Generic placeholder image

CNS & Neurological Disorders - Drug Targets

Editor-in-Chief

ISSN (Print): 1871-5273
ISSN (Online): 1996-3181

General Research Article

Neurokinin-1 Receptor Antagonist Reverses Functional CNS Alteration Caused by Combined γ-rays and Carbon Nuclei Irradiation

Author(s): Viktor S. Kokhan, Sofia Mariasina, Vladimir A. Pikalov, Denis A. Abaimov, Siva G. Somasundaram , Cecil E. Kirkland and Gjumrakch Aliev*

Volume 21, Issue 3, 2022

Published on: 26 November, 2021

Page: [278 - 289] Pages: 12

DOI: 10.2174/1871527320666210122092330

Price: $65

Abstract

Background: Ionizing Radiation (IR) is one of the major limiting factors for human deep-space missions. Preventing IR-induced cognitive alterations in astronauts is a critical success factor. It has been shown that cognitive alterations in rodents can be inferred by alterations of a psycho- emotional balance, primarily an anxiogenic effect of IR. In our recent work, we hypothesized that the neurokinin-1 (NK1) receptor might be instrumental for such alterations.

Objective: The NK1 receptor antagonist rolapitant and the classic anxiolytic diazepam (as a comparison drug) were selected to test this hypothesis on Wistar rats.

Methods: Pharmacological substances were administered through intragastric probes. We used a battery of tests for a comprehensive ethological analysis. High-performance liquid chromatography was applied to quantify monoamines content. An analysis of mRNA expression was performed by real-time PCR. Protein content was studied by the Western blotting technique.

Results: Our salient finding includes no substantial changes in anxiety, locomotor activity and cognitive abilities of treated rats under irradiation. No differences were found in the content of monoamines. We discovered a synchronous effect on mRNA expression and protein content of 5- HT2a and 5-HT4 receptors in the prefrontal cortex, as well as decreased content of serotonin transporter and increased content of tryptophan hydroxylase in the hypothalamus of irradiated rats. Rolapitant affected the protein amount of a number of serotonin receptors in the amygdala of irradiated rats.

Conclusion: Rolapitant may be the first atypical radioprotector, providing symptomatic treatment of CNS functional disorders in astronauts caused by IR.

Keywords: Ionizing radiation, neurokinin-1 receptor, anxiety, monoamines, serotonin, radioprotector, rolapitant, diazepam

« Previous
Graphical Abstract
[1]
Cekanaviciute E, Rosi S, Costes SV. Central nervous system responses to simulated galactic cosmic rays. Int J Mol Sci 2018; 19(11): E3669.
[http://dx.doi.org/10.3390/ijms19113669] [PMID: 30463349]
[2]
Kokhan VS, Matveeva MI, Mukhametov A, Shtemberg AS. Risk of defeats in the central nervous system during deep space missions. Neurosci Biobehav Rev 2016; 71: 621-32.
[http://dx.doi.org/10.1016/j.neubiorev.2016.10.006] [PMID: 27756690]
[3]
Kokhan VS, Shakhbazian EV, Markova NA. Psycho-emotional status but not cognition is changed under the combined effect of ionizing radiations at doses related to deep space missions. Behav Brain Res 2019; 362: 311-8.
[http://dx.doi.org/10.1016/j.bbr.2019.01.024] [PMID: 30658066]
[4]
Raber J, Yamazaki J, Torres ERS, et al. Combined effects of three high-energy charged particle beams important for space flight on brain, behavioral and cognitive endpoints in b6d2f1 female and male mice. Front Physiol 2019; 10: 179.
[http://dx.doi.org/10.3389/fphys.2019.00179] [PMID: 30914962]
[5]
Haley GE, Yeiser L, Olsen RH, Davis MJ, Johnson LA, Raber J. Early effects of whole-body (56)Fe irradiation on hippocampal function in C57BL/6J mice. Radiat Res 2013; 179(5): 590-6.
[http://dx.doi.org/10.1667/RR2946.1] [PMID: 23510274]
[6]
Wyrobek AJ, Britten RA. Individual variations in dose response for spatial memory learning among outbred wistar rats exposed from 5 to 20 cGy of (56) Fe particles. Environ Mol Mutagen 2016; 57(5): 331-40.
[http://dx.doi.org/10.1002/em.22018] [PMID: 27237589]
[7]
Rabin BM, Heroux NA, Shukitt-Hale B, Carrihill-Knoll KL, Beck Z, Baxter C. Lack of reliability in the disruption of cognitive performance following exposure to protons. Radiat Environ Biophys 2015; 54(3): 285-95.
[http://dx.doi.org/10.1007/s00411-015-0597-2] [PMID: 25935209]
[8]
Rabin B, Shukitt-Hale B, Carrihill-Knoll K. Effects of age on the disruption of cognitive performance by exposure to space radiation. J Behav Brain Sci 2014; 4(7): 297-307.
[http://dx.doi.org/10.4236/jbbs.2014.47031]
[9]
Belyaeva AG, Shtemberg AS, Nosovskii AM, et al. The effects of high-energy protons and carbon ions. (12c) on the cognitive function and the content of monoamines and their metabolites in peripheral blood in monkeys. Neurochem J 2017; 11(2): 168-75.
[http://dx.doi.org/10.1134/S1819712417010032]
[10]
Whoolery CW, Yun S, Reynolds RP, et al. Multi-domain cognitive assessment of male mice shows space radiation is not harmful to high-level cognition and actually improves pattern separation. Sci Rep 2020; 10(1): 2737.
[http://dx.doi.org/10.1038/s41598-020-59419-z] [PMID: 32066765]
[11]
Garrett-Bakelman FE, Darshi M, Green SJ, et al. The NASA Twins Study: A multidimensional analysis of a year-long human spaceflight. Science 2019; 364(6436): eaau8650.
[PMID: 30975860]
[12]
Kanas N, Salnitskiy V, Gushin V, et al. Asthenia: Does it exist in space? Psychosom Med 2001; 63(6): 874-80.
[http://dx.doi.org/10.1097/00006842-200111000-00004] [PMID: 11719624]
[13]
Ball J, Evans CH. Safe passage: astronaut care for exploration missions. Washington, D.C.: National Academy Press 2001; p. 291. [Great Britain]
[14]
Whoolery CW, Walker AK, Richardson DR, et al. Whole-body exposure to 28si-radiation dose-dependently disrupts dentate gyrus neurogenesis and proliferation in the short term and new neuron survival and contextual fear conditioning in the long term. Radiat Res 2017; 188(5): 532-51.
[http://dx.doi.org/10.1667/RR14797.1] [PMID: 28945526]
[15]
Rabin BM, Carrihill-Knoll KL, Shukitt-Hale B. Comparison of the effectiveness of exposure to low-let helium particles ((4)he) and gamma rays ((137)cs) on the disruption of cognitive performance. Radiat Res 2015; 184(3): 266-72.
[http://dx.doi.org/10.1667/RR14001.1] [PMID: 26284421]
[16]
Parihar VK, Allen BD, Caressi C, et al. Cosmic radiation exposure and persistent cognitive dysfunction. Sci Rep 2016; 6: 34774.
[http://dx.doi.org/10.1038/srep34774] [PMID: 27721383]
[17]
Kokhan VS, Anokhin PK, Belov OV, Gulyaev MV. Cortical glutamate/gaba imbalance after combined radiation exposure: relevance to human deep-space missions. Neuroscience 2019; 416: 295-308.
[http://dx.doi.org/10.1016/j.neuroscience.2019.08.009] [PMID: 31401184]
[18]
Kokhan VS, Matveeva MI, Bazyan AS, Kudrin VS, Mukhametov A, Shtemberg AS. Combined effects of antiorthostatic suspension and ionizing radiation on the behaviour and neurotransmitters changes in different brain structures of rats. Behav Brain Res 2017; 320: 473-83.
[http://dx.doi.org/10.1016/j.bbr.2016.10.032] [PMID: 27776994]
[19]
Kokhan VS, Lebedeva-Georgievskaya KB, Kudrin VS, Bazyan AS, Maltsev AV, Shtemberg AS. An investigation of the single and combined effects of hypogravity and ionizing radiation on brain monoamine metabolism and rats’ behavior. Life Sci Space Res (Amst) 2019; 20: 12-9.
[http://dx.doi.org/10.1016/j.lssr.2018.11.003] [PMID: 30797429]
[20]
Kaur A, Singla N, Dhawan DK. Low dose X-irradiation mitigates diazepam induced depression in rat brain. Regul Toxicol Pharmacol 2016; 80: 82-90.
[http://dx.doi.org/10.1016/j.yrtph.2016.06.004] [PMID: 27316553]
[21]
Kolesnikova IA, Budennay NN, Severiukhin YS, Lyakhova KN, Utina DM. Analysis of morphofunctional state of experimental animals brain fields under proton irradiation over the long period. J Nucl Med Technol 2018; 25(3): 177-81.
[22]
Shtemberg AS, Bazian AS, Lebedeva-Georgievskaya KB, et al. Effects of exposure to high-energy protons on rat’s behavior and underlying neurochemical mechanisms. Aviakosm Ekolog Med 2013; 47(6): 54-60.
[PMID: 24660245]
[23]
Shtemberg AS, Lebedeva-Georgievskaia KV, Matveeva MI, et al. Effect of space flight factors simulated in ground-based experiments on the behavior, discriminant learning, and exchange of monoamines in different brain structures of rats. Izv Akad Nauk Ser Biol 2014; (2): 168-75.
[http://dx.doi.org/10.1134/S1062359014020095] [PMID: 25735169]
[24]
Casadesus G, Shukitt-Hale B, Cantuti-Castelvetri I, Rabin BM, Joseph JA. The effects of heavy particle irradiation on exploration and response to environmental change. Adv Space Res 2004; 33(8): 1340-6.
[http://dx.doi.org/10.1016/j.asr.2003.12.011] [PMID: 15803625]
[25]
Pecaut MJ, Haerich P, Miller CN, Smith AL, Zendejas ED, Nelson GA. The effects of low-dose, high-LET radiation exposure on three models of behavior in C57BL/6 mice. Radiat Res 2004; 162(2): 148-56.
[http://dx.doi.org/10.1667/RR3205] [PMID: 15387142]
[26]
Sandi C. Stress and cognition. Wiley Interdiscip Rev Cogn Sci 2013; 4(3): 245-61.
[http://dx.doi.org/10.1002/wcs.1222] [PMID: 26304203]
[27]
Ebner K, Singewald N. The role of substance P in stress and anxiety responses. Amino Acids 2006; 31(3): 251-72.
[http://dx.doi.org/10.1007/s00726-006-0335-9] [PMID: 16820980]
[28]
Navari RM, Rapoport BL, Powers D, Arora S, Clark-Snow R. Rolapitant for the prevention of nausea in patients receiving highly or moderately emetogenic chemotherapy. Cancer Med 2018; 7(7): 2943-50.
[http://dx.doi.org/10.1002/cam4.1560] [PMID: 29790666]
[29]
Wang X, Zhang ZY, Wang J, et al. Pharmacokinetics, safety, and tolerability of rolapitant administered intravenously following single ascending and multiple ascending doses in healthy subjects. Clin Pharmacol Drug Dev 2019; 8(2): 160-71.
[http://dx.doi.org/10.1002/cpdd.580] [PMID: 29905976]
[30]
Calcaterra NE, Barrow JC. Classics in chemical neuroscience: diazepam (valium). ACS Chem Neurosci 2014; 5(4): 253-60.
[http://dx.doi.org/10.1021/cn5000056] [PMID: 24552479]
[31]
Wada T, Fukuda N. Effects of DN-2327, a new anxiolytic, diazepam and buspirone on exploratory activity of the rat in an elevated plus-maze. Psychopharmacology (Berl) 1991; 104(4): 444-50.
[http://dx.doi.org/10.1007/BF02245647] [PMID: 1685794]
[32]
Greenblatt DJ, Shader RI, Divoll M, Harmatz JS. Benzodiazepines: a summary of pharmacokinetic properties. Br J Clin Pharmacol 1981; 11(Suppl. 1): 11S-6S.
[http://dx.doi.org/10.1111/j.1365-2125.1981.tb01833.x] [PMID: 6133528]
[33]
Bevelacqua JJ, Welsh J, Mortazavi SMJ. Comments on “new concerns for neurocognitive function during deep space exposures to chronic, low dose rate, neutron radiation”. eNeuro 2020; 7(1): ENEURO.0329-19.2019.
[http://dx.doi.org/10.1523/ENEURO.0329-19.2019] [PMID: 31857344]
[34]
Seawright JW, Samman Y, Sridharan V, et al. Effects of low-dose rate γ-irradiation combined with simulated microgravity on markers of oxidative stress, DNA methylation potential, and remodeling in the mouse heart. PLoS One 2017; 12(7): e0180594.
[http://dx.doi.org/10.1371/journal.pone.0180594] [PMID: 28678877]
[35]
Simpson JA. Elemental and isotopic composition of the galactic cosmic rays. Annu Rev Nucl Part Sci 1983; 33: 323-82.
[http://dx.doi.org/10.1146/annurev.ns.33.120183.001543]
[36]
Kokhan VS. Some aspects of the effect of combined irradiation by gamma-rays and carbon nuclei (12C) on the serotonergic system in rat brain. J Biomed (Syd) 2020; 16(3): 68-72.
[http://dx.doi.org/10.33647/2074-5982-16-3-68-72]
[37]
Okano S, Nagaya H, Ikeura Y, Natsugari H, Inatomi N. Effects of TAK-637, a novel neurokinin-1 receptor antagonist, on colonic function in vivo. J Pharmacol Exp Ther 2001; 298(2): 559-64.
[PMID: 11454917]
[38]
Greenbaum D, Colangelo C, Williams K, Gerstein M. Comparing protein abundance and mRNA expression levels on a genomic scale. Genome Biol 2003; 4(9): 117.
[http://dx.doi.org/10.1186/gb-2003-4-9-117] [PMID: 12952525]
[39]
Iadarola MJ, Sapio MR, Wang X, et al. Analgesia by deletion of spinal neurokinin 1 receptor expressing neurons using a bioengineered substance p-pseudomonas exotoxin conjugate. Mol Pain 2017; 13: 1744806917727657.
[http://dx.doi.org/10.1177/1744806917727657] [PMID: 28814145]
[40]
Hill R. NK1 (substance P) receptor antagonists: Why are they not analgesic in humans? Trends Pharmacol Sci 2000; 21(7): 244-6.
[http://dx.doi.org/10.1016/S0165-6147(00)01502-9] [PMID: 10871891]
[41]
Navratilova E, Porreca F. Reward and motivation in pain and pain relief. Nat Neurosci 2014; 17(10): 1304-12.
[http://dx.doi.org/10.1038/nn.3811] [PMID: 25254980]
[42]
Butler RK, Finn DP. Stress-induced analgesia. Prog Neurobiol 2009; 88(3): 184-202.
[http://dx.doi.org/10.1016/j.pneurobio.2009.04.003] [PMID: 19393288]
[43]
Fields HL. Pain modulation: expectation, opioid analgesia and virtual pain. Prog Brain Res 2000; 122: 245-53.
[http://dx.doi.org/10.1016/S0079-6123(08)62143-3] [PMID: 10737063]
[44]
Nunes-de-Souza RL, Canto-de-Souza A, da-Costa M, Fornari RV, Graeff FG, Pelá IR. Anxiety-induced antinociception in mice: effects of systemic and intra-amygdala administration of 8-OH-DPAT and midazolam. Psychopharmacology (Berl) 2000; 150(3): 300-10.
[http://dx.doi.org/10.1007/s002130000428] [PMID: 10923758]
[45]
Ji G, Zhang W, Mahimainathan L, et al. 5-HT2C receptor knockdown in the amygdala inhibits neuropathic-pain-related plasticity and behaviors. J Neurosci 2017; 37(6): 1378-93.
[http://dx.doi.org/10.1523/JNEUROSCI.2468-16.2016] [PMID: 28011743]
[46]
Tavares LRR, Baptista-de-Souza D, Canto-de-Souza A. Activation of 5-HT2C (but not 5-HT1A) receptors in the amygdala enhances fear-induced antinociception: Blockade with local 5-HT2C antagonist or systemic fluoxetine. Neuropharmacology 2018; 135: 376-85.
[http://dx.doi.org/10.1016/j.neuropharm.2018.03.008] [PMID: 29548885]
[47]
Neugebauer V. Amygdala pain mechanisms. Handb Exp Pharmacol 2015; 227: 261-84.
[http://dx.doi.org/10.1007/978-3-662-46450-2_13] [PMID: 25846623]
[48]
Neugebauer V, Li W, Bird GC, Han JS. The amygdala and persistent pain. Neuroscientist 2004; 10(3): 221-34.
[http://dx.doi.org/10.1177/1073858403261077] [PMID: 15155061]
[49]
Konstandi M, Johnson E, Lang MA, Malamas M, Marselos M. Noradrenaline, dopamine, serotonin: different effects of psychological stress on brain biogenic amines in mice and rats. Pharmacol Res 2000; 41(3): 341-6.
[http://dx.doi.org/10.1006/phrs.1999.0597] [PMID: 10675287]
[50]
Jiang X, Wang J, Luo T, Li Q. Impaired hypothalamic-pituitary-adrenal axis and its feedback regulation in serotonin transporter knockout mice. Psychoneuroendocrinology 2009; 34(3): 317-31.
[http://dx.doi.org/10.1016/j.psyneuen.2008.09.011] [PMID: 18980809]
[51]
Puig MV, Gulledge AT. Serotonin and prefrontal cortex function: neurons, networks, and circuits. Mol Neurobiol 2011; 44(3): 449-64.
[http://dx.doi.org/10.1007/s12035-011-8214-0] [PMID: 22076606]
[52]
Puig MV, Watakabe A, Ushimaru M, Yamamori T, Kawaguchi Y. Serotonin modulates fast-spiking interneuron and synchronous activity in the rat prefrontal cortex through 5-HT1A and 5-HT2A receptors. J Neurosci 2010; 30(6): 2211-22.
[http://dx.doi.org/10.1523/JNEUROSCI.3335-09.2010] [PMID: 20147548]
[53]
LeDoux JE. Emotion circuits in the brain. Annu Rev Neurosci 2000; 23: 155-84.
[http://dx.doi.org/10.1146/annurev.neuro.23.1.155] [PMID: 10845062]
[54]
Wood JN, Grafman J. Human prefrontal cortex: processing and representational perspectives. Nat Rev Neurosci 2003; 4(2): 139-47.
[http://dx.doi.org/10.1038/nrn1033] [PMID: 12563285]
[55]
Fisher PM, Meltzer CC, Price JC, et al. Medial prefrontal cortex 5-HT(2A) density is correlated with amygdala reactivity, response habituation, and functional coupling. Cereb Cortex 2009; 19(11): 2499-507.
[http://dx.doi.org/10.1093/cercor/bhp022] [PMID: 19321655]
[56]
Bhagwagar Z, Hinz R, Taylor M, Fancy S, Cowen P, Grasby P. Increased 5-HT(2A) receptor binding in euthymic, medication-free patients recovered from depression: a positron emission study with [(11)C]MDL 100,907. Am J Psychiatry 2006; 163(9): 1580-7.
[http://dx.doi.org/10.1176/ajp.2006.163.9.1580] [PMID: 16946184]
[57]
Yatham LN, Liddle PF, Shiah IS, et al. Brain serotonin2 receptors in major depression: a positron emission tomography study. Arch Gen Psychiatry 2000; 57(9): 850-8.
[http://dx.doi.org/10.1001/archpsyc.57.9.850] [PMID: 10986548]
[58]
Quirk GJ, Likhtik E, Pelletier JG, Paré D. Stimulation of medial prefrontal cortex decreases the responsiveness of central amygdala output neurons. J Neurosci 2003; 23(25): 8800-7.
[http://dx.doi.org/10.1523/JNEUROSCI.23-25-08800.2003] [PMID: 14507980]
[59]
Jiang X, Xing G, Yang C, Verma A, Zhang L, Li H. Stress impairs 5-HT2A receptor-mediated serotonergic facilitation of GABA release in juvenile rat basolateral amygdala. Neuropsychopharmacology 2009; 34(2): 410-23.
[http://dx.doi.org/10.1038/npp.2008.71] [PMID: 18536707]
[60]
Lazarev AO, Gordeev IuV, Krotov VP. Some clinical outcomes of fractional gamma-irradiation of primates. Aviakosm Ekolog Med 2011; 45(5): 54-6.
[PMID: 22312864]
[61]
Jean A, Laurent L, Delaunay S, et al. Adaptive control of dorsal raphe by 5-ht4 in the prefrontal cortex prevents persistent hypophagia following stress. Cell Rep 2017; 21(4): 901-9.
[http://dx.doi.org/10.1016/j.celrep.2017.10.003] [PMID: 29069597]
[62]
Yan Z. Regulation of GABAergic inhibition by serotonin signaling in prefrontal cortex: molecular mechanisms and functional implications. Mol Neurobiol 2002; 26(2-3): 203-16.
[http://dx.doi.org/10.1385/MN:26:2-3:203] [PMID: 12428756]
[63]
Lucas G, Compan V, Charnay Y, et al. Frontocortical 5-HT4 receptors exert positive feedback on serotonergic activity: viral transfections, subacute and chronic treatments with 5-HT4 agonists. Biol Psychiatry 2005; 57(8): 918-25.
[http://dx.doi.org/10.1016/j.biopsych.2004.12.023] [PMID: 15820713]
[64]
Huang YY, Kandel ER. Low-frequency stimulation induces a pathway-specific late phase of LTP in the amygdala that is mediated by PKA and dependent on protein synthesis. Learn Mem 2007; 14(7): 497-503.
[http://dx.doi.org/10.1101/lm.593407] [PMID: 17626908]
[65]
Darcet F, Gardier AM, David DJ, Guilloux JP. Chronic 5-HT4 receptor agonist treatment restores learning and memory deficits in a neuroendocrine mouse model of anxiety/depression. Neurosci Lett 2016; 616: 197-203.
[http://dx.doi.org/10.1016/j.neulet.2016.01.055] [PMID: 26850572]
[66]
Chegini HR, Nasehi M, Zarrindast MR. Differential role of the basolateral amygdala 5-HT3 and 5-HT4 serotonin receptors upon ACPA-induced anxiolytic-like behaviors and emotional memory deficit in mice. Behav Brain Res 2014; 261: 114-26.
[http://dx.doi.org/10.1016/j.bbr.2013.12.007] [PMID: 24333573]
[67]
Holt RJ, Graham JM, Whitaker KJ, et al. Functional MRI of emotional memory in adolescent depression. Dev Cogn Neurosci 2016; 19: 31-41.
[http://dx.doi.org/10.1016/j.dcn.2015.12.013] [PMID: 26802367]
[68]
Doré BP, Rodrik O, Boccagno C, et al. Negative autobiographical memory in depression reflects elevated amygdala-hippocampal reactivity and hippocampally associated emotion regulation. Biol Psychiatry Cogn Neurosci Neuroimaging 2018; 3(4): 358-66.
[http://dx.doi.org/10.1016/j.bpsc.2018.01.002] [PMID: 29628068]
[69]
Pascual-Brazo J, Castro E, Díaz A, et al. Modulation of neuroplasticity pathways and antidepressant-like behavioural responses following the short-term (3 and 7 days) administration of the 5-HT- receptor agonist RS67333. Int J Neuropsychopharmacol 2012; 15(5): 631-43.
[http://dx.doi.org/10.1017/S1461145711000782] [PMID: 21733238]
[70]
Yohn CN, Gergues MM, Samuels BA. The role of 5-HT receptors in depression. Mol Brain 2017; 10(1): 28.
[http://dx.doi.org/10.1186/s13041-017-0306-y] [PMID: 28646910]
[71]
Vicente MA, Zangrossi H. Serotonin-2C receptors in the basolateral nucleus of the amygdala mediate the anxiogenic effect of acute imipramine and fluoxetine administration. Int J Neuropsychopharmacol 2012; 15(3): 389-400.
[http://dx.doi.org/10.1017/S1461145711000873] [PMID: 21733232]
[72]
Greenwood BN, Strong PV, Loughridge AB, et al. 5-HT2C receptors in the basolateral amygdala and dorsal striatum are a novel target for the anxiolytic and antidepressant effects of exercise. PLoS One 2012; 7(9): e46118.
[http://dx.doi.org/10.1371/journal.pone.0046118] [PMID: 23049953]
[73]
Sosulina L, Strippel C, Romo-Parra H, et al. Substance P excites GABAergic neurons in the mouse central amygdala through neurokinin 1 receptor activation. J Neurophysiol 2015; 114(4): 2500-8.
[http://dx.doi.org/10.1152/jn.00883.2014] [PMID: 26334021]
[74]
Ebner K, Rupniak NM, Saria A, Singewald N. Substance P in the medial amygdala: emotional stress-sensitive release and modulation of anxiety-related behavior in rats. Proc Natl Acad Sci USA 2004; 101(12): 4280-5.
[http://dx.doi.org/10.1073/pnas.0400794101] [PMID: 15024126]
[75]
Frick A, Ahs F, Linnman C, et al. Increased neurokinin-1 receptor availability in the amygdala in social anxiety disorder: a positron emission tomography study with [11C]GR205171. Transl Psychiatry 2015; 5: e597.
[http://dx.doi.org/10.1038/tp.2015.92] [PMID: 26151925]
[76]
Hoppe JM, Frick A, Åhs F, et al. Association between amygdala neurokinin-1 receptor availability and anxiety-related personality traits. Transl Psychiatry 2018; 8(1): 168.
[http://dx.doi.org/10.1038/s41398-018-0163-1] [PMID: 30154470]
[77]
Varty GB, Cohen-Williams ME, Morgan CA, et al. The gerbil elevated plus-maze II: anxiolytic-like effects of selective neurokinin NK1 receptor antagonists. Neuropsychopharmacology 2002; 27(3): 371-9.
[http://dx.doi.org/10.1016/S0893-133X(02)00313-5] [PMID: 12225694]
[78]
Chandra P, Hafizi S, Massey-Chase RM, Goodwin GM, Cowen PJ, Harmer CJ. NK1 receptor antagonism and emotional processing in healthy volunteers. J Psychopharmacol 2010; 24(4): 481-7.
[http://dx.doi.org/10.1177/0269881109103101] [PMID: 19351798]
[79]
Gobbi G, Cassano T, Radja F, et al. Neurokinin 1 receptor antagonism requires norepinephrine to increase serotonin function. Eur Neuropsychopharmacol 2007; 17(5): 328-38.
[http://dx.doi.org/10.1016/j.euroneuro.2006.07.004] [PMID: 16950604]
[80]
Commons KG, Connolley KR, Valentino RJ. A neurochemically distinct dorsal raphe-limbic circuit with a potential role in affective disorders. Neuropsychopharmacology 2003; 28(2): 206-15.
[http://dx.doi.org/10.1038/sj.npp.1300045] [PMID: 12589373]
[81]
Valentino RJ, Commons KG. Peptides that fine-tune the serotonin system. Neuropeptides 2005; 39(1): 1-8.
[http://dx.doi.org/10.1016/j.npep.2004.09.005] [PMID: 15627494]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy