-358.
[http://dx.doi.org/10.1177/1947601911411084] [PMID: 21779504]
[143]
Cherfils, J.; Zeghouf, M. Regulation of small GTPases by GEFs, GAPs, and GDIs. Physiol. Rev., 2013, 93(1), 269-309.
[http://dx.doi.org/10.1152/physrev.00003.2012] [PMID: 23303910]
[144]
Haigis, K.M. KRAS Alleles: The devil is in the detail. Trends Cancer, 2017, 3(10), 686-697.
[http://dx.doi.org/10.1016/j.trecan.2017.08.006] [PMID: 28958387]
[145]
Liu, P.; Wang, Y.; Li, X. Targeting the untargetable KRAS in cancer therapy. Acta Pharm. Sin. B, 2019, 9(5), 871-879.
[http://dx.doi.org/10.1016/j.apsb.2019.03.002] [PMID: 31649840]
[146]
Yokoyama, M.; Ohnishi, H.; Ohtsuka, K.; Matsushima, S.; Ohkura, Y.; Furuse, J.; Watanabe, T.; Mori, T.; Sugiyama, M. KRAS mutation as a potential prognostic biomarker of biliary tract cancers. Jpn. Clin. Med., 2016, 7, 33-39.
[http://dx.doi.org/10.4137/JCM.S40549] [PMID: 28008299]
[147]
Turhal, N.S.; Savaş, B.; Çoşkun, Ö.; Baş, E.; Karabulut, B.; Nart, D.; Korkmaz, T.; Yavuzer, D.; Demir, G.; Doğusoy, G.; Artaç, M. Prevalence of K-Ras mutations in hepatocellular carcinoma: A Turkish Oncology Group pilot study. Mol. Clin. Oncol., 2015, 3(6), 1275-1279.
[http://dx.doi.org/10.3892/mco.2015.633] [PMID: 26807232]
[148]
Mazurenko, N.N.; Gagarin, I.M.; Tsyganova, I.V.; Mochal’nikova, V.V.; Breder, V.V. The frequency and spectrum of KRAS mutations in metastatic colorectal cancer. Vopr. Onkol., 2013, 59(6), 751-755.
[PMID: 24624786]
[149]
Robertson, S.; Hyder, O.; Dodson, R.; Nayar, S.K.; Poling, J.; Beierl, K.; Eshleman, J.R.; Lin, M.T.; Pawlik, T.M.; Anders, R.A. The frequency of KRAS and BRAF mutations in intrahepatic cholangiocarcinomas and their correlation with clinical outcome. Hum. Pathol., 2013, 44(12), 2768-2773.
[http://dx.doi.org/10.1016/j.humpath.2013.07.026] [PMID: 24139215]
[150]
Bos, J.L. ras oncogenes in human cancer: a review. Cancer Res., 1989, 49(17), 4682-4689.
[PMID: 2547513]
[151]
Bui, K.C.; Barat, S.; Chen, X.; Bozko, P.; Scholta, T.; Nguyen, M.L.T.; Bhuria, V.; Xing, J.; Nguyen, L.T.; Le, H.S.; Velavan, T.P.; Sipos, B.; Wilkens, L.; Malek, N.P.; Plentz, R.R. Silencing of Kangai 1 C-terminal interacting tetraspanin suppresses progression of cholangiocarcinoma. Exp. Cell Res., 2018, 364(1), 59-67.
[http://dx.doi.org/10.1016/j.yexcr.2018.01.028] [PMID: 29366806]
[152]
Huang, W.C.; Tsai, C.C.; Chan, C.C. Mutation analysis and copy number changes of KRAS and BRAF genes in Taiwanese cases of biliary tract cholangiocarcinoma. J. Formos. Med. Assoc., 2017, 116(6), 464-468.
[http://dx.doi.org/10.1016/j.jfma.2016.07.015] [PMID: 27745798]
[153]
Levi, S.; Urbano-Ispizua, A.; Gill, R.; Thomas, D.M.; Gilbertson, J.; Foster, C.; Marshall, C.J. Multiple K-ras codon 12 mutations in cholangiocarcinomas demonstrated with a sensitive polymerase chain reaction technique. Cancer Res., 1991, 51(13), 3497-3502.
[PMID: 1675933]
[154]
Tada, M.; Yokosuka, O.; Omata, M.; Ohto, M.; Isono, K. Analysis of ras gene mutations in biliary and pancreatic tumors by polymerase chain reaction and direct sequencing. Cancer, 1990, 66(5), 930-935.
[http://dx.doi.org/10.1002/1097-0142(19900901)66:5<930::AID-CNCR2820660519>3.0.CO;2-W] [PMID: 2167148]
[155]
Tada, M.; Omata, M.; Ohto, M. High incidence of ras gene mutation in intrahepatic cholangiocarcinoma. Cancer, 1992, 69(5), 1115-1118.
[http://dx.doi.org/10.1002/cncr.2820690509] [PMID: 1739910]
[156]
Malin, R. Boehringer ingelheim advances first pan-KRAS inhibitor BI 1701963 into clinical testing boehringer ingelheim website. 2019. https://www.boehringer-ingelheim.com/press-release/first-pan-kras-inhibitor-advances-clinical-testing
[157]
Canon, J.; Rex, K.; Saiki, A.Y.; Mohr, C.; Cooke, K.; Bagal, D.; Gaida, K.; Holt, T.; Knutson, C.G.; Koppada, N.; Lanman, B.A.; Werner, J.; Rapaport, A.S.; San Miguel, T.; Ortiz, R.; Osgood, T.; Sun, J.R.; Zhu, X.; McCarter, J.D.; Volak, L.P.; Houk, B.E.; Fakih, M.G.; O’Neil, B.H.; Price, T.J.; Falchook, G.S.; Desai, J.; Kuo, J.; Govindan, R.; Hong, D.S.; Ouyang, W.; Henary, H.; Arvedson, T.; Cee, V.J.; Lipford, J.R. The clinical KRAS(G12C) inhibitor AMG 510 drives anti-tumour immunity. Nature, 2019, 575(7781), 217-223.
[http://dx.doi.org/10.1038/s41586-019-1694-1] [PMID: 31666701]
[158]
Hallin, J.; Engstrom, L.D.; Hargis, L.; Calinisan, A.; Aranda, R.; Briere, D.M. The KRAS(G12C) inhibitor MRTX849 provides insight toward therapeutic susceptibility of KRAS-mutant cancers in mouse models and patients. Cancer Discov., 2019.
[PMID: 31658955]
[159]
Hong, D.S.; Fakih, M.G.; Strickler, J.H.; Desai, J.; Durm, G.A.; Shapiro, G.I.; Falchook, G.S.; Price, T.J.; Sacher, A.; Denlinger, C.S.; Bang, Y.J.; Dy, G.K.; Krauss, J.C.; Kuboki, Y.; Kuo, J.C.; Coveler, A.L.; Park, K.; Kim, T.W.; Barlesi, F.; Munster, P.N.; Ramalingam, S.S.; Burns, T.F.; Meric-Bernstam, F.; Henary, H.; Ngang, J.; Ngarmchamnanrith, G.; Kim, J.; Houk, B.E.; Canon, J.; Lipford, J.R.; Friberg, G.; Lito, P.; Govindan, R.; Li, B.T. KRASG12C inhibition with sotorasib in advanced solid tumors. N. Engl. J. Med., 2020, 383(13), 1207-1217.
[http://dx.doi.org/10.1056/NEJMoa1917239] [PMID: 32955176]
[160]
Loeuillard, E.; Conboy, C.B.; Gores, G.J.; Rizvi, S. Immunobiology of cholangiocarcinoma. JHEP Rep, 2019, 1(4), 297-311.
[http://dx.doi.org/10.1016/j.jhepr.2019.06.003] [PMID: 32039381]
[161]
Mou, H.; Yu, L.; Liao, Q.; Hou, X.; Wu, Y.; Cui, Q.; Yan, N.; Ma, R.; Wang, L.; Yao, M.; Wang, K. Successful response to the combination of immunotherapy and chemotherapy in cholangiocarcinoma with high tumour mutational burden and PD-L1 expression: a case report. BMC Cancer, 2018, 18(1), 1105.
[http://dx.doi.org/10.1186/s12885-018-5021-2] [PMID: 30419854]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy