Generic placeholder image

Current Nanoscience

Editor-in-Chief

ISSN (Print): 1573-4137
ISSN (Online): 1875-6786

Review Article

Advancements in Ultra-Sensitive Nanoelectronic Biosensors for Medical Applications

Author(s): Mrunalini Thanaraj*, Rajasekar Rathanasamy* and Saravana Kumar Jaganathan

Volume 17, Issue 5, 2021

Published on: 21 January, 2021

Page: [679 - 693] Pages: 15

DOI: 10.2174/1573413717666210121141858

Price: $65

Abstract

Sensing devices own a vital role in supporting medical needs for the early recognition and diagnosis of diseases. In the past half-century, researchers have developed many biosensors for suitable applications, but only a limited number of biosensors are commercially available. The biosensors are biological recognition devices with high target specificity and high sensitivity leading to commercialization and wider acceptability in the existing market of health care industries. The nanosized materials are indispensable in the biomedical field because of their captivating characteristics like increased surface area and novel quantum effects. Nanoscale materials are very closer to biological molecules in size and own good specificity when used in biosensors. An overview of the working principles of various commonly used biosensors will be presented and a special emphasis is given to graphene-based biosensors to monitor the interaction of biological molecules. Graphene is one of the most superior nanocomposite that provides an opportunity for the best sensing platform in the field of bioanalysis. The supremacy of Graphene and GFET devices in biosensors for analyzing the biological samples and to provide consistent data is investigated using a simulation tool. Meanwhile, the performance behavior of nano-biosensors based on their dimensional influence is also explored. This review may provide constructive guidance for examining the interfacial interaction between nano composites and tiny biological components to impart knowledge or regulate things based on the application chosen.

Keywords: Biosensors, nano-biosensor, graphene, GFET, ISFET, nano-wire, nanosphere.

Graphical Abstract
[1]
Davis, F. Trends in Biosensing. 2001. Available from: http://www.crcnetbase.com/doi/abs/10.12 01/b10466-13
[2]
Vo-Dinh, T.; Cullum, B. Biosensors and biochips: advances in biological and medical diagnostics. Fresenius J. Anal. Chem., 2000, 366(6-7), 540-551.
[http://dx.doi.org/10.1007/s002160051549] [PMID: 11225766]
[3]
Newman, J.D.; Warner, P.J.; Turner, A.P.F.; Tigwell, L.J. Biosensors - A Clearer View; Cranfield University: UK, 2004, p. 216.
[4]
Blum, L.J.; Gautier, S.M.; Coulet, P.R. Luminescence fiber optic biosensor. Anal. Lett., 1988, 21, 717-726.
[http://dx.doi.org/10.1080/00032718808070854]
[5]
Coulet, P.R. Enzyme electrodes: from the self-contained probe to the design of an automatic analyzer. Biosensors International Workshop, 1987, vol. 10, pp. 75-80.
[6]
Marazuela, D.; Moreno-Bondi, M.C. Fiber-optic biosensors an overview. Anal. Bioanal. Chem., 2002, 372(5-6), 664-682.
[http://dx.doi.org/10.1007/s00216-002-1235-9] [PMID: 11941437]
[7]
Assolant-Vinet, C.H.; Coulet, P.R. New immobilized enzyme membranes for tailor-made biosensors. Anal. Lett., 1986, 19, 875-885.
[http://dx.doi.org/10.1080/00032718608066269]
[8]
Koyun, A.; Ahlatcolu, E.; Koca, Y. Biosensors and their principles. A roadmap Biomed Eng milestones; InTech: New York, 2012.
[9]
Blum, L.J.; Coulet, P.R. Luminescent Biosensors. In: Yang V.C., Ngo T.T. (eds). Biosensors and Their Applications, Springer, Boston, MA, pp. 213-223.
[http://dx.doi.org/10.1007/978-1-4615-4181-3_12]
[10]
Keiji, K. Kanazawa; Joseph, G. Gordon. Frequency of a quartz microbalance in contact with liquid. Analytical chemistry. ACS Publications Anal. Chem, 1985, 57(8), 1770-1771.
[11]
Collings, A.F.; Caruso, F. Biosensors-recent advances. Rep. Prog. Phys., 1997, 60, 1397-1445.
[http://dx.doi.org/10.1088/0034-4885/60/11/005 ]
[12]
Ziegler, C. Cantilever-based biosensors. Anal. Bioanal. Chem., 2004, 379, 946-959.
[http://dx.doi.org/10.1007/s00216-004-2694-y]
[13]
Voskerician, G.; Shive, M.S.; Shawgo, R.S.; von Recum, H.; Anderson, J.M.; Cima, M.J.; Langer, R. Biocompatibility and biofouling of MEMS drug delivery devices. Biomaterials, 2003, 24(11), 1959-1967.
[http://dx.doi.org/10.1016/S0142-9612(02)00565-3] [PMID: 12615486]
[14]
Janire Pena-Bahamonde. Hang N. Nguyen; Sofia K. Fanourakis; Debora F. Rodrigues: Recent advances in graphene based biosensor technology with applications in lifesciences. J. Nanobiotechnology, 2018, 16, 75.
[http://dx.doi.org/10.1186/s12951-018-0400-z]
[15]
Jianrong, C.; Yuqing, M.; Nongyue, H.; Xiaohua, W.; Sijiao, L. Nanotechnology and biosensors. Biotechnol. Adv., 2004, 22(7), 505-518.
[http://dx.doi.org/10.1016/j.biotechadv.2004.03.004] [PMID: 15262314]
[16]
Wu, J.; Pisula, W.; Müllen, K. Graphenes as potential material for electronics. Chem. Rev., 2007, 107(3), 718-747.
[http://dx.doi.org/10.1021/cr068010r] [PMID: 17291049]
[17]
Wan, Y.; Su, Y.; Zhu, X.; Liu, G.; Fan, C. Development of electrochemical immunosensors towards point of care diagnostics. Biosens. Bioelectron., 2013, 47, 1-11.
[http://dx.doi.org/10.1016/j.bios.2013.02.045] [PMID: 23542064]
[18]
Singh, P.; Pandey, S.K.; Singh, J.; Srivastava, S.; Sachan, S.; Singh, S.K. Biomedical perspective of electrochemical nanobiosensor. Nano-Micro Lett., 2016, 8(3), 193-203.
[http://dx.doi.org/10.1007/s40820-015-0077-x] [PMID: 30460280]
[19]
Thakur, B.; Zhou, G.; Chang, J.; Pu, H.; Jin, B.; Sui, X.; Yuan, X.; Yang, C.H.; Magruder, M.; Chen, J. Rapid detection of single E. coli bacteria using a graphene-based field-effect transistor device. Biosens. Bioelectron., 2018, 110, 16-22.
[http://dx.doi.org/10.1016/j.bios.2018.03.014] [PMID: 29579645]
[20]
Singh, M.; Holzinger, M.; Tabrizian, M.; Winters, S.; Berner, N.C.; Cosnier, S.; Duesberg, G.S. Noncovalently functionalized monolayer graphene for sensitivity enhancement of surface plasmon resonance immunosensors. J. Am. Chem. Soc., 2015, 137(8), 2800-2803.
[http://dx.doi.org/10.1021/ja511512m] [PMID: 25679322]
[21]
Kumar, S.; Bukkitgar, S.D.; Singh, S.; Singh, V.; Reddy, K.R.; Shetti, N.P.; Venkata Reddy, C.; Sadhu, V.; Naveen, S. Electrochemical sensors and biosensors based on graphene functionalized with metal oxide nanostructures for healthcare applications. ChemistrySelect, 2019, 4(18), 5322-5337.
[22]
Monisha Chakraborty, M.; Saleem, H.J. Wonder material graphene: properties, synthesis and practical applications. Adv. Mat. Proc. Technol., 2018, 4(4), 573-602.
[23]
Pumera, Martin Electrochemistry of graphene: new horizons for sensing and energy storage. Chem. Rec., 2009, 9(4), 211-223.
[http://dx.doi.org/10.1002/tcr.200900008]
[24]
Aguilar, Z. Nanomaterials for medical applications; Newnes, 2012.
[25]
Vaseashta, A.; Dimova-Malinovska, D. Nanostructured and nanoscale devices, sensors and detectors. Sci. Technol. Adv. Mater., 2005, 6, 312-318.
[http://dx.doi.org/10.1016/j.stam.2005.02.018]
[26]
Wanekaya, A.K.; Chen, W.; Myung, N.V.; Mulchandani, A. Nanowire-based electrochemical biosensors. Electroanalysis, 2006, 18, 533-550.
[http://dx.doi.org/10.1002/elan.200503449]
[27]
Laocharoensuk, R.; Bulbarello, A.; Hocevar, S.B.; Mannino, S.; Ogorevc, B.; Wang, J. On-demand protection of electrochemical sensors based on adaptive nanowires. J. Am. Chem. Soc., 2007, 129(25), 7774-7775.
[http://dx.doi.org/10.1021/ja0729736] [PMID: 17547412]
[28]
Shin, H.J.; Kim, K.K.; Benayad, A.; Yoon, S.M.; Park, H.K.; Jung, I.S.; Jin, M.H.; Jeong, H.K.; Kim, J.M.; Choi, J.Y.; Lee, Y.H. Efficient reduction of graphite oxide by sodium borohydride and its effect on electrical conductance. Adv. Funct. Mater., 2009, 19(12), 1987-1992.
[http://dx.doi.org/10.1002/adfm.200900167]
[29]
Aravamudhan, S.; Ramgir, N.S.; Bhansali, S. Electrochemical biosensor for targeted detection in blood using aligned Au nanowires. Sens. Actuators B Chem., 2007, 127, 29-35.
[http://dx.doi.org/10.1016/j.snb.2007.07.008 ]
[30]
Ramgir, N.S.; Zajac, A.; Sekhar, P.K.; Lee, L.; Zhukov, T.A.; Bhansali, S. Voltammetric detection of cancer biomarkers exemplified by interleukin-10 and osteopontin with silica nanowires. J. Phys. Chem. C, 2007, 111, 13981-13987.
[http://dx.doi.org/10.1021/jp073371b]
[31]
Lespes, G. Nanoanalytics: analytical methods for characterization of nano- and micro-objects. Environ. Sci. Pollut. Res. Int., 2019, 26(6), 5235-5237.
[http://dx.doi.org/10.1007/s11356-019-04235-w] [PMID: 30715694]
[32]
Bolinder, J.; Ungersted, U.; Arner, P. Microdialysis measurement of the absolute glucose concentration in subcutaneous adipose tissue allowing glucose monitoring in diabetic patients. Diabetologia, 1992, 35, 1177-1180.
[33]
Wang, J. Electrochemical nucleic acid biosensors. Anal. Chim. Acta, 2002, 469, 63-71.
[http://dx.doi.org/10.1016/S0003-2670(01)01399-X]
[34]
Ligler, F.S. Array biosensor for detection of toxins. Anal. Bioanal. Chem., 2003, 377, 469-477.
[http://dx.doi.org/10.1007/s00216-003-1992-0]
[35]
Qinghua, Y. A highly sensitive uric acid electrochemical biosensor based on a nano-cube cuprous oxide/ferrocene/uricase modified glassy carbon electrode. Nature-. Sci. Rep., 2020, 10, 10607.
[36]
Wang, J.; Musameh, M.; Lin, Y. Solubilization of carbon nanotubes by Nafion toward the preparation of amperometric biosensors. J. Am. Chem. Soc., 2003, 125(9), 2408-2409.
[http://dx.doi.org/10.1021/ja028951v] [PMID: 12603125]
[37]
Qian, L.; Yang, X. Composite film of carbon nanotubes and chitosan for preparation of amperometric hydrogen peroxide biosensor. Talanta, 2006, 68(3), 721-727.
[http://dx.doi.org/10.1016/j.talanta.2005.05.030] [PMID: 18970381]
[38]
Pilo, M.; Farre, R.; Izabela Lachowicz, J.; Panzanelli, A.; Sanna, G.; Senes, N.; Sobral, A.; Spano, N. Design of amperometric biosensors for the detection of glucose prepared by immobilization of glucose oxidase on conducting (poly) thiophene films. J. Anal. Methods Chem., 2018, 2018, 1849439.
[39]
Rahman, G.; Mian, S.A. Recent trends in the development of electrochemical glucose biosensors. Biosens. Bioelectron., 2017, 3, 210-213.
[40]
Sun, J.Z.; Peter Kingori, G.; Si, R.W.; Zhai, D.D.; Liao, Z.H.; Sun, D.Z.; Zheng, T.; Yong, Y.C. Microbial fuel cell-based biosensors for environmental monitoring: a review. Water Sci. Technol., 2015, 71(6), 801-809.
[http://dx.doi.org/10.2166/wst.2015.035] [PMID: 25812087]
[41]
Pohanka, M.; Skladal, P.; Kroca, M. Biosensors for biological warfare agent detection. Def. Sci. J., 2007, 57(3), 185-193.
[http://dx.doi.org/10.14429/dsj.57.1760]
[42]
Zhang, S.; Wang, N.; Niu, Y.; Sun, C. Immobilization of glucose oxidase on gold nanoparticles modified Au electrode for the construction of biosensor. Sens. Act.B., 2005, 109, 367-374.
[http://dx.doi.org/10.1016/j.snb.2005.01.003]
[43]
Xie, Y.; Chen, A.; Du, D.; Lin, Y. Graphene-based immunosensor for electrochemical quantification of phosphorylated p53 (S15). Anal. Chim. Acta, 2011, 699(1), 44-48.
[http://dx.doi.org/10.1016/j.aca.2011.05.010] [PMID: 21704756]
[44]
Fu, L.; Liu, J.; Hu, Z.; Zhou, M. Recent advances in the construction of biofuel cells based self powered electrochemical biosensors: a review. Electroanalysis, 2018, 30(11), 2535-2550.
[http://dx.doi.org/10.1002/elan.201800487]
[45]
Gong, X.; Bi, Y.; Zhao, Y.; Liu, G.; Teoh, W.Y. Graphene oxide-based electrochemical sensor: a platform for ultrasensitive detection of heavy metal ions. RSC Advances, 2014, 4, 24653-24657.
[http://dx.doi.org/10.1039/C4RA02247E]
[46]
Velychko, T.P.; Soldatkin, O.O.; Melnyk, V.G.; Marchenko, S.V.; Kirdeciler, S.K.; Akata, B.; Soldatkin, A.P.; El’skaya, A.V.; Dzyadevych, S.V. A novel conductometric urea biosensor with improved analytical characteristic based on recombinant urease adsorbed on nanoparticle of silicalite. Nanoscale Res. Lett., 2016, 11(1), 106.
[http://dx.doi.org/10.1186/s11671-016-1310-3] [PMID: 26911570]
[47]
Wolfbeis, O.S. Fiber-optic chemical sensors and biosensors. Anal. Chem., 2000, 72, 81-89.
[http://dx.doi.org/10.1021/a1000013k]
[48]
Chau, L.K.; Lin, Y.F.; Cheng, S.F.; Lin, T.J. Fiber-optic chemical and biochemical probes based on localized surface plasmon resonance. Sens. Actuators B Chem., 2006, 113, 100-105.
[http://dx.doi.org/10.1016/j.snb.2005.02.034]
[49]
Dharuman, V.; Hahn, J.H.; Jayakumar, K.; Teng, W. Electrochemically reduced graphene–gold nano particle composite on indium tin oxide for label free immuno sensing of estradiol. Electrochim. Acta, 2013, 114, 590-597.
[http://dx.doi.org/10.1016/j.electacta.2013.10.128]
[50]
Monk, D.J.; Walt, D.R. Optical fiber-based biosensors. Anal. Bioanal. Chem., 2004, 379, 931-945.
[http://dx.doi.org/10.1007/s00216-004-2650-x]
[51]
Long, Feng. Shi, H.; Zhu, A. Recent advances in optical biosensors for environmental monitoring and early warning. Optical Biosensors., 2013, 13(10), 13928-13948.
[52]
Long, Feng. Shi, H.; Zhu, A. Recent advances in optical biosensors for environmental monitoring and early warning. Optical Biosensors., 2013, 13(10), 13928-13948.
[53]
Ni, Z.; Wang, Y.; Yu, T.; Shen, Z. Raman spectroscopy and imaging of graphene. Nano Res., 2008, 1(4), 273-291.
[http://dx.doi.org/10.1007/s12274-008-8036-1]
[54]
Gautier, S.M.; Blum, Li.; Coulet, P.R. Bioluminescence-based fiber optic sensor with entrapped co-reactant: an approach for designing a self-contained biosensor. Anal. Chim. Acta, 1991, 243, 149-156.
[http://dx.doi.org/10.1016/S0003-2670(00)82553-2]
[55]
Li, Z.; Zhang, W.; Xing, F. Graphene optical biosensors. Int. J. Mol. Sci., 2019, 20(10), 2461.
[http://dx.doi.org/10.3390/ijms20102461]
[56]
Taitt, C.R.; Golden, J.P.; Shubin, Y.S.; Shriver-Lake, L.C.; Sapsford, K.E.; Rasooly, A.; Ligler, F.S. A portable array biosensor for detecting multiple analytes in complex samples. Microb. Ecol., 2004, 47(2), 175-185.
[http://dx.doi.org/10.1007/s00248-003-1011-1] [PMID: 14765282]
[57]
Zhang, R.; Tan, M. Methods for biosensing and imaging. Methods, 2019, 168, 1-2.
[http://dx.doi.org/10.1016/j.ymeth.2019.09.010] [PMID: 31521733]
[58]
Sahoo, S.K.; Dilnawaz, F.; Krishnakumar, S. Nanotechnology in ocular drug delivery. Drug Discov. Today, 2008, 13(3-4), 144-151.
[http://dx.doi.org/10.1016/j.drudis.2007.10.021] [PMID: 18275912]
[59]
Chen, C.D.; Cheng, S.F.; Chau, L.K.; Wang, C.R.C. Sensing capability of the localized surface plasmon resonance of gold nanorods. Biosens. Bioelectron., 2007, 22(6), 926-932.
[http://dx.doi.org/10.1016/j.bios.2006.03.021] [PMID: 16697633]
[60]
Shankaran, D.R.; Venkatajalabathy, G.; Takatoshi, S.; Kioshi, T.; Norio, M. Surface plasmon resonance immuno sensor for highly sensitive detection of 2,4,6 trinitrotoluene. Biosens. Bioelectron., 2005, 20, 9.
[http://dx.doi.org/10.1016/j.bios.2004.06.044]
[61]
Abu-Thabit, N.; Ratemi, E. Hybrid porous silicon biosensors using plasmonic and fluorescent nanomaterials: a mini review. Front Chem., 2020, 8, 454.
[http://dx.doi.org/10.3389/fchem.2020.00454]
[62]
Krishnamurthy, V.; Monfared, S.; Cornell, B. Ion Channel Biosensors Part I Construction Operation and Clinical Studies. IEEE Trans. NanoTechnol., 2011, 9(3), 313-322.
[http://dx.doi.org/10.1109/TNANO.2010.2041466]
[63]
Zhang, P.; Yang, S.; Pineda‐Gómez, R.; Ibarlucea, B.; Ma, J.; Lohe, M.R.; Akbar, T.F.; Baraban, L.; Cuniberti, G.; Feng, X. Electrochemically exfoliated high quality 2H‐MoS2 for multiflake thin film flexible biosensors. Small, 2019, 15(23), 1901265.
[64]
Pohanka, M. Overview of piezoelectric biosensors, immunosensors and DNA sensors and their applications. Materials (Basel), 2018, 11(3), 448.
[http://dx.doi.org/10.3390/ma11030448] [PMID: 29562700]
[65]
Capobianco, J.A.; Shih, W.Y.; Adams, G.P.; Shih, W.H. Label-free growth receptor-2 detection and dissociation constant assessment in diluted human serum using a longitudinal extension mode of a piezoelectric microcantilever sensor. Sens. Actuators B Chem., 2011, 160(1), 349-356.
[http://dx.doi.org/10.1016/j.snb.2011.07.060] [PMID: 22888196]
[66]
Park, H.; Lee, S.S. A quartz crystal microbalance-based biosensor for enzymatic detection of hemoglobin A1c in whole blood. Sens. Actuators B Chem., 2018, 258, 836-840.
[http://dx.doi.org/10.1016/j.snb.2017.11.170]
[67]
Pohanka, Miroslav. Vlcek, Vitezslav. Assay of glomalin using a quartz crystal microbalance biosensor. J. Electroanalysis, 2018, 30(3), 453-458.
[68]
Pantarotto, D.; Singh, R.; McCarthy, D.; Erhardt, M.; Briand, J.P.; Prato, M.; Kostarelos, K.; Bianco, A. Functionalized carbon nanotubes for plasmid DNA gene delivery. Angew. Chem. Int. Ed. Engl., 2004, 43(39), 5242-5246.
[http://dx.doi.org/10.1002/anie.200460437] [PMID: 15455428]
[69]
Hartshorn, C.M.; Bradbury, M.S.; Lanza, G.M. nanotechnology strategies to advance outcomes in clinical cancer care. ACS Nano, 2018, 12, 24-43.
[http://dx.doi.org/10.1021/acsnano.7b05108] [PMID: 29257865]
[70]
Shi, L.; Yu, C.; Zhou, J. Thermal characterization and sensor applications of one-dimensional nanostructures employing microelectromechanical systems. J. Phys. Chem. B, 2005, 109(47), 22102-22111.
[http://dx.doi.org/10.1021/jp053904l] [PMID: 16853876]
[71]
Ramanathan, K.; Danielsson, B. Principles and applications of thermal biosensors. Biosens. Bioelectron., 2001, 16, 417-423.
[http://dx.doi.org/10.1016/S0956-5663(01)00124-5]
[72]
Suh, K.Y.; Khademhosseini, A.; Yoo, P.J.; Langer, R. Fabrication of single or aggregated bacteria arrays using host parasite and virus antibody interactions. Biomed. Microdevices, 2004, 6, 223-229.
[73]
Cheng, M.M. Nanotechnologies for biomolecular detection and medical diagnostics. Curr. Opin. Chem. Biol., 2006, 10, 11-19.
[http://dx.doi.org/10.1016/j.cbpa.2006.01.006]
[74]
Cao, M-S.; Wang, X-X.; Zhang, M.; Cao, W-Q.; Fang, X-Y.; Yuan, J. Variable-temperature electron transport and dipole polarization turning flexible multifunctional microsensor beyond electrical and optical energy. Adv. Mater., 2020, 32(10), e1907156.
[http://dx.doi.org/10.1002/adma.201907156] [PMID: 31995267]
[75]
Santini, J.T., Jr; Cima, M.J.; Langer, R. A controlled-release microchip. Nature, 1999, 397(6717), 335-338.
[http://dx.doi.org/10.1038/16898] [PMID: 9988626]
[76]
Whitesides, G.M. The right size in nanobiotechnology. Nat. Biotechnol., 2003, 21, 1161-1165.
[http://dx.doi.org/10.1038/nbt872]
[77]
Wu, G.; Ji, H.; Hansen, K.; Thundat, T.; Datar, R.; Cote, R.; Hagan, M.F.; Chakraborty, A.K.; Majumdar, A. Origin of nanomechanical cantilever motion generated from biomolecular interactions. Proc. Natl. Acad. Sci. USA, 2001, 98(4), 1560-1564.
[http://dx.doi.org/10.1073/pnas.98.4.1560] [PMID: 11171990]
[78]
Singh, D.P.; Herrera, C.E.; Singh, B.; Singh, S.; Singh, R.K.; Kumar, R. Graphene oxide: An efficient material and recent approach for biotechnological and biomedical applications. Mater. Sci. Eng. C, 2018, 86, 173-197.
[http://dx.doi.org/10.1016/j.msec.2018.01.004] [PMID: 29525091]
[79]
Muller, R.; Keck, C. Challenges and solutions for the delivery of biotech drugs- a review of drug nanocrystal technology and lipid nanoparticles. J. Biotechnol., 2004, 113(1-3), 151-170.
[80]
Kyakulaga, A. In vivo antidiarrheal activity of the ethanolic leaf extract of Catharanthusroseus Linn. (Apocyanaceae) in Wistar rats. Afr. J. Pharm. Pharmacol., 2011, 5(15), 1797-1800.
[81]
Jiao, L.; Wang, X.; Diankov, G.; Wang, H.; Dai, H. Facile synthesis of high-quality graphene nanoribbons. Nat. Nanotechnol., 2010, 5(5), 321-325.
[http://dx.doi.org/10.1038/nnano.2010.54] [PMID: 20364133]
[82]
Zhang, W.; Cui, J.; Tao, C.A.; Wu, Y.; Li, Z.; Ma, L.; Wen, Y.; Li, G. A strategy for producing pure single-layer graphene sheets based on a confined self-assembly approach. Angewandte Chemie, 2009, 121(32), 5978-5982.
[83]
Liang, X.; Chang, A.S.P.; Zhang, Y.; Harteneck, B.D.; Choo, H.; Olynick, D.L.; Cabrini, S. Electrostatic force assisted exfoliation of prepatterned few-layer graphenes into device sites. Nano Lett., 2009, 9(1), 467-472.
[http://dx.doi.org/10.1021/nl803512z] [PMID: 19072062]
[84]
Eatemadi, A.; Daraee, H.; Karimkhanloo, H.; Kouhi, M.; Zarghami, N.; Akbarzadeh, A.; Abasi, M.; Hanifehpour, Y.; Joo, S.W. Carbon nanotubes: properties, synthesis, purification, and medical applications. Nanoscale Res. Lett., 2014, 9(1), 393.
[http://dx.doi.org/10.1186/1556-276X-9-393] [PMID: 25170330]
[85]
Ma, W.; Xu, L.; Wang, L.; Xu, C.; Kuang, H. Chirality Based Biosensors. Adv. Funct. Mater., 2018, 29(1), 1805512.
[http://dx.doi.org/10.1002/adfm.201805512]
[86]
Hernandez, Y.; Nicolosi, V.; Lotya, M.; Blighe, F.M.; Sun, Z.; De, S.; McGovern, I.T.; Holland, B.; Byrne, M. Gun’Ko, Y.K.; Boland, J.J.; Niraj, P.; Duesberg, G.; Krishnamurthy, S.; Goodhue, R.; Hutchison, J.; Scardaci, V.; Ferrari, A.C.; Coleman, J.N. High-yield production of graphene by liquid-phase exfoliation of graphite. Nat. Nanotechnol., 2008, 3(9), 563-568.
[http://dx.doi.org/10.1038/nnano.2008.215] [PMID: 18772919]
[87]
Amarnath, C.A.; Hong, C.E.; Kim, N.H.; Ku, B.C.; Kuila, T.; Lee, J.H. Efficient synthesis of graphene sheets using pyrrole as a reducing agent. Carbon, 2011, 49(11), 3497-3502.
[http://dx.doi.org/10.1016/j.carbon.2011.04.048]
[88]
Anna Pratima, G. Nikalje; Nanotechnology and its applications in medicine. Med. Chem., 2015, 3.
[http://dx.doi.org/10.4172/2161-0444.2000247]
[89]
Nie, S.; Xing, Y.; Kim, G.J.; Simons, J.W. Nanotechnology applications in cancer. Annu. Rev. Biomed. Eng., 2007, 9, 257-288.
[http://dx.doi.org/10.1146/annurev.bioeng.9.060906.152025]
[90]
Mosayebi, R.; Ahmadzadeh, A.; Wicke, W.; Jamali, V.; Schober, R.; Nasiri-Kenari, M. Early cancer detection in blood vessels using mobile nanosensors. IEEE Trans. Nanobioscience, 2019, 18(2), 103-116.
[http://dx.doi.org/10.1109/TNB.2018.2885463] [PMID: 30530333]
[91]
Staples, M.; Daniel, K.; Cima, M.J.; Langer, R. Application of micro- and nano-electromechanical devices to drug delivery. Pharm. Res., 2006, 23(5), 847-863.
[http://dx.doi.org/10.1007/s11095-006-9906-4] [PMID: 16715375]
[92]
Sutter, P. Epitaxial graphene: How silicon leaves the scene. Nat. Mater., 2009, 8(3), 171-172.
[http://dx.doi.org/10.1038/nmat2392] [PMID: 19229263]
[93]
Malhotra, B.D.; Ali, M.A. Nanomaterials in Biosensors. Nanomaterials for biosensors, 2018, 1-74.
[94]
Taniselassa, S.; Md Arshad, M.K.; Subash, C.B.G. Graphene-based electrochemical biosensors for monitoring non communicable disease biomarkers. Biosensors (Basel), 2019, 130, 276-292.
[http://dx.doi.org/10.1016/j.bios.2019.01.047]
[95]
Saha, K.; Agasti, S.S.; Kim, C.; Li, X.; Rotello, V.M. Gold nanoparticles in chemical and biological sensing. Chem. Rev., 2012, 112(5), 2739-2779.
[http://dx.doi.org/10.1021/cr2001178] [PMID: 22295941]
[96]
Akamatsu, M.; Komatsu, H.; Matsuda, A.; Mori, T.; Nakanishi, W.; Sakai, H.; Hill, J.P.; Ariga, K. Visual detection of cesium ions in domestic water supply or seawater using a nano-optode. Bull. Chem. Soc. Jpn., 2017, 90, 678-683.
[http://dx.doi.org/10.1246/bcsj.20170046]
[97]
Park, J.; Nguyen, H.H.; Woubitc, A.; Kim, M. Applications of FET type biosensors. Appl. Sci. Convergence Technol., 2014, 23(2), 61-71.
[http://dx.doi.org/10.5757/ASCT.2014.23.2.61]
[98]
Sowmya, V.; Tharangattu, N.; Kiana, A.; Kathryn, D.F.; Jacobo, P.; Pulickel, M.A.; Slawomir, F.; Przemyslaw, M.; Cumhur, T.H.; Fatih, I.; Utkan, D.; Pingzuo, L.; Kirill, I.B.; Dorian, L.; Renugopalakrishanan, V. Graphene-Protein field effect biosensors: Glucose sensing. Mater. Today, 2015, 18.
[99]
Ni, Z.H.; Wang, H.M.; Kasim, J.; Fan, H.M.; Yu, T.; Wu, Y.H.; Feng, Y.P.; Shen, Z.X. Graphene thickness determination using reflection and contrast spectroscopy. Nano Lett., 2007, 7(9), 2758-2763.
[http://dx.doi.org/10.1021/nl071254m] [PMID: 17655269]
[100]
Balasubramanian, K.; Burghard, M. Biosensors based on carbon nanotubes. Anal. Bioanal. Chem., 2006, 385(3), 452-468.
[http://dx.doi.org/10.1007/s00216-006-0314-8] [PMID: 16568294]
[101]
Jeerapan, I.; Ma, N. Challenges and opportunities of carbon nanomaterials for biofuel cells and supercapacitors: personalized energy for futuristic self-sustainable devices. J. Carbon Res., 2019, 5(4), 62.
[102]
Yogeswaran, U.; Chen, S.M. A review on the electrochemical sensors and biosensors composed of nanowires as sensing material. Sensors (Basel), 2008, 8(1), 290-313.
[http://dx.doi.org/10.3390/s8010290] [PMID: 27879709]
[103]
Kubik, T.; Bogunia-Kubik, K. Nanotechnology on duty in medical applications. Curr. Pharm. Biotechnol., 2005, 6, 17-33.
[104]
Braendlein, M.; Pappa, A.M.; Ferro, M.; Lopresti, A.; Acquaviva, C. Mamessier; Malliaras, G. G.; Owens, R. M. Adv. Mater., 2017, 29(13), 1605744.
[http://dx.doi.org/10.1002/adma.201605744] [PMID: 28134450]
[105]
Tan, A.; Jeyaraj, R.; Ashkan, K. Nanotechnology in neurosurgery: thinking small, dreaming big. Br. J. Neurosurg., 2017, 31(5), 538-550.
[http://dx.doi.org/10.1080/02688697.2017.1327017] [PMID: 28537098]
[106]
Kumar, R.; Singh, R.; Hui, D.; Feo, L.; Fraternali, F. Graphene as biomedical sensing element: State of art review and potential engineering applications. Compos., Part B Eng., 2018, 134, 193-206.
[http://dx.doi.org/10.1016/j.compositesb.2017.09.049]
[107]
Ambrosi, A.; Chua, C.K.; Bonanni, A.; Pumera, M. Electrochemistry of graphene and related materials. Chem. Rev., 2014, 114(14), 7150-7188.
[http://dx.doi.org/10.1021/cr500023c] [PMID: 24895834]
[108]
Allen, M.J.; Tung, V.C.; Kaner, R.B. Honeycomb carbon: a review of graphene. Chem. Rev., 2010, 110(1), 132-145.
[http://dx.doi.org/10.1021/cr900070d] [PMID: 19610631]
[109]
Qian, M.; Zhoul, Y.S.; Gao, Y.; Parkl, J.B.; Feng, T.; Huang, S.M.; Sun, Z.; Jiang, L.; Lul, Y.F. Formation of graphene sheets through laser exfoliation of highly ordered pyrolytic graphite. Appl. Phys. Lett., 2011, 98, 173108.
[http://dx.doi.org/10.1063/1.3584021]
[110]
Watcharotone, S.; Dikin, D.A.; Stankovich, S.; Piner, R.; Jung, I.; Dommett, G.H.B.; Evmenenko, G.; Wu, S.E.; Chen, S.F.; Liu, C.P.; Nguyen, S.T.; Ruoff, R.S. Graphene-silica composite thin films as transparent conductors. Nano Lett., 2007, 7(7), 1888-1892.
[http://dx.doi.org/10.1021/nl070477+] [PMID: 17592880]
[111]
Wang, X.; You, H.; Liu, F.; Li, M.; Wan, L.; Li, S.; Li, Q.; Xu, Y.; Tian, R.; Yu, Z.; Xiang, D.; Cheng, J. Large-scale synthesis of few-layered graphene using CVD. J. Chem. Vapor Deposition, 2009, 15(1-3), 53-56.
[http://dx.doi.org/10.1002/cvde.200806737]
[112]
Dervishi, E.; Li, Z.; Watanabe, F.; Biswas, A.; Xu, Y.; Biris, A.R.; Saini, V.; Biris, A.S. Large-scale graphene production by RF-cCVD method. Chem. Commun. (Camb.), 2009, 27(27), 4061-4063.
[http://dx.doi.org/10.1039/b906323d] [PMID: 19568633]
[113]
Viculis, L.M.; Mack, J.J.; Kaner, R.B. A chemical route to carbon nanoscrolls. Science, 2003, 299(5611), 1361.
[http://dx.doi.org/10.1126/science.1078842] [PMID: 12610297]
[114]
Sajibul Alam Bhuyan, Md.; Nizam Uddin, Md.; Maksudul Islam, Md. Bipasha, F.A.; Hossai, S.S. Synthesis of graphene. Int. Nano Lett., 2016, 6, 65-83.
[http://dx.doi.org/10.1007/s40089-015-0176-1]
[115]
Hill, E.W.; Vijayaragahvan, A.; Novoselov, K. Graphene sensors. IEEE Sens. J., 2011, 11, 3161-3170.
[http://dx.doi.org/10.1109/JSEN.2011.2167608]
[116]
Wang, Y.; Zhang, S.; Xu, T.; Zhang, T.; Mo, Y.; Liu, J.; Yan, L.; Xing, F. Ultra-sensitive and ultra-fast detection of whole unlabeled living cancer cell responses to paclitaxel with a graphene-based biosensor. Sens. Actuators B Chem., 2018, 263, 417-425.
[http://dx.doi.org/10.1016/j.snb.2018.02.095]
[117]
Lei, Y.M.; Xiao, M.M.; Li, Y.T.; Xu, L.; Zhang, H.; Zhang, Z.Y.; Zhang, G.J. Detection of heart failure-related biomarker in whole blood with graphene field effect transistor biosensor. Biosens. Bioelectron., 2017, 91, 1-7.
[http://dx.doi.org/10.1016/j.bios.2016.12.018] [PMID: 27984705]
[118]
Javad, K.N.; Ahmadi, M.T. Analytical modeling of bilayer graphene based biosensor. J. Biosens. Bioelectron., 2013, 4, 1.
[http://dx.doi.org/10.4172/2155-6210.1000131]
[119]
Kour, R.; Arya, S.; Young, S.J.; Gupta, V.; Bandhoria, P.; Khosala, A. Recent advances in carbon nanomaterials as electrochemical biosensors. J. Electrochem. Soc., 2020, 167, 037555.
[http://dx.doi.org/10.1149/1945-7111/ab6bc4]
[120]
Vighnesvar, S.; Sudhakumari, C.C.; Balasubramanian, S.; Hridayesh, P. Recent advances in biosensor technology for potential applications- an overview. Front. Bioeng. Biotechnol., 2016, 16, 11.
[http://dx.doi.org/10.3389/fbioe.2016.00011]
[121]
Green, A.A.; Hersam, M.C. Emerging methods for producing monodisperse graphene dispersions. J. Phys. Chem. Lett., 2010, 1(2), 544-549.
[http://dx.doi.org/10.1021/jz900235f] [PMID: 20657758]
[122]
Cavalcanti, A.; Shirinzadeh, B.; Freitas, R.A.; Hogg, T. Nanorobot architecture for medical target identification. Nanotechnology, 2007, 19, 015103.
[http://dx.doi.org/10.1088/0957-4484/19/01/015103]
[123]
Sun, Y.; Khang, D.Y.; Hua, F.; Hurley, K.; Nuzzo, R.G.; Rogers, J.A. Photolithographic route to the fabrication of micro/nanowires of III-V semiconductors. Adv. Funct. Mater., 2005, 15, 30-40.
[http://dx.doi.org/10.1002/adfm.200400411]
[124]
Cheng, F.L.; Zhang, M.L.; Wang, H. Fabrication of polypyrrole nanowire and nanotube arrays. Sensors (Basel), 2005, 5, 245-249.
[http://dx.doi.org/10.3390/s5040245]
[125]
Oliva, N.; Conde, J.; Wang, K.; Artzi, N. Designing hydrogels for on demand therapy. Acc. Chem. Res., 2017, 50(4), 669-679.
[http://dx.doi.org/10.1021/acs.accounts.6b00536] [PMID: 28301139]
[126]
Ahmed, R.Z.; Patil, G.; Zaheer, Z. Nanosponges a completely new nano-horizon: pharmaceutical applications and recent advances. Drug Dev. Ind. Pharm., 2013, 39(9), 1263-1272.
[http://dx.doi.org/10.3109/03639045.2012.694610] [PMID: 22681585]
[127]
Umasankar, Y.; Thiagarajan, S.; Chen, S.M. Nanocomposite of functionalized multiwall carbon nanotubes with nafion, nano platinum, and nano gold biosensing film for simultaneous determination of ascorbic acid, epinephrine, and uric acid. Anal. Biochem., 2007, 365(1), 122-131.
[http://dx.doi.org/10.1016/j.ab.2007.02.034] [PMID: 17428433]

Rights & Permissions Print Export Cite as
© 2022 Bentham Science Publishers | Privacy Policy