Generic placeholder image

Current HIV Research

Editor-in-Chief

ISSN (Print): 1570-162X
ISSN (Online): 1873-4251

Research Article

Resveratrol Promotes HIV-1 Tat Accumulation via AKT/FOXO1 Signaling Axis and Potentiates Vorinostat to Antagonize HIV-1 Latency

Author(s): Zeming Feng, Zhengrong Yang, Xiang Gao, Yuhua Xue and Xiaohui Wang*

Volume 19, Issue 3, 2021

Published on: 18 January, 2021

Page: [238 - 247] Pages: 10

DOI: 10.2174/1570162X19666210118151249

Price: $65

conference banner
Abstract

Background: The latent reservoir of HIV-1 is a major barrier to achieving the eradication of HIV-1/AIDS. One strategy is termed “shock and kill”, which aims to awaken the latent HIV-1 using latency reversing agents (LRAs) to replicate and produce HIV-1 particles. Subsequently, the host cells containing HIV-1 can be recognized and eliminated by the immune response and anti-retroviral therapy. Although many LRAs have been found and tested, their clinical trials were dissatisfactory.

Objective: To aim of the study was to investigate how resveratrol reactivates silent HIV-1 transcription and assess if resveratrol could be a candidate drug for the “shock” phase in “shock and kill” strategy.

Methods: We used established HIV-1 transcription cell models (HeLa-based NH1 and NH2 cells) and HIV-1 latent cell models (J-Lat A72 and Jurkat 2D10 cells). We performed resveratrol treatment on these cell lines and studied the mechanism of how resveratrol stimulates HIV-1 gene transcription. We also tested resveratrol’s bioactivity on primary cells isolated from HIV-1 latent infected patients.

Results: Resveratrol promoted HIV-1 Tat protein levels, and resveratrol-induced Tat promotion was found to be dependent on the AKT/FOXO1 signaling axis. Resveratrol could partially dissociate P-TEFb (Positive Transcription Elongation Factor b) from 7SK snRNP (7SK small nuclear Ribonucleoprotein) and promote Tat-SEC (Super Elongation Complex) interaction. Preclinical studies showed that resveratrol potentiated Vorinostat to awaken HIV-1 latency in HIV-1 latent infected cells isolated from patients.

Conclusion: We found a new mechanism of resveratrol stimulating the production of HIV-1. Resveratrol could be a promising candidate drug to eradicate HIV-1 reservoirs.

Keywords: HIV-1, Reservoirs, Resveratrol, HIV-1 Tat, AKT/FOXO1, P-TEFb, Super Elongation Complex.

Graphical Abstract
[1]
Richman DD, Margolis DM, Delaney M, Greene WC, Hazuda D, Pomerantz RJ. The challenge of finding a cure for HIV infection. Science 2009; 323(5919): 1304-7.
[http://dx.doi.org/10.1126/science.1165706] [PMID: 19265012]
[2]
Vanhamel J, Bruggemans A, Debyser Z. Establishment of latent HIV-1 reservoirs: what do we really know? J Virus Erad 2019; 5(1): 3-9.
[http://dx.doi.org/10.1016/S2055-6640(20)30275-2] [PMID: 30800420]
[3]
Chomont N, El-Far M, Ancuta P, et al. HIV reservoir size and persistence are driven by T cell survival and homeostatic proliferation. Nat Med 2009; 15(8): 893-900.
[http://dx.doi.org/10.1038/nm.1972] [PMID: 19543283]
[4]
Yin X, Langer S, Zhang Z, et al. Sensor Sensibility-HIV-1 and the Innate Immune Response. Cells 2020; 9(1): E254.
[http://dx.doi.org/10.3390/cells9010254] [PMID: 31968566]
[5]
Prins JM, Jurriaans S, van Praag RM, et al. Immuno-activation with anti-CD3 and recombinant human IL-2 in HIV-1-infected patients on potent antiretroviral therapy. AIDS 1999; 13(17): 2405-10.
[http://dx.doi.org/10.1097/00002030-199912030-00012] [PMID: 10597782]
[6]
Deeks SG. HIV: Shock and kill. Nature 2012; 487(7408): 439-40.
[http://dx.doi.org/10.1038/487439a] [PMID: 22836995]
[7]
Trautmann L. Kill: boosting HIV-specific immune responses. Curr Opin HIV AIDS 2016; 11(4): 409-16.
[http://dx.doi.org/10.1097/COH.0000000000000286] [PMID: 27054280]
[8]
Lichterfeld M. Reactivation of latent HIV moves shock-and-kill treatments forward. Nature 2020; 578(7793): 42-3.
[http://dx.doi.org/10.1038/d41586-020-00010-x] [PMID: 32020104]
[9]
Sadowski I, Hashemi FB. Strategies to eradicate HIV from infected patients: elimination of latent provirus reservoirs. Cell Mol Life Sci 2019; 76(18): 3583-600.
[http://dx.doi.org/10.1007/s00018-019-03156-8] [PMID: 31129856]
[10]
Kim Y, Anderson JL, Lewin SR. Getting the “Kill” into “Shock and Kill”: Strategies to Eliminate Latent HIV. Cell Host Microbe 2018; 23(1): 14-26.
[http://dx.doi.org/10.1016/j.chom.2017.12.004] [PMID: 29324227]
[11]
Perreau M, Banga R, Pantaleo G. Targeted Immune Interventions for an HIV-1 Cure. Trends Mol Med 2017; 23(10): 945-61.
[http://dx.doi.org/10.1016/j.molmed.2017.08.006] [PMID: 28890135]
[12]
Sánchez-Duffhues G, Vo MQ, Pérez M, et al. Activation of latent HIV-1 expression by protein kinase C agonists. A novel therapeutic approach to eradicate HIV-1 reservoirs. Curr Drug Targets 2011; 12(3): 348-56.
[http://dx.doi.org/10.2174/138945011794815266] [PMID: 20955147]
[13]
Martin AR, Pollack RA, Capoferri A, Ambinder RF, Durand CM, Siliciano RF. Rapamycin-mediated mTOR inhibition uncouples HIV-1 latency reversal from cytokine-associated toxicity. J Clin Invest 2017; 127(2): 651-6.
[http://dx.doi.org/10.1172/JCI89552] [PMID: 28094770]
[14]
Pham HTM, Mesplède T. The latest evidence for possible HIV-1 curative strategies. Drugs Context 2018; 7: 212522.
[http://dx.doi.org/10.7573/dic.212522] [PMID: 29497452]
[15]
Sagot-Lerolle N, Lamine A, Chaix ML, et al. ANRS EP39 study. Prolonged valproic acid treatment does not reduce the size of latent HIV reservoir. AIDS 2008; 22(10): 1125-9.
[http://dx.doi.org/10.1097/QAD.0b013e3282fd6ddc] [PMID: 18525257]
[16]
Siliciano JD, Lai J, Callender M, et al. Stability of the latent reservoir for HIV-1 in patients receiving valproic acid. J Infect Dis 2007; 195(6): 833-6.
[http://dx.doi.org/10.1086/511823] [PMID: 17299713]
[17]
Reuse S, Calao M, Kabeya K, et al. Synergistic activation of HIV-1 expression by deacetylase inhibitors and prostratin: implications for treatment of latent infection. PLoS One 2009; 4(6): e6093.
[http://dx.doi.org/10.1371/journal.pone.0006093] [PMID: 19564922]
[18]
Schwartz C, Bouchat S, Marban C, et al. On the way to find a cure: Purging latent HIV-1 reservoirs. Biochem Pharmacol 2017; 146: 10-22.
[http://dx.doi.org/10.1016/j.bcp.2017.07.001] [PMID: 28687465]
[19]
Li Z, Wu J, Chavez L, et al. Reiterative Enrichment and Authentication of CRISPRi Targets (REACT) identifies the proteasome as a key contributor to HIV-1 latency. PLoS Pathog 2019; 15(1): e1007498.
[http://dx.doi.org/10.1371/journal.ppat.1007498] [PMID: 30645648]
[20]
Kulkosky J, Culnan DM, Roman J, et al. Prostratin: activation of latent HIV-1 expression suggests a potential inductive adjuvant therapy for HAART. Blood 2001; 98(10): 3006-15.
[http://dx.doi.org/10.1182/blood.V98.10.3006] [PMID: 11698284]
[21]
Williams SA, Chen LF, Kwon H, et al. Prostratin antagonizes HIV latency by activating NF-kappaB. J Biol Chem 2004; 279(40): 42008-17.
[http://dx.doi.org/10.1074/jbc.M402124200] [PMID: 15284245]
[22]
Gutiérrez C, Serrano-Villar S, Madrid-Elena N, et al. Bryostatin-1 for latent virus reactivation in HIV-infected patients on antiretroviral therapy. AIDS 2016; 30(9): 1385-92.
[http://dx.doi.org/10.1097/QAD.0000000000001064] [PMID: 26891037]
[23]
Jiang G, Mendes EA, Kaiser P, et al. Synergistic Reactivation of Latent HIV Expression by Ingenol-3-Angelate, PEP005, Targeted NF-kB Signaling in Combination with JQ1 Induced p-TEFb Activation. PLoS Pathog 2015; 11(7): e1005066.
[http://dx.doi.org/10.1371/journal.ppat.1005066] [PMID: 26225771]
[24]
Zhang XX, Lin J, Liang TZ, et al. The BET bromodomain inhibitor apabetalone induces apoptosis of latent HIV-1 reservoir cells following viral reactivation. Acta Pharmacol Sin 2019; 40(1): 98-110.
[http://dx.doi.org/10.1038/s41401-018-0027-5] [PMID: 29789664]
[25]
Li Z, Guo J, Wu Y, Zhou Q. The BET bromodomain inhibitor JQ1 activates HIV latency through antagonizing Brd4 inhibition of Tat-transactivation. Nucleic Acids Res 2013; 41(1): 277-87.
[http://dx.doi.org/10.1093/nar/gks976] [PMID: 23087374]
[26]
Contreras X, Barboric M, Lenasi T, Peterlin BM. HMBA releases P-TEFb from HEXIM1 and 7SK snRNA via PI3K/Akt and activates HIV transcription. PLoS Pathog 2007; 3(10): 1459-69.
[http://dx.doi.org/10.1371/journal.ppat.0030146] [PMID: 17937499]
[27]
He N, Pezda AC, Zhou Q. Modulation of a P-TEFb functional equilibrium for the global control of cell growth and differentiation. Mol Cell Biol 2006; 26(19): 7068-76.
[http://dx.doi.org/10.1128/MCB.00778-06] [PMID: 16980611]
[28]
Laird GM, Bullen CK, Rosenbloom DIS, et al. Ex vivo analysis identifies effective HIV-1 latency-reversing drug combinations. J Clin Invest 2015; 125(5): 1901-12.
[http://dx.doi.org/10.1172/JCI80142] [PMID: 25822022]
[29]
Bullen CK, Laird GM, Durand CM, Siliciano JD, Siliciano RF. New ex vivo approaches distinguish effective and ineffective single agents for reversing HIV-1 latency in vivo. Nat Med 2014; 20(4): 425-9.
[http://dx.doi.org/10.1038/nm.3489] [PMID: 24658076]
[30]
Brigati C, Giacca M, Noonan DM, Albini A. HIV Tat, its TARgets and the control of viral gene expression. FEMS Microbiol Lett 2003; 220(1): 57-65.
[http://dx.doi.org/10.1016/S0378-1097(03)00067-3] [PMID: 12644228]
[31]
Zhou Q, Sharp PA. Novel mechanism and factor for regulation by HIV-1 Tat. EMBO J 1995; 14(2): 321-8.
[http://dx.doi.org/10.1002/j.1460-2075.1995.tb07006.x] [PMID: 7835343]
[32]
Zhou Q, Chen D, Pierstorff E, Luo K. Transcription elongation factor P-TEFb mediates Tat activation of HIV-1 transcription at multiple stages. EMBO J 1998; 17(13): 3681-91.
[http://dx.doi.org/10.1093/emboj/17.13.3681] [PMID: 9649438]
[33]
Lassen KG, Ramyar KX, Bailey JR, et al. Nuclear retention of multiply spliced HIV-1 RNA in resting CD4+ T cells. PLoS pathogens 2006; 2(7): e68-.
[34]
Kamori D, Ueno T. HIV-1 Tat and Viral Latency: What We Can Learn from Naturally Occurring Sequence Variations. Front Microbiol 2017; 8: 80.
[http://dx.doi.org/10.3389/fmicb.2017.00080] [PMID: 28194140]
[35]
Razooky BS, Pai A, Aull K, Rouzine IM, Weinberger LS. A hardwired HIV latency program. Cell 2015; 160(5): 990-1001.
[http://dx.doi.org/10.1016/j.cell.2015.02.009] [PMID: 25723172]
[36]
Frémont L. Biological effects of resveratrol. Life Sci 2000; 66(8): 663-73.
[http://dx.doi.org/10.1016/S0024-3205(99)00410-5] [PMID: 10680575]
[37]
Malhotra A, Nair P, Dhawan DK. Study to evaluate molecular mechanics behind synergistic chemo-preventive effects of curcumin and resveratrol during lung carcinogenesis. PLoS One 2014; 9(4): e93820.
[http://dx.doi.org/10.1371/journal.pone.0093820] [PMID: 24705375]
[38]
Kumar A, Rimando AM, Levenson AS. Resveratrol and pterostilbene as a microRNA-mediated chemopreventive and therapeutic strategy in prostate cancer. Ann N Y Acad Sci 2017; 1403(1): 15-26.
[http://dx.doi.org/10.1111/nyas.13372] [PMID: 28662290]
[39]
Ko JH, Sethi G, Um JY, et al. The Role of Resveratrol in Cancer Therapy. Int J Mol Sci 2017; 18(12): E2589.
[http://dx.doi.org/10.3390/ijms18122589] [PMID: 29194365]
[40]
Carter LG, D’Orazio JA, Pearson KJ. Resveratrol and cancer: focus on in vivo evidence. Endocr Relat Cancer 2014; 21(3): R209-25.
[http://dx.doi.org/10.1530/ERC-13-0171] [PMID: 24500760]
[41]
Pirola L, Fröjdö S. Resveratrol: one molecule, many targets. IUBMB Life 2008; 60(5): 323-32.
[http://dx.doi.org/10.1002/iub.47] [PMID: 18421779]
[42]
Springer M, Moco S. Resveratrol and Its Human Metabolites-Effects on Metabolic Health and Obesity. Nutrients 2019; 11(1): E143.
[http://dx.doi.org/10.3390/nu11010143] [PMID: 30641865]
[43]
Krishnan V, Zeichner SL. Host cell gene expression during human immunodeficiency virus type 1 latency and reactivation and effects of targeting genes that are differentially expressed in viral latency. J Virol 2004; 78(17): 9458-73.
[http://dx.doi.org/10.1128/JVI.78.17.9458-9473.2004] [PMID: 15308739]
[44]
Zeng X, Pan X, Xu X, et al. Resveratrol Reactivates Latent HIV through Increasing Histone Acetylation and Activating Heat Shock Factor 1. J Agric Food Chem 2017; 65(22): 4384-94.
[http://dx.doi.org/10.1021/acs.jafc.7b00418] [PMID: 28471170]
[45]
Wu J, Ao M-T, Shao R, et al. A chalcone derivative reactivates latent HIV-1 transcription through activating P-TEFb and promoting Tat-SEC interaction on viral promoter. Sci Rep 2017; 7(1): 10657.
[http://dx.doi.org/10.1038/s41598-017-10728-w] [PMID: 28878233]
[46]
Wang C, Yang S, Lu H, et al. A Natural Product from Polygonum cuspidatum Sieb. Et Zucc. Promotes Tat-Dependent HIV Latency Reversal through Triggering P-TEFb’s Release from 7SK snRNP. PLoS One 2015; 10(11): e0142739.
[http://dx.doi.org/10.1371/journal.pone.0142739] [PMID: 26569506]
[47]
Vercruysse T, Basta B, Dehaen W, et al. A phenyl-thiadiazolylidene-amine derivative ejects zinc from retroviral nucleocapsid zinc fingers and inactivates HIV virions. Retrovirology 2012; 9: 95.
[http://dx.doi.org/10.1186/1742-4690-9-95] [PMID: 23146561]
[48]
Pearson R, Kim YK, Hokello J, et al. Epigenetic silencing of human immunodeficiency virus (HIV) transcription by formation of restrictive chromatin structures at the viral long terminal repeat drives the progressive entry of HIV into latency. J Virol 2008; 82(24): 12291-303.
[http://dx.doi.org/10.1128/JVI.01383-08] [PMID: 18829756]
[49]
Li Z, Mbonye U, Feng Z, et al. The KAT5-Acetyl-Histone4-Brd4 axis silences HIV-1 transcription and promotes viral latency. PLoS Pathog 2018; 14(4): e1007012.
[http://dx.doi.org/10.1371/journal.ppat.1007012] [PMID: 29684085]
[50]
Bartholomeeusen K, Xiang Y, Fujinaga K, Peterlin BM. Bromodomain and extra-terminal (BET) bromodomain inhibition activate transcription via transient release of positive transcription elongation factor b (P-TEFb) from 7SK small nuclear ribonucleoprotein. J Biol Chem 2012; 287(43): 36609-16.
[http://dx.doi.org/10.1074/jbc.M112.410746] [PMID: 22952229]
[51]
Yang Z, Zhu Q, Luo K, Zhou Q. The 7SK small nuclear RNA inhibits the CDK9/cyclin T1 kinase to control transcription. Nature 2001; 414(6861): 317-22.
[http://dx.doi.org/10.1038/35104575] [PMID: 11713532]
[52]
Oteiza A, Mechti N. FoxO4 negatively controls Tat-mediated HIV-1 transcription through the post-transcriptional suppression of Tat encoding mRNA. J Gen Virol 2017; 98(7): 1864-78.
[http://dx.doi.org/10.1099/jgv.0.000837] [PMID: 28699853]
[53]
Sin TK, Yung BY, Siu PM. Modulation of SIRT1-Foxo1 signaling axis by resveratrol: implications in skeletal muscle aging and insulin resistance. Cellular physiology and biochemistry : international journal of experimental cellular physiology, biochemistry, and pharmacology 2015; 35(2): 541-2.
[http://dx.doi.org/10.1159/000369718]
[54]
Cui M, Huang Y, Zhao Y, Zheng J. New insights for FOXO and cell-fate decision in HIV infection and HIV associated neurocognitive disorder. Adv Exp Med Biol 2009; 665: 143-59.
[http://dx.doi.org/10.1007/978-1-4419-1599-3_11] [PMID: 20429422]
[55]
Lu H, Li Z, Xue Y, Zhou Q. Viral-host interactions that control HIV-1 transcriptional elongation. Chem Rev 2013; 113(11): 8567-82.
[http://dx.doi.org/10.1021/cr400120z] [PMID: 23795863]
[56]
Archin NM, Liberty AL, Kashuba AD, et al. Administration of vorinostat disrupts HIV-1 latency in patients on antiretroviral therapy. Nature 2012; 487(7408): 482-5.
[http://dx.doi.org/10.1038/nature11286] [PMID: 22837004]
[57]
Donahue DA, Wainberg MA. Cellular and molecular mechanisms involved in the establishment of HIV-1 latency. Retrovirology 2013; 10: 11.
[http://dx.doi.org/10.1186/1742-4690-10-11] [PMID: 23375003]
[58]
Nixon CC, Mavigner M, Sampey GC, et al. Systemic HIV and SIV latency reversal via non-canonical NF-κB signalling in vivo. Nature 2020; 578(7793): 160-5.
[http://dx.doi.org/10.1038/s41586-020-1951-3] [PMID: 31969707]
[59]
Wang P, Lu P, Qu X, et al. Reactivation of HIV-1 from Latency by an Ingenol Derivative from Euphorbia Kansui. Sci Rep 2017; 7(1): 9451.
[http://dx.doi.org/10.1038/s41598-017-07157-0] [PMID: 28842560]
[60]
Booiman T, Loukachov VV, van Dort KA, van ’t Wout AB, Kootstra NA. DYRK1A Controls HIV-1 Replication at a Transcriptional Level in an NFAT Dependent Manner. PLoS One 2015; 10(12): e0144229.
[http://dx.doi.org/10.1371/journal.pone.0144229] [PMID: 26641855]
[61]
Argyropoulos C, Nikiforidis GC, Theodoropoulou M, et al. Mining microarray data to identify transcription factors expressed in naïve resting but not activated T lymphocytes. Genes Immun 2004; 5(1): 16-25.
[http://dx.doi.org/10.1038/sj.gene.6364034] [PMID: 14735145]
[62]
Hotter D, Bosso M, Jønsson KL, et al. IFI16 Targets the Transcription Factor Sp1 to Suppress HIV-1 Transcription and Latency Reactivation. Cell Host Microbe 2019; 25(6): 858-872.e13.
[http://dx.doi.org/10.1016/j.chom.2019.05.002] [PMID: 31175045]
[63]
Turrini F, Marelli S, Kajaste-Rudnitski A, et al. HIV-1 transcriptional silencing caused by TRIM22 inhibition of Sp1 binding to the viral promoter. Retrovirology 2015; 12: 104.
[http://dx.doi.org/10.1186/s12977-015-0230-0] [PMID: 26683615]
[64]
Yang X, Chen Y, Gabuzda D. ERK MAP kinase links cytokine signals to activation of latent HIV-1 infection by stimulating a cooperative interaction of AP-1 and NF-kappaB. J Biol Chem 1999; 274(39): 27981-8.
[http://dx.doi.org/10.1074/jbc.274.39.27981] [PMID: 10488148]
[65]
Ma X, Yang T, Luo Y, et al. TRIM28 promotes HIV-1 latency by SUMOylating CDK9 and inhibiting P-TEFb. eLife 2019; 8: 8.
[http://dx.doi.org/10.7554/eLife.42426] [PMID: 30652970]
[66]
Lin J, Zhang X, Lu W, et al. PR-957, a selective immunoproteasome inhibitor, reactivates latent HIV-1 through p-TEFb activation mediated by HSF-1. Biochem Pharmacol 2018; 156: 511-23.
[http://dx.doi.org/10.1016/j.bcp.2018.08.042] [PMID: 30170098]
[67]
Asamitsu K, Fujinaga K, Okamoto T. HIV Tat/P-TEFb Interaction: A Potential Target for Novel Anti-HIV Therapies. Molecules 2018; 23(4): E933.
[http://dx.doi.org/10.3390/molecules23040933] [PMID: 29673219]
[68]
Eilebrecht S, Benecke BJ, Benecke AG. Latent HIV-1 TAR Regulates 7SK-responsive P-TEFb Target Genes and Targets Cellular Immune Responses in the Absence of Tat. Genomics Proteomics Bioinformatics 2017; 15(5): 313-23.
[http://dx.doi.org/10.1016/j.gpb.2017.05.003] [PMID: 29037489]
[69]
Huang H, Liu S, Jean M, et al. A Novel Bromodomain Inhibitor Reverses HIV-1 Latency through Specific Binding with BRD4 to Promote Tat and P-TEFb Association. Front Microbiol 2017; 8: 1035.
[http://dx.doi.org/10.3389/fmicb.2017.01035] [PMID: 28638377]
[70]
Romani B, Kamali Jamil R, Hamidi-Fard M, et al. HIV-1 Vpr reactivates latent HIV-1 provirus by inducing depletion of class I HDACs on chromatin. Sci Rep 2016; 6: 31924.
[http://dx.doi.org/10.1038/srep31924] [PMID: 27550312]
[71]
Zaikos TD, Painter MM, Sebastian Kettinger NT, Terry VH, Collins KL. Class 1-Selective Histone Deacetylase (HDAC) Inhibitors Enhance HIV Latency Reversal while Preserving the Activity of HDAC Isoforms Necessary for Maximal HIV Gene Expression. J Virol 2018; 92(6): e02110-17.
[http://dx.doi.org/10.1128/JVI.02110-17] [PMID: 29298886]
[72]
Barton KM, Archin NM, Keedy KS, et al. Selective HDAC inhibition for the disruption of latent HIV-1 infection. PLoS One 2014; 9(8): e102684.
[http://dx.doi.org/10.1371/journal.pone.0102684] [PMID: 25136952]
[73]
Marzio G, Tyagi M, Gutierrez MI, Giacca M. HIV-1 tat transactivator recruits p300 and CREB-binding protein histone acetyltransferases to the viral promoter. Proc Natl Acad Sci USA 1998; 95(23): 13519-24.
[http://dx.doi.org/10.1073/pnas.95.23.13519] [PMID: 9811832]
[74]
Chávez L, Kauder S, Verdin E. In vivo, in vitro, and in silico analysis of methylation of the HIV-1 provirus. Methods 2011; 53(1): 47-53.
[http://dx.doi.org/10.1016/j.ymeth.2010.05.009] [PMID: 20670606]
[75]
Zhang X, Justice AC, Hu Y, et al. Epigenome-wide differential DNA methylation between HIV-infected and uninfected individuals. Epigenetics 2016; 11(10): 750-60.
[http://dx.doi.org/10.1080/15592294.2016.1221569] [PMID: 27672717]
[76]
Trejbalová K, Kovářová D, Blažková J, et al. Development of 5′ LTR DNA methylation of latent HIV-1 provirus in cell line models and in long-term-infected individuals. Clin Epigenetics 2016; 8: 19.
[http://dx.doi.org/10.1186/s13148-016-0185-6] [PMID: 26900410]
[77]
Ruelas DS, Greene WC. An integrated overview of HIV-1 latency. Cell 2013; 155(3): 519-29.
[http://dx.doi.org/10.1016/j.cell.2013.09.044] [PMID: 24243012]
[78]
Roux A, Leroy H, De Muylder B, et al. FOXO1 transcription factor plays a key role in T cell-HIV-1 interaction. PLoS Pathog 2019; 15(5): e1007669.
[http://dx.doi.org/10.1371/journal.ppat.1007669] [PMID: 31042779]
[79]
Vallejo-Gracia A, Chen IP, Perrone R, et al. FOXO1 promotes HIV latency by suppressing ER stress in T cells. Nat Microbiol 2020; 5(9): 1144-57.
[http://dx.doi.org/10.1038/s41564-020-0742-9] [PMID: 32541947]
[80]
Yu D, Liu R, Yang G, Zhou Q. The PARP1-Siah1 Axis Controls HIV-1 Transcription and Expression of Siah1 Substrates. Cell Rep 2018; 23(13): 3741-9.
[http://dx.doi.org/10.1016/j.celrep.2018.05.084] [PMID: 29949759]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy