Generic placeholder image

Current Topics in Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 1568-0266
ISSN (Online): 1873-4294

Research Article

Multi-target Drug Discovery via PTML Modeling: Applications to the Design of Virtual Dual Inhibitors of CDK4 and HER2

Author(s): Valeria V. Kleandrova, Marcus T. Scotti, Luciana Scotti and Alejandro Speck-Planche*

Volume 21 , Issue 7 , 2021

Published on: 19 January, 2021

Page: [661 - 675] Pages: 15

DOI: 10.2174/1568026621666210119112845

Price: $65

Abstract

Background: Cyclin-dependent kinase 4 (CDK4) and the human epidermal growth factor receptor 2 (HER2) are two of the most promising targets in oncology research. Thus, a series of computational approaches have been applied to the search for more potent inhibitors of these cancerrelated proteins. However, current approaches have focused on chemical analogs while predicting the inhibitory activity against only one of these targets, but never against both.

Aims: We report the first perturbation model combined with machine learning (PTML) to enable the design and prediction of dual inhibitors of CDK4 and HER2.

Methods: Inhibition data for CDK4 and HER2 were extracted from ChEMBL. The PTML model relied on artificial neural networks to allow the classification/prediction of molecules as active or inactive against CDK4 and/or HER2.

Results: The PTML model displayed sensitivity and specificity higher than 80% in the training set. The same statistical metrics had values above 75% in the test set. We extracted several molecular fragments and estimated their quantitative contributions to the inhibitory activity against CDK4 and HER2. Guided by the physicochemical and structural interpretations of the molecular descriptors in the PTML model, we designed six molecules by assembling several fragments with positive contributions. Three of these molecules were predicted as potent dual inhibitors of CDK4 and HER2, while the other three were predicted as inhibitors of at least one of these proteins. All the molecules complied with Lipinski’s rule of five and its variants.

Conclusion: The present work represents an encouraging alternative for future anticancer chemotherapies.

Keywords: Artificial neural network, Cancer, Fragment, Pseudo-linear equation, PTML model, Local contributions, Virtual design.

« Previous
Graphical Abstract
[1]
Siegel, R.L.; Miller, K.D.; Jemal, A. Cancer statistics, 2018. CA Cancer J. Clin., 2018, 68(1), 7-30.
[http://dx.doi.org/10.3322/caac.21442] [PMID: 29313949]
[2]
Schlacher, K. A new road to cancer-drug resistance. Nature, 2018, 563(7732), 478-480.
[http://dx.doi.org/10.1038/d41586-018-07188-1] [PMID: 30459368]
[3]
Nurgali, K.; Jagoe, R.T.; Abalo, R. Editorial: adverse effects of cancer chemotherapy: anything new to improve tolerance and reduce sequelae? Front. Pharmacol., 2018, 9, 245.
[http://dx.doi.org/10.3389/fphar.2018.00245] [PMID: 29623040]
[4]
Pearce, A.; Haas, M.; Viney, R.; Pearson, S.A.; Haywood, P.; Brown, C.; Ward, R. Incidence and severity of self-reported chemotherapy side effects in routine care: A prospective cohort study. PLoS One, 2017, 12(10)e0184360
[http://dx.doi.org/10.1371/journal.pone.0184360] [PMID: 29016607]
[5]
Lorusso, D.; Bria, E.; Costantini, A.; Di Maio, M.; Rosti, G.; Mancuso, A. Patients’ perception of chemotherapy side effects: Expectations, doctor-patient communication and impact on quality of life - an italian survey. Eur. J. Cancer Care (Engl.), 2017, 26(2), 26.
[http://dx.doi.org/10.1111/ecc.12618] [PMID: 28004440]
[6]
Goel, S.; DeCristo, M.J.; McAllister, S.S.; Zhao, J.J. CDK4/6 inhibition in cancer: beyond cell cycle arrest. Trends Cell Biol., 2018, 28(11), 911-925.
[http://dx.doi.org/10.1016/j.tcb.2018.07.002] [PMID: 30061045]
[7]
Yan, M.; Parker, B.A.; Schwab, R.; Kurzrock, R. HER2 aberrations in cancer: implications for therapy. Cancer Treat. Rev., 2014, 40(6), 770-780.
[http://dx.doi.org/10.1016/j.ctrv.2014.02.008] [PMID: 24656976]
[8]
Li, B.T.; Ross, D.S.; Aisner, D.L.; Chaft, J.E.; Hsu, M.; Kako, S.L.; Kris, M.G.; Varella-Garcia, M.; Arcila, M.E. HER2 amplification and HER2 mutation are distinct molecular targets in lung cancers. J. Thorac. Oncol., 2016, 11(3), 414-419.
[http://dx.doi.org/10.1016/j.jtho.2015.10.025] [PMID: 26723242]
[9]
Mar, N.; Vredenburgh, J.J.; Wasser, J.S. Targeting HER2 in the treatment of non-small cell lung cancer. Lung Cancer, 2015, 87(3), 220-225.
[http://dx.doi.org/10.1016/j.lungcan.2014.12.018] [PMID: 25601485]
[10]
Loibl, S.; Gianni, L. HER2-positive breast cancer. Lancet, 2017, 389(10087), 2415-2429.
[http://dx.doi.org/10.1016/S0140-6736(16)32417-5] [PMID: 27939064]
[11]
Rocca, A.; Farolfi, A.; Bravaccini, S.; Schirone, A.; Amadori, D. Palbociclib (PD 0332991): targeting the cell cycle machinery in breast cancer. Expert Opin. Pharmacother., 2014, 15(3), 407-420.
[http://dx.doi.org/10.1517/14656566.2014.870555] [PMID: 24369047]
[12]
Hortobagyi, G.N.; Stemmer, S.M.; Burris, H.A.; Yap, Y.S.; Sonke, G.S.; Paluch-Shimon, S.; Campone, M.; Petrakova, K.; Blackwell, K.L.; Winer, E.P.; Janni, W.; Verma, S.; Conte, P.; Arteaga, C.L.; Cameron, D.A.; Mondal, S.; Su, F.; Miller, M.; Elmeliegy, M.; Germa, C.; O’Shaughnessy, J. Updated results from MONALEESA-2, a phase III trial of first-line ribociclib plus letrozole versus placebo plus letrozole in hormone receptor-positive, HER2-negative advanced breast cancer. Ann. Oncol., 2018, 29(7), 1541-1547.
[http://dx.doi.org/10.1093/annonc/mdy155] [PMID: 29718092]
[13]
Bang, Y.J.; Giaccone, G. Im, S.A.; Oh, D.Y.; Bauer, T.M.; Nordstrom, J.L.; Li, H.; Chichili, G.R.; Moore, P.A.; Hong, S.; Stewart, S.J.; Baughman, J.E.; Lechleider, R.J.; Burris, H.A. First-in-human phase 1 study of margetuximab (MGAH22), an Fc-modified chimeric monoclonal antibody, in patients with HER2-positive advanced solid tumors. Ann. Oncol., 2017, 28(4), 855-861.
[http://dx.doi.org/10.1093/annonc/mdx002] [PMID: 28119295]
[14]
Divya, V.; Pushpa, V.L.; Sarithamol, S.; Manoj, K.B. Computational approach for generating robust models for discovering novel molecules as Cyclin Dependent Kinase 4 inhibitors. J. Mol. Graph. Model., 2018, 82, 48-58.
[http://dx.doi.org/10.1016/j.jmgm.2018.04.001] [PMID: 29680736]
[15]
Rondla, R. PadmaRao, L.S.; Ramatenki, V.; Haredi-Abdel-Monsef, A.; Potlapally, S.R.; Vuruputuri, U. Selective ATP competitive leads of CDK4: discovery by 3D-QSAR pharmacophore mapping and molecular docking approach. Comput. Biol. Chem., 2017, 71, 224-229.
[http://dx.doi.org/10.1016/j.compbiolchem.2017.11.005] [PMID: 29153893]
[16]
Zheng, J.; Kong, H.; Wilson, J.M.; Guo, J.; Chang, Y.; Yang, M.; Xiao, G.; Sun, P. Insight into the interactions between novel isoquinolin-1,3-dione derivatives and cyclin-dependent kinase 4 combining QSAR and molecular docking. PLoS One, 2014, 9(4)e93704
[http://dx.doi.org/10.1371/journal.pone.0093704] [PMID: 24722522]
[17]
Cai, B.Q.; Jin, H.X.; Yan, X.J.; Zhu, P.; Hu, G.X. 3D-QSAR and 3D-QSSR studies of thieno[2,3-d]pyrimidin-4-yl hydrazone analogues as CDK4 inhibitors by CoMFA analysis. Acta Pharmacol. Sin., 2014, 35(1), 151-160.
[http://dx.doi.org/10.1038/aps.2013.105] [PMID: 24122012]
[18]
Rampogu, S.; Son, M.; Baek, A.; Park, C.; Rana, R.M.; Zeb, A.; Parameswaran, S.; Lee, K.W. Targeting natural compounds against HER2 kinase domain as potential anticancer drugs applying pharmacophore based molecular modelling approaches. Comput. Biol. Chem., 2018, 74, 327-338.
[http://dx.doi.org/10.1016/j.compbiolchem.2018.04.002] [PMID: 29702367]
[19]
Qu, D.; Yan, A.; Zhang, J.S. SAR and QSAR study on the bioactivities of human epidermal growth factor receptor-2 (HER2) inhibitors. SAR QSAR Environ. Res., 2017, 28(2), 111-132.
[http://dx.doi.org/10.1080/1062936X.2017.1284898] [PMID: 28235391]
[20]
Zalloum, H.; Tayyem, R.; Irmaileh, B.A.; Bustanji, Y.; Zihlif, M.; Mohammad, M.; Rjai, T.A.; Mubarak, M.S. Discovery of new human epidermal growth factor receptor-2 (HER2) inhibitors for potential use as anticancer agents via ligand-based pharmacophore modeling. J. Mol. Graph. Model., 2015, 61, 61-84.
[http://dx.doi.org/10.1016/j.jmgm.2015.06.008] [PMID: 26188796]
[21]
Speck-Planche, A.; Cordeiro, M.N.D.S. Chemoinformatics for medicinal chemistry: in silico model to enable the discovery of potent and safer anti-cocci agents. Future Med. Chem., 2014, 6(18), 2013-2028.
[http://dx.doi.org/10.4155/fmc.14.136] [PMID: 25531966]
[22]
Speck-Planche, A.; Cordeiro, M.N.D.S. De novo computational design of compounds virtually displaying potent antibacterial activity and desirable in vitro ADMET profiles. Med. Chem. Res., 2017, 26, 2345-2356.
[http://dx.doi.org/10.1007/s00044-017-1936-4]
[23]
Speck-Planche, A.; Kleandrova, V.V.; Ruso, J.M.; Cordeiro, M.N.D.S. First multitarget chemo-bioinformatic model to enable the discovery of antibacterial peptides against multiple Gram-positive pathogens. J. Chem. Inf. Model., 2016, 56(3), 588-598.
[http://dx.doi.org/10.1021/acs.jcim.5b00630] [PMID: 26960000]
[24]
Speck-Planche, A.; Cordeiro, M.N.D.S. Multi-target QSAR approaches for modeling protein inhibitors. Simultaneous prediction of activities against biomacromolecules present in gram-negative bacteria. Curr. Top. Med. Chem., 2015, 15(18), 1801-1813.
[http://dx.doi.org/10.2174/1568026615666150506144814] [PMID: 25961517]
[25]
Herrera-Ibatá, D.M.; Pazos, A.; Orbegozo-Medina, R.A.; Romero-Durán, F.J.; González-Díaz, H. Mapping chemical structure-activity information of HAART-drug cocktails over complex networks of AIDS epidemiology and socioeconomic data of U.S. counties. Biosystems, 2015, 132-133, 20-34.
[http://dx.doi.org/10.1016/j.biosystems.2015.04.007] [PMID: 25916548]
[26]
González-Díaz, H.; Herrera-Ibatá, D.M.; Duardo-Sánchez, A.; Munteanu, C.R.; Orbegozo-Medina, R.A.; Pazos, A. ANN multiscale model of anti-HIV drugs activity vs AIDS prevalence in the US at county level based on information indices of molecular graphs and social networks. J. Chem. Inf. Model., 2014, 54(3), 744-755.
[http://dx.doi.org/10.1021/ci400716y] [PMID: 24521170]
[27]
Vásquez-Domínguez, E.; Armijos-Jaramillo, V.D.; Tejera, E.; González-Díaz, H. Multioutput perturbation-theory machine learning (ptml) model of chembl data for antiretroviral compounds. Mol. Pharm., 2019, 16(10), 4200-4212.
[http://dx.doi.org/10.1021/acs.molpharmaceut.9b00538] [PMID: 31426639]
[28]
Nocedo-Mena, D.; Cornelio, C.; Camacho-Corona, M.D.R.; Garza-González, E.; Waksman de Torres, N.; Arrasate, S.; Sotomayor, N.; Lete, E.; González-Díaz, H. Modeling antibacterial activity with machine learning and fusion of chemical structure information with microorganism metabolic networks. J. Chem. Inf. Model., 2019, 59(3), 1109-1120.
[http://dx.doi.org/10.1021/acs.jcim.9b00034] [PMID: 30802402]
[29]
Herrera-Ibata, D.M.; Pazos, A.; Orbegozo-Medina, R.A.; Gonzalez-Diaz, H. Mapping networks of anti-HIV drug cocktails vs. AIDS epidemiology in the US counties. Chemom. Intell. Lab. Syst., 2014, 138, 161-170.
[http://dx.doi.org/10.1016/j.chemolab.2014.08.006]
[30]
Concu, R.; Kleandrova, V.V.; Speck-Planche, A.; Cordeiro, M.N.D.S. Probing the toxicity of nanoparticles: a unified in silico machine learning model based on perturbation theory. Nanotoxicology, 2017, 11(7), 891-906.
[http://dx.doi.org/10.1080/17435390.2017.1379567] [PMID: 28937298]
[31]
Speck-Planche, A.; Kleandrova, V.V.; Luan, F.; Cordeiro, M.N.D.S. Computational modeling in nanomedicine: prediction of multiple antibacterial profiles of nanoparticles using a quantitative structure-activity relationship perturbation model. Nanomedicine (Lond.), 2015, 10(2), 193-204.
[http://dx.doi.org/10.2217/nnm.14.96] [PMID: 25600965]
[32]
González-Durruthy, M.; Monserrat, J.M.; Viera de Oliveira, P.; Fagan, S.B.; Werhli, A.V.; Machado, K.; Melo, A.; González-Díaz, H.; Concu, R.; D S, Cordeiro M.N. Computational mitotarget scanning based on topological vacancies of single-walled carbon nanotubes with the human mitochondrial voltage-dependent anion channel (hvdac1). Chem. Res. Toxicol., 2019, 32(4), 566-577.
[http://dx.doi.org/10.1021/acs.chemrestox.8b00266] [PMID: 30868869]
[33]
González-Durruthy, M.; Manske Nunes, S.; Ventura-Lima, J.; Gelesky, M.A.; González-Díaz, H.; Monserrat, J.M.; Concu, R.; Cordeiro, M.N.D.S. Mitotarget modeling using ann-classification models based on fractal sem nano-descriptors: carbon nanotubes as mitochondrial f0f1-atpase inhibitors. J. Chem. Inf. Model., 2019, 59(1), 86-97.
[http://dx.doi.org/10.1021/acs.jcim.8b00631] [PMID: 30408958]
[34]
González-Durruthy, M.; Werhli, A.V.; Seus, V.; Machado, K.S.; Pazos, A.; Munteanu, C.R.; González-Díaz, H.; Monserrat, J.M. Decrypting strong and weak single-walled carbon nanotubes interactions with mitochondrial voltage-dependent anion channels using molecular docking and perturbation theory. Sci. Rep., 2017, 7(1), 13271.
[http://dx.doi.org/10.1038/s41598-017-13691-8] [PMID: 29038520]
[35]
González-Durruthy, M.; Alberici, L.C.; Curti, C.; Naal, Z.; Atique-Sawazaki, D.T.; Vázquez-Naya, J.M.; González-Díaz, H.; Munteanu, C.R. Experimental-computational study of carbon nanotube effects on mitochondrial respiration: in silico nano-qspr machine learning models based on new raman spectra transform with markov-shannon entropy invariants. J. Chem. Inf. Model., 2017, 57(5), 1029-1044.
[http://dx.doi.org/10.1021/acs.jcim.6b00458] [PMID: 28414908]
[36]
Martínez-Arzate, S.G.; Tenorio-Borroto, E.; Barbabosa Pliego, A.; Díaz-Albiter, H.M.; Vázquez-Chagoyán, J.C.; González-Díaz, H. PTML model for proteome mining of b-cell epitopes and theoretical-experimental study of bm86 protein sequences from colima, Mexico. J. Proteome Res., 2017, 16(11), 4093-4103.
[http://dx.doi.org/10.1021/acs.jproteome.7b00477] [PMID: 28922600]
[37]
Tenorio-Borroto, E.; Peñuelas-Rivas, C.G.; Vásquez-Chagoyán, J.C.; Castañedo, N.; Prado-Prado, F.J.; García-Mera, X.; González-Díaz, H. Model for high-throughput screening of drug immunotoxicity study of the anti-microbial G1 over peritoneal macrophages using flow cytometry. Eur. J. Med. Chem., 2014, 72, 206-220.
[http://dx.doi.org/10.1016/j.ejmech.2013.08.035] [PMID: 24445280]
[38]
Tenorio-Borroto, E.; Castañedo, N.; García-Mera, X.; Rivadeneira, K.; Vázquez Chagoyán, J.C.; Barbabosa Pliego, A.; Munteanu, C.R.; González-Díaz, H. Perturbation theory machine learning modeling of immunotoxicity for drugs targeting inflammatory cytokines and study of the antimicrobial g1 using cytometric bead arrays. Chem. Res. Toxicol., 2019, 32(9), 1811-1823.
[http://dx.doi.org/10.1021/acs.chemrestox.9b00154] [PMID: 31327231]
[39]
Tenorio-Borroto, E.; García-Mera, X.; Peñuelas-Rivas, C.G.; Vásquez-Chagoyán, J.C.; Prado-Prado, F.J.; Castañedo, N.; González-Díaz, H. Entropy model for multiplex drug-target interaction endpoints of drug immunotoxicity. Curr. Top. Med. Chem., 2013, 13(14), 1636-1649.
[http://dx.doi.org/10.2174/15680266113139990114] [PMID: 23889053]
[40]
Ferreira da Costa, J.; Silva, D.; Caamaño, O.; Brea, J.M.; Loza, M.I.; Munteanu, C.R.; Pazos, A.; García-Mera, X.; González-Díaz, H. Perturbation theory/machine learning model of chembl data for dopamine targets: docking, synthesis, and assay of new l-prolyl-l-leucyl-glycinamide peptidomimetics. ACS Chem. Neurosci., 2018, 9(11), 2572-2587.
[http://dx.doi.org/10.1021/acschemneuro.8b00083] [PMID: 29791132]
[41]
Abeijon, P.; Garcia-Mera, X.; Caamano, O.; Yanez, M.; Lopez-Castro, E.; Romero-Duran, F.J.; Gonzalez-Diaz, H. Multi-target mining of alzheimer disease proteome with hansch’s qsbr-perturbation theory and experimental-theoretic study of new thiophene isosters of rasagiline. Curr. Drug Targets, 2017, 18(5), 511-521.
[http://dx.doi.org/10.2174/1389450116666151102095243] [PMID: 26521774]
[42]
Romero-Durán, F.J.; Alonso, N.; Yañez, M.; Caamaño, O.; García-Mera, X.; González-Díaz, H. Brain-inspired cheminformatics of drug-target brain interactome, synthesis, and assay of TVP1022 derivatives. Neuropharmacology, 2016, 103, 270-278.
[http://dx.doi.org/10.1016/j.neuropharm.2015.12.019] [PMID: 26721628]
[43]
Luan, F.; Cordeiro, M.N.D.S.; Alonso, N.; García-Mera, X.; Caamaño, O.; Romero-Duran, F.J.; Yañez, M.; González-Díaz, H. TOPS-MODE model of multiplexing neuroprotective effects of drugs and experimental-theoretic study of new 1,3-rasagiline derivatives potentially useful in neurodegenerative diseases. Bioorg. Med. Chem., 2013, 21(7), 1870-1879.
[http://dx.doi.org/10.1016/j.bmc.2013.01.035] [PMID: 23415089]
[44]
Diez-Alarcia, R.; Yáñez-Pérez, V.; Muneta-Arrate, I.; Arrasate, S.; Lete, E.; Meana, J.J.; González-Díaz, H. Big data challenges targeting proteins in gpcr signaling pathways; combining ptml-chembl models and [35s]gtpγs binding assays. ACS Chem. Neurosci., 2019, 10(11), 4476-4491.
[http://dx.doi.org/10.1021/acschemneuro.9b00302] [PMID: 31618004]
[45]
Alonso, N.; Caamaño, O.; Romero-Duran, F.J.; Luan, F. D; S Cordeiro, M.N; Yañez, M.; González-Díaz, H.; García-Mera, X. Model for high-throughput screening of multitarget drugs in chemical neurosciences: synthesis, assay, and theoretic study of rasagiline carbamates. ACS Chem. Neurosci., 2013, 4(10), 1393-1403.
[http://dx.doi.org/10.1021/cn400111n] [PMID: 23855599]
[46]
Marzaro, G.; Chilin, A.; Guiotto, A.; Uriarte, E.; Brun, P.; Castagliuolo, I.; Tonus, F.; González-Díaz, H. Using the TOPS-MODE approach to fit multi-target QSAR models for tyrosine kinases inhibitors. Eur. J. Med. Chem., 2011, 46(6), 2185-2192.
[http://dx.doi.org/10.1016/j.ejmech.2011.02.072] [PMID: 21447431]
[47]
Santana, R.; Zuluaga, R.; Gañán, P.; Arrasate, S.; Onieva, E.; Montemore, M.M.; González-Díaz, H. PTML model for selection of nanoparticles, anticancer drugs, and vitamins in the design of drug-vitamin nanoparticle release systems for cancer cotherapy. Mol. Pharm., 2020, 17(7), 2612-2627.
[http://dx.doi.org/10.1021/acs.molpharmaceut.0c00308] [PMID: 32459098]
[48]
López-Cortés, A. Paz-Y-Miño, C.; Guerrero, S.; Cabrera-Andrade, A.; Barigye, S.J.; Munteanu, C.R.; González-Díaz, H.; Pazos, A.; Pérez-Castillo, Y.; Tejera, E. OncoOmics approaches to reveal essential genes in breast cancer: a panoramic view from pathogenesis to precision medicine. Sci. Rep., 2020, 10(1), 5285.
[http://dx.doi.org/10.1038/s41598-020-62279-2] [PMID: 32210335]
[49]
Bediaga, H.; Arrasate, S.; González-Díaz, H. PTML combinatorial model of chembl compounds assays for multiple types of cancer. ACS Comb. Sci., 2018, 20(11), 621-632.
[http://dx.doi.org/10.1021/acscombsci.8b00090] [PMID: 30240186]
[50]
Speck-Planche, A.; Kleandrova, V.V.; Luan, F.; Cordeiro, M.N.D.S. Unified multi-target approach for the rational in silico design of anti-bladder cancer agents. Anticancer. Agents Med. Chem., 2013, 13(5), 791-800.
[http://dx.doi.org/10.2174/1871520611313050013] [PMID: 23272967]
[51]
Speck-Planche, A.; Cordeiro, M.N.D.S. Fragment-based in silico modeling of multi-target inhibitors against breast cancer-related proteins. Mol. Divers., 2017, 21(3), 511-523.
[http://dx.doi.org/10.1007/s11030-017-9731-1] [PMID: 28194627]
[52]
Gaulton, A.; Bellis, L.J.; Bento, A.P.; Chambers, J.; Davies, M.; Hersey, A.; Light, Y.; McGlinchey, S.; Michalovich, D.; Al-Lazikani, B.; Overington, J.P. ChEMBL: a large-scale bioactivity database for drug discovery. Nucleic Acids Res., 2012, 40(Database issue), D1100-D1107.
[http://dx.doi.org/10.1093/nar/gkr777] [PMID: 21948594]
[53]
Mok, N.Y.; Brenk, R. Mining the ChEMBL database: an efficient chemoinformatics workflow for assembling an ion channel-focused screening library. J. Chem. Inf. Model., 2011, 51(10), 2449-2454.
[http://dx.doi.org/10.1021/ci200260t] [PMID: 21978256]
[54]
Anderson, A.C. The process of structure-based drug design. Chem. Biol., 2003, 10(9), 787-797.
[http://dx.doi.org/10.1016/j.chembiol.2003.09.002] [PMID: 14522049]
[55]
Alvascience-Srl. AlvaDesc (software for molecular descriptor calculation, v1.0.142019, Available from: https://www.alvascience.com/
[56]
Todeschini, R.; Consonni, V. Molecular Descriptors for Chemoinformatics; WILEY-VCH Verlag GmbH & Co. KGaA: Weinheim 2009.
[http://dx.doi.org/10.1002/9783527628766]
[57]
Estrada, E. Physicochemical interpretation of molecular connectivity indices. J. Phys. Chem. A, 2002, 106, 9085-9091.
[http://dx.doi.org/10.1021/jp026238m]
[58]
Todeschini, R.; Consonni, V. Handbook of Molecular Descriptors; WILEY-VCH Verlag GmbH: Weinheim, 2000.
[http://dx.doi.org/10.1002/9783527613106]
[59]
Deep, A.; Narasimhan, B.; Ramasamy, K.; Mani, V.; Mishra, R.K.; Majeed, A.B. Synthesis, antimicrobial, anticancer evaluation and QSAR studies of thiazolidin-4-ones clubbed with quinazolinone. Curr. Top. Med. Chem., 2013, 13(16), 2034-2046.
[http://dx.doi.org/10.2174/15680266113139990130] [PMID: 23895092]
[60]
Narang, R.; Narasimhan, B.; Sharma, S.; De Clercq, E.; Pannecouque, C.; Balzarini, J. Substituted naphthalen-1-yl-acetic acid hydrazides: synthesis, antimicrobial evaluation and QSAR analysis. Med. Chem., 2013, 9(2), 249-274.
[http://dx.doi.org/10.2174/1573406411309020009] [PMID: 22762164]
[61]
Sliwoski, G.; Mendenhall, J.; Meiler, J. Autocorrelation descriptor improvements for QSAR: 2DA_Sign and 3DA_Sign. J. Comput. Aided Mol. Des., 2016, 30(3), 209-217.
[http://dx.doi.org/10.1007/s10822-015-9893-9] [PMID: 26721261]
[62]
Mendenhall, J.; Meiler, J. Improving quantitative structure-activity relationship models using artificial neural networks trained with dropout. J. Comput. Aided Mol. Des., 2016, 30(2), 177-189.
[http://dx.doi.org/10.1007/s10822-016-9895-2] [PMID: 26830599]
[63]
Romero Durán, F.J.; Alonso, N.; Caamaño, O.; García-Mera, X.; Yañez, M.; Prado-Prado, F.J.; González-Díaz, H. Prediction of multi-target networks of neuroprotective compounds with entropy indices and synthesis, assay, and theoretical study of new asymmetric 1,2-rasagiline carbamates. Int. J. Mol. Sci., 2014, 15(9), 17035-17064.
[http://dx.doi.org/10.3390/ijms150917035] [PMID: 25255029]
[64]
TIBCO-Software-Inc. STATISTICA (Data Analysis Software System.13.0, 2018. Available from: http://tibco.com
[65]
Matthews, B.W. Comparison of the predicted and observed secondary structure of T4 phage lysozyme. Biochim. Biophys. Acta, 1975, 405(2), 442-451.
[http://dx.doi.org/10.1016/0005-2795(75)90109-9] [PMID: 1180967]
[66]
Pearson, K. Notes on regression and inheritance in the case of two parents. Proc. R. Soc. Lond., 1895, 58, 240-242.
[http://dx.doi.org/10.1098/rspl.1895.0041]
[67]
Sahigara, F.; Mansouri, K.; Ballabio, D.; Mauri, A.; Consonni, V.; Todeschini, R. Comparison of different approaches to define the applicability domain of QSAR models. Molecules, 2012, 17(5), 4791-4810.
[http://dx.doi.org/10.3390/molecules17054791] [PMID: 22534664]
[68]
Kleandrova, V.V.; Scotti, M.T.; Scotti, L.; Nayarisseri, A.; Speck-Planche, A. Cell-based multi-target QSAR model for design of virtual versatile inhibitors of liver cancer cell lines. SAR QSAR Environ. Res., 2020, 31(11), 815-836.
[http://dx.doi.org/10.1080/1062936X.2020.1818617] [PMID: 32967475]
[69]
Baskin, I.I.; Skvortsova, M.I.; Stankevich, I.V.; Zefirov, N.S. On the basis of invariants of labeled molecular graphs. J. Chem. Inf. Comput. Sci., 1995, 35, 527-531.
[http://dx.doi.org/10.1021/ci00025a021]
[70]
Speck-Planche, A.; Dias Soeiro Cordeiro, M.N. Speeding up early drug discovery in antiviral research: a fragment-based in silico approach for the design of virtual anti-hepatitis c leads. ACS Comb. Sci., 2017, 19(8), 501-512.
[http://dx.doi.org/10.1021/acscombsci.7b00039] [PMID: 28437091]
[71]
Speck-Planche, A. Combining ensemble learning with a fragment-based topological approach to generate new molecular diversity in drug discovery: in silico design of hsp90 inhibitors. ACS Omega, 2018, 3(11), 14704-14716.
[http://dx.doi.org/10.1021/acsomega.8b02419] [PMID: 30555986]
[72]
Kleandrova, V.V.; Speck-Planche, A. PTML modeling for alzheimer’s disease: design and prediction of virtual multi-target inhibitors of gsk3b, hdac1, and hdac6. Curr. Top. Med. Chem., 2020, 20(19), 1661-1676.
[http://dx.doi.org/10.2174/1568026620666200607190951] [PMID: 32515311]
[73]
Speck-Planche, A.; Scotti, M.T. BET bromodomain inhibitors: fragment-based in silico design using multi-target QSAR models. Mol. Divers., 2019, 23(3), 555-572.
[http://dx.doi.org/10.1007/s11030-018-9890-8] [PMID: 30421269]
[74]
Irwin, J.J.; Shoichet, B.K. ZINC a free database of commercially available compounds for virtual screening. J. Chem. Inf. Model., 2005, 45(1), 177-182.
[http://dx.doi.org/10.1021/ci049714+] [PMID: 15667143]
[75]
Lipinski, C.A.; Lombardo, F.; Dominy, B.W.; Feeney, P.J. Experimental and computational approaches to estimate solubility and permeability in drug discovery and development settings. Adv. Drug Deliv. Rev., 2001, 46(1-3), 3-26.
[http://dx.doi.org/10.1016/S0169-409X(00)00129-0] [PMID: 11259830]
[76]
Veber, D.F.; Johnson, S.R.; Cheng, H.Y.; Smith, B.R.; Ward, K.W.; Kopple, K.D. Molecular properties that influence the oral bioavailability of drug candidates. J. Med. Chem., 2002, 45(12), 2615-2623.
[http://dx.doi.org/10.1021/jm020017n] [PMID: 12036371]

Rights & Permissions Print Export Cite as
© 2022 Bentham Science Publishers | Privacy Policy