Generic placeholder image

Current Drug Metabolism

Editor-in-Chief

ISSN (Print): 1389-2002
ISSN (Online): 1875-5453

General Research Article

Murburn Precepts for Cytochrome P450 Mediated Drug/Xenobiotic Metabolism and Homeostasis

Author(s): Abhinav Parashar* and Kelath M. Manoj*

Volume 22, Issue 4, 2021

Published on: 18 January, 2021

Page: [315 - 326] Pages: 12

DOI: 10.2174/1389200222666210118102230

Price: $65

Abstract

Aims: We aim to demonstrate why deeming diffusible reactive oxygen species (DROS) as toxic wastes do not afford a comprehensive understanding of cytochrome P450 mediated microsomal xenobiotic metabolism (mXM).

Background: Current pharmacokinetic investigations consider reactive oxygen species formed in microsomal reactions as toxic waste products, whereas our works (Manoj et al., 2016) showed that DROS are the reaction mainstay in cytochrome P450 mediated metabolism and that they play significant roles in explaining several unexplained physiologies.

Objective: Herein, we strive to detail the thermodynamic and kinetic foundations of murburn precepts of cytochrome P450 mediated drug metabolism.

Methods: Primarily, in silico approaches (using pdb crystal structure files), murburn reaction chemistry logic and thermodynamic calculations to elucidate the new model of CYP-mediated drug metabolism. The theoretical foundations are used to explain experimental observations.

Results: We visually elucidate how murburn model better explains- (i) promiscuity of the unique P450-reductase; (ii) prolific activity and inhibitions of CYP3A4; (iii) structure-function correlations of important key CYP2 family isozymes- 2C9, 2D6 and 2E1; and (iv) mutation studies and mechanism-based inactivation of CYPs. Several other miscellaneous aspects of CYP reaction chemistry are also addressed.

Conclusion: In the light of our findings that DROS are crucial for explaining reaction outcomes in mXM, approaches for understanding drug-drug interactions and methodologies for lead drug candidates' optimizations should be revisited.

Keywords: Cytochrome P450 (CYP), murburn concept, drug/xenobiotic metabolism, pharmacokinetics, diffusible reactive oxygen species (DROS), CYP3A4.

« Previous
Graphical Abstract
[1]
de Montellano, P.R.O. Cytochrome P450: Structure, mechanism, and biochemistry, 4th ed.; Springer: US, 2015.
[2]
Andrew, D.; Hager, L.; Manoj, K.M. The intriguing enhancement of chloroperoxidase mediated one-electron oxidations by azide, a known active-site ligand. Biochem. Biophys. Res. Commun., 2011, 415(4), 646-649.
[http://dx.doi.org/10.1016/j.bbrc.2011.10.128] [PMID: 22079633]
[3]
Gade, S.K.; Bhattacharya, S.; Manoj, K.M. Redox active molecules cytochrome c and vitamin C enhance heme-enzyme peroxidations by serving as non-specific agents for redox relay. Biochem. Biophys. Res. Commun., 2012, 419(2), 211-214.
[http://dx.doi.org/10.1016/j.bbrc.2012.01.149] [PMID: 22342667]
[4]
Manoj, K.M.; Gade, S.K.; Venkatachalam, A.; Gideon, D.A. Electron transfer amongst flavo-and hemo-proteins: diffusible species effect the relay processes, not protein-protein binding. RSC Adv., 2016, 6, 24121-24129.
[http://dx.doi.org/10.1039/C5RA26122H]
[5]
Manoj, K.M.; Parashar, A.; Venkatachalam, A.; Goyal, S.; Satyalipsu, P.G.; Singh, P.G.; Gade, S.K.; Periyasami, K.; Jacob, R.S.; Sardar, D.; Singh, S.; Kumar, R.; Gideon, D.A. Atypical profiles and modulations of heme-enzymes catalyzed outcomes by low amounts of diverse additives suggest diffusible radicals’ obligatory involvement in such redox reactions. Biochimie, 2016, 125, 91-111.
[http://dx.doi.org/10.1016/j.biochi.2016.03.003] [PMID: 26969799]
[6]
Manoj, K.M.; Venkatachalam, A.; Parashar, A. Metabolism of xenobiotics by cytochrome P450: novel insights into the thermodynamics, kinetics and roles of redox proteins and diffusible reactive speciesDrug Metab. Rev., 2016, 48, 41-42.
[7]
Manoj, K.M.; Parashar, A.; Gade, S.K.; Venkatachalam, A. Functioning of microsomal cytochrome P450s: murburn concept explains the metabolism of xenobiotics in hepatocytes. Front. Pharmacol., 2016, 7, 161.
[http://dx.doi.org/10.3389/fphar.2016.00161] [PMID: 27445805]
[8]
Murali Manoj, K. Chlorinations catalyzed by chloroperoxidase occur via diffusible intermediate(s) and the reaction components play multiple roles in the overall process. Biochim. Biophys. Acta, 2006, 1764(8), 1325-1339.
[http://dx.doi.org/10.1016/j.bbapap.2006.05.012] [PMID: 16870515]
[9]
Manoj, K.M.; Bazhin, N.M. Murburn Precepts of Aerobic Respiration, OSF Prepr, 2019.https://doi.org/doi:10.31219/osf.io/hx4p9
[10]
Manoj, K.M.; Hager, L.P. Utilization of peroxide and its relevance in oxygen insertion reactions catalyzed by chloroperoxidase. Biochim. Biophys. Acta, 2001, 1547(2), 408-417.
[http://dx.doi.org/10.1016/S0167-4838(01)00210-2] [PMID: 11410297]
[11]
Manoj, K.M.; Hager, L.P. Chloroperoxidase, a janus enzyme. Biochemistry, 2008, 47(9), 2997-3003.
[http://dx.doi.org/10.1021/bi7022656] [PMID: 18220360]
[12]
Parashar, A.; Manoj, K.M. Traces of certain drug molecules can enhance heme-enzyme catalytic outcomes. Biochem. Biophys. Res. Commun., 2012, 417(3), 1041-1045.
[http://dx.doi.org/10.1016/j.bbrc.2011.12.090] [PMID: 22214932]
[13]
Parashar, A.; Venkatachalam, A.; Gideon, D.A.; Manoj, K.M. Cyanide does more to inhibit heme enzymes, than merely serving as an active-site ligand. Biochem. Biophys. Res. Commun., 2014, 455(3-4), 190-193.
[http://dx.doi.org/10.1016/j.bbrc.2014.10.137] [PMID: 25449264]
[14]
Parashar, A.; Gade, S.K.; Potnuru, M.; Madhavan, N.; Manoj, K.M. The curious case of benzbromarone: insight into super-inhibition of cytochrome P450. PLoS One, 2014, 9(3)
[http://dx.doi.org/10.1371/journal.pone.0089967] [PMID: 24594849]
[15]
Parashar, A.; Gideon, D.A.; Manoj, K.M. Murburn concept: a molecular explanation for hormetic and idiosyncratic dose responses. Dose Response, 2018, 16(2), 1559325818774421.
[http://dx.doi.org/10.1177/1559325818774421] [PMID: 29770107]
[16]
Venkatachalam, A.; Parashar, A.; Manoj, K.M. Functioning of drug-metabolizing microsomal cytochrome P450s: In silico probing of proteins suggests that the distal heme ‘active site’ pocket plays a relatively ‘passive role’ in some enzyme-substrate interactions. In Silico Pharmacol., 2016, 4(1), 2.
[http://dx.doi.org/10.1186/s40203-016-0016-7] [PMID: 26894412]
[17]
Manoj, K.M.; Soman, V. Classical and murburn explanations for acute toxicity of cyanide in aerobic respiration: a personal perspective. Toxicology, 2020, 432
[http://dx.doi.org/10.1016/j.tox.2020.152369] [PMID: 32007488]
[18]
Manoj, K.M.; Ramasamy, S.; Parashar, A.; Gideon, D.A.; Soman, V.; Jacob, V.D.; Pakshirajan, K. Acute toxicity of cyanide in aerobic respiration: theoretical and experimental support for murburn explanation. Biomol. Concepts, 2020, 11(1), 32-56.
[http://dx.doi.org/10.1515/bmc-2020-0004] [PMID: 32187011]
[19]
Manoj, K.M.; Gade, S.K.; Mathew, L. Cytochrome P450 reductase: a harbinger of diffusible reduced oxygen species. PLoS One, 2010, 5(10)
[http://dx.doi.org/10.1371/journal.pone.0013272] [PMID: 20967245]
[20]
Manoj, K.M.; Parashar, A.; David Jacob, V.; Ramasamy, S. Aerobic respiration: proof of concept for the oxygen-centric murburn perspective. J. Biomol. Struct. Dyn., 2019, 37(17), 4542-4556.
[http://dx.doi.org/10.1080/07391102.2018.1552896] [PMID: 30488771]
[21]
DeLano, W.L. The PyMOL Molecular Graphics System; DeLano Scientific: CA, USA, 2002. http://www.pymol.org
[22]
Morris, G.M.; Huey, R.; Lindstrom, W.; Sanner, M.F.; Belew, R.K.; Goodsell, D.S.; Olson, A.J. AutoDock4 and AutoDockTools4: automated docking with selective receptor flexibility. J. Comput. Chem., 2009, 30(16), 2785-2791.
[http://dx.doi.org/10.1002/jcc.21256] [PMID: 19399780]
[23]
O’Boyle, N.M.; Banck, M.; James, C.A.; Morley, C.; Vandermeersch, T.; Hutchison, G.R. Open Babel: an open chemical toolbox. J. Cheminform., 2011, 3, 33.
[http://dx.doi.org/10.1186/1758-2946-3-33] [PMID: 21982300]
[24]
Pettersen, E.F.; Goddard, T.D.; Huang, C.C.; Couch, G.S.; Greenblatt, D.M.; Meng, E.C.; Ferrin, T.E. UCSF Chimera-a visualization system for exploratory research and analysis. J. Comput. Chem., 2004, 25(13), 1605-1612.
[http://dx.doi.org/10.1002/jcc.20084] [PMID: 15264254]
[25]
Tian, W.; Chen, C.; Lei, X.; Zhao, J.; Liang, J. CASTp 3.0: computed atlas of surface topography of proteins. Nucleic Acids Res., 2018, 46(W1), W363-W367.
[http://dx.doi.org/10.1093/nar/gky473] [PMID: 29860391]
[26]
Yu, J.; Zhou, Y.; Tanaka, I.; Yao, M. Roll: a new algorithm for the detection of protein pockets and cavities with a rolling probe sphere. Bioinformatics, 2010, 26(1), 46-52.
[http://dx.doi.org/10.1093/bioinformatics/btp599] [PMID: 19846440]
[27]
Bazhin, N.M. Standard and transformed values of gibbs energy formation for some radicals and ions involved in biochemical reactions. Arch. Biochem. Biophys., 2020, 686
[http://dx.doi.org/10.1016/j.abb.2020.108282] [PMID: 32035099]
[28]
Manoj, K.M.; Soman, V.; David Jacob, V.; Parashar, A.; Gideon, D.A.; Kumar, M.; Manekkathodi, A.; Ramasamy, S.; Pakshirajan, K.; Bazhin, N.M. Chemiosmotic and murburn explanations for aerobic respiration: Predictive capabilities, structure-function correlations and chemico-physical logic. Arch. Biochem. Biophys., 2019, 676, 108128.
[http://dx.doi.org/10.1016/j.abb.2019.108128] [PMID: 31622585]
[29]
Walsh, A.A.; Szklarz, G.D.; Scott, E.E. Human cytochrome P450 1A1 structure and utility in understanding drug and xenobiotic metabolism. J. Biol. Chem., 2013, 288(18), 12932-12943.
[http://dx.doi.org/10.1074/jbc.M113.452953] [PMID: 23508959]
[30]
Sansen, S.; Yano, J.K.; Reynald, R.L.; Schoch, G.A.; Griffin, K.J.; Stout, C.D.; Johnson, E.F. Adaptations for the oxidation of polycyclic aromatic hydrocarbons exhibited by the structure of human P450 1A2. J. Biol. Chem., 2007, 282(19), 14348-14355.
[http://dx.doi.org/10.1074/jbc.M611692200] [PMID: 17311915]
[31]
Wang, A.; Savas, U.; Stout, C.D.; Johnson, E.F. Structural characterization of the complex between alpha-naphthoflavone and human cytochrome P450 1B1. J. Biol. Chem., 2011, 286(7), 5736-5743.
[http://dx.doi.org/10.1074/jbc.M110.204420] [PMID: 21147782]
[32]
Yano, J.K.; Denton, T.T.; Cerny, M.A.; Zhang, X.; Johnson, E.F.; Cashman, J.R. Synthetic inhibitors of cytochrome P-450 2A6: inhibitory activity, difference spectra, mechanism of inhibition, and protein cocrystallization. J. Med. Chem., 2006, 49(24), 6987-7001.
[http://dx.doi.org/10.1021/jm060519r] [PMID: 17125252]
[33]
DeVore, N.M.; Meneely, K.M.; Bart, A.G.; Stephens, E.S.; Battaile, K.P.; Scott, E.E. Structural comparison of cytochromes P450 2A6, 2A13, and 2E1 with pilocarpine. FEBS J., 2012, 279(9), 1621-1631.
[http://dx.doi.org/10.1111/j.1742-4658.2011.08412.x] [PMID: 22051186]
[34]
Shah, M.B.; Wilderman, P.R.; Liu, J.; Jang, H.H.; Zhang, Q.; Stout, C.D.; Halpert, J.R. Structural and biophysical characterization of human cytochromes P450 2B6 and 2A6 bound to volatile hydrocarbons: analysis and comparison. Mol. Pharmacol., 2015, 87(4), 649-659.
[http://dx.doi.org/10.1124/mol.114.097014] [PMID: 25585967]
[35]
Schoch, G.A.; Yano, J.K.; Wester, M.R.; Griffin, K.J.; Stout, C.D.; Johnson, E.F. Structure of human microsomal cytochrome P450 2C8. Evidence for a peripheral fatty acid binding site. J. Biol. Chem., 2004, 279(10), 9497-9503.
[http://dx.doi.org/10.1074/jbc.M312516200] [PMID: 14676196]
[36]
Wester, M.R.; Yano, J.K.; Schoch, G.A.; Yang, C.; Griffin, K.J.; Stout, C.D.; Johnson, E.F. The structure of human cytochrome P450 2C9 complexed with flurbiprofen at 2.0-A resolution. J. Biol. Chem., 2004, 279(34), 35630-35637.
[http://dx.doi.org/10.1074/jbc.M405427200] [PMID: 15181000]
[37]
Williams, P.A.; Cosme, J.; Ward, A.; Angove, H.C.; Matak Vinković, D.; Jhoti, H. Crystal structure of human cytochrome P450 2C9 with bound warfarin. Nature, 2003, 424(6947), 464-468.
[http://dx.doi.org/10.1038/nature01862] [PMID: 12861225]
[38]
Reynald, R.L.; Sansen, S.; Stout, C.D.; Johnson, E.F. Structural characterization of human cytochrome P450 2C19: active site differences between P450s 2C8, 2C9, and 2C19. J. Biol. Chem., 2012, 287(53), 44581-44591.
[http://dx.doi.org/10.1074/jbc.M112.424895] [PMID: 23118231]
[39]
Wang, A.; Stout, C.D.; Zhang, Q.; Johnson, E.F. Contributions of ionic interactions and protein dynamics to cytochrome P450 2D6 (CYP2D6) substrate and inhibitor binding. J. Biol. Chem., 2015, 290(8), 5092-5104.
[http://dx.doi.org/10.1074/jbc.M114.627661] [PMID: 25555909]
[40]
Porubsky, P.R.; Meneely, K.M.; Scott, E.E. Structures of human cytochrome P-450 2E1. Insights into the binding of inhibitors and both small molecular weight and fatty acid substrates. J. Biol. Chem., 2008, 283(48), 33698-33707.
[http://dx.doi.org/10.1074/jbc.M805999200] [PMID: 18818195]
[41]
Strushkevich, N. V; Tempel, W.; Gilep, A.A.; Loppnau, P.; Arrowsmith, C.H.; Edwards, A.M.; Bountra, C.; Wilkstrom, M.; Bochkarev, A.; Park, H. Crystal structure of CYP2R1 in complex with vitamin D2, 2008. Available at: http://www.rcsb.org/3d-view/3CZH/2
[42]
Sevrioukova, I.F.; Poulos, T.L. Structure and mechanism of the complex between cytochrome P4503A4 and ritonavir. Proc. Natl. Acad. Sci. USA, 2010, 107(43), 18422-18427.
[http://dx.doi.org/10.1073/pnas.1010693107] [PMID: 20937904]
[43]
Yano, J.K.; Wester, M.R.; Schoch, G.A.; Griffin, K.J.; Stout, C.D.; Johnson, E.F. The structure of human microsomal cytochrome P450 3A4 determined by X-ray crystallography to 2.05-A resolution. J. Biol. Chem., 2004, 279(37), 38091-38094.
[http://dx.doi.org/10.1074/jbc.C400293200] [PMID: 15258162]
[44]
Hsu, M.H.; Johnson, E.F. Active-site differences between substrate-free and ritonavir-bound cytochrome P450 (CYP) 3A5 reveal plasticity differences between CYP3A5 and CYP3A4. J. Biol. Chem., 2019, 294(20), 8015-8022.
[http://dx.doi.org/10.1074/jbc.RA119.007928] [PMID: 30926609]
[45]
Ghosh, D.; Lo, J.; Morton, D.; Valette, D.; Xi, J.; Griswold, J.; Hubbell, S.; Egbuta, C.; Jiang, W.; An, J.; Davies, H.M. Novel aromatase inhibitors by structure-guided design. J. Med. Chem., 2012, 55(19), 8464-8476.
[http://dx.doi.org/10.1021/jm300930n] [PMID: 22951074]
[46]
Sundaramoorthy, M.; Terner, J.; Poulos, T.L. The crystal structure of chloroperoxidase: a heme peroxidase-cytochrome P450 functional hybrid. Structure, 1995, 3(12), 1367-1377.
[http://dx.doi.org/10.1016/S0969-2126(01)00274-X] [PMID: 8747463]
[47]
Poulos, T.L.; Finzel, B.C.; Howard, A.J. High-resolution crystal structure of cytochrome P450cam. J. Mol. Biol., 1987, 195(3), 687-700.
[http://dx.doi.org/10.1016/0022-2836(87)90190-2] [PMID: 3656428]
[48]
Tripathi, S.; Li, H.; Poulos, T.L. Structural basis for effector control and redox partner recognition in cytochrome P450. Science, 2013, 340(6137), 1227-1230.
[http://dx.doi.org/10.1126/science.1235797] [PMID: 23744947]
[49]
Sevrioukova, I.F.; Poulos, T.L.; Churbanova, I.Y. Crystal structure of the putidaredoxin reductase x putidaredoxin electron transfer complex. J. Biol. Chem., 2010, 285(18), 13616-13620.
[http://dx.doi.org/10.1074/jbc.M110.104968] [PMID: 20179327]
[50]
Sevrioukova, I.F.; Li, H.; Zhang, H.; Peterson, J.A.; Poulos, T.L. Structure of a cytochrome P450-redox partner electron-transfer complex. Proc. Natl. Acad. Sci. USA, 1999, 96(5), 1863-1868.
[http://dx.doi.org/10.1073/pnas.96.5.1863] [PMID: 10051560]
[51]
Cryle, M.J.; Matovic, N.J.; De Voss, J.J. The stereochemistry of fatty acid hydroxylation by cytochrome P450BM3. Tetrahedron Lett., 2007, 48, 133-136.
[http://dx.doi.org/10.1016/j.tetlet.2006.10.136]
[52]
Honeychurch, M.J.; Hill, A.O.; Wong, L-L. The thermodynamics and kinetics of electron transfer in the cytochrome P450cam enzyme system. FEBS Lett., 1999, 451(3), 351-353.
[http://dx.doi.org/10.1016/S0014-5793(99)00610-9] [PMID: 10371219]
[53]
Manoj, K.M.; Gideon, D.A.; Parashar, A.; Haarith, D.; Manekkathodi, A. Microsomal xenobiotic metabolism, mitochondrial oxidative phosphorylation and cyanobacterial photorespiration have common murburn mechanistic underpinnings with chloroplastid photosynthetic physiology. OSF Prepr, 2020.
[http://dx.doi.org/10.31219/osf.io/8p2sx]
[54]
Hayashi, S.; Yasui, H.; Sakurai, H. Essential role of singlet oxygen species in cytochrome P450-dependent substrate oxygenation by rat liver microsomes. Drug Metab. Pharmacokinet., 2005, 20(1), 14-23.
[http://dx.doi.org/10.2133/dmpk.20.14] [PMID: 15770071]
[55]
Turan, V.K.; Mishin, V.M.; Thomas, P.E. Clotrimazole is a selective and potent inhibitor of rat cytochrome P450 3A subfamily-related testosterone metabolism. Drug Metab. Dispos., 2001, 29(6), 837-842.
[PMID: 11353752]
[56]
Wadelius, M.; Sörlin, K.; Wallerman, O.; Karlsson, J.; Yue, Q.Y.; Magnusson, P.K.E.; Wadelius, C.; Melhus, H. Warfarin sensitivity related to CYP2C9, CYP3A5, ABCB1 (MDR1) and other factors. Pharmacogenomics J., 2004, 4(1), 40-48.
[http://dx.doi.org/10.1038/sj.tpj.6500220] [PMID: 14676821]
[57]
Rulcova, A.; Prokopova, I.; Krausova, L.; Bitman, M.; Vrzal, R.; Dvorak, Z.; Blahos, J.; Pavek, P. Stereoselective interactions of warfarin enantiomers with the pregnane X nuclear receptor in gene regulation of major drug-metabolizing cytochrome P450 enzymes. J. Thromb. Haemost., 2010, 8(12), 2708-2717.
[http://dx.doi.org/10.1111/j.1538-7836.2010.04036.x] [PMID: 20735727]
[58]
Barnette, D.A.; Johnson, B.P.; Pouncey, D.L.; Nshimiyimana, R.; Desrochers, L.P.; Goodwin, T.E.; Miller, G.P. Stereospecific metabolism of R- and S-warfarin by human hepatic cytosolic reductases. Drug Metab. Dispos., 2017, 45(9), 1000-1007.
[http://dx.doi.org/10.1124/dmd.117.075929] [PMID: 28646078]
[59]
Narimatsu, S.; Takemi, C.; Kuramoto, S.; Tsuzuki, D.; Hichiya, H.; Tamagake, K.; Yamamoto, S. Stereoselectivity in the oxidation of bufuralol, a chiral substrate, by human cytochrome P450s. Chirality, 2003, 15(4), 333-339.
[http://dx.doi.org/10.1002/chir.10212] [PMID: 12666241]
[60]
White, I.N.H.; De Matteis, F. The role of CYP forms in the metabolism and metabolic activation of HCFCs and other halocarbons. Toxicol. Lett., 2001, 124(1-3), 121-128.
[http://dx.doi.org/10.1016/S0378-4274(00)00288-5] [PMID: 11684364]
[61]
Lin, H-L.; Kenaan, C.; Hollenberg, P.F. Identification of the residue in human CYP3A4 that is covalently modified by bergamottin and the reactive intermediate that contributes to the grapefruit juice effect. Drug Metab. Dispos., 2012, 40(5), 998-1006.
[http://dx.doi.org/10.1124/dmd.112.044560] [PMID: 22344702]
[62]
Zhang, H.; Gay, S.C.; Shah, M.; Foroozesh, M.; Liu, J.; Osawa, Y.; Zhang, Q.; Stout, C.D.; Halpert, J.R.; Hollenberg, P.F. Potent mechanism-based inactivation of cytochrome P450 2B4 by 9-ethynylphenanthrene: implications for allosteric modulation of cytochrome P450 catalysis. Biochemistry, 2013, 52(2), 355-364.
[http://dx.doi.org/10.1021/bi301567z] [PMID: 23276288]
[63]
Zhang, H.; Amunugama, H.; Ney, S.; Cooper, N.; Hollenberg, P.F. Mechanism-based inactivation of human cytochrome P450 2B6 by clopidogrel: involvement of both covalent modification of cysteinyl residue 475 and loss of heme. Mol. Pharmacol., 2011, 80(5), 839-847.
[http://dx.doi.org/10.1124/mol.111.073783] [PMID: 21862689]
[64]
Manoj, K.M.; Baburaj, A.; Ephraim, B.; Pappachan, F.; Maviliparambathu, P.P.; Vijayan, U.K.; Narayanan, S.V.; Periasamy, K.; George, E.A.; Mathew, L.T. Explaining the atypical reaction profiles of heme enzymes with a novel mechanistic hypothesis and kinetic treatment. PLoS One, 2010, 5(5)
[http://dx.doi.org/10.1371/journal.pone.0010601] [PMID: 20498847]
[65]
de Montellano, P.R.O. 1-Aminobenzotriazole: A mechanism-based cytochrome P450 inhibitor and probe of cytochrome P450 biology. Med. Chem. (Los Angeles), 2018, 8(3), 038.
[http://dx.doi.org/10.4172/2161-0444.1000495] [PMID: 30221034]
[66]
Sheng, X.; Zhang, H.; Hollenberg, P.F.; Newcomb, M. Kinetic isotope effects in hydroxylation reactions effected by cytochrome P450 compounds I implicate multiple electrophilic oxidants for P450-catalyzed oxidations. Biochemistry, 2009, 48(7), 1620-1627.
[http://dx.doi.org/10.1021/bi802279d] [PMID: 19182902]
[67]
Bostick, C.D.; Hickey, K.M.; Wollenberg, L.A.; Flora, D.R.; Tracy, T.S.; Gannett, P.M. Immobilized cytochrome P450 for monitoring of p450-p450 interactions and metabolism. Drug Metab. Dispos., 2016, 44(5), 741-749.
[http://dx.doi.org/10.1124/dmd.115.067637] [PMID: 26961240]
[68]
Reed, J.R.; Backes, W.L. Physical studies of P450-P450 interactions: predicting quaternary structures of P450 complexes in membranes from their X-ray crystal structures. Front. Pharmacol., 2017, 8, 28.
[http://dx.doi.org/10.3389/fphar.2017.00028] [PMID: 28194112]

Rights & Permissions Print Export Cite as
© 2022 Bentham Science Publishers | Privacy Policy